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Abstract

Firms increasingly delegate their strategic decisions to algorithms. A potential con-

cern is that algorithms may undermine competition by leading to pricing outcomes

that are collusive, even without having been designed to do so. This paper investigates

whether Q-learning algorithms can learn to collude in a setting with sequential price

competition and stochastic marginal costs adapted from Maskin and Tirole (1988). By

extending a previous model developed in Klein (2021), I find that sequential Q-learning

algorithms leads to supracompetitive profits despite they compete under uncertainty

and this finding is robust to various extensions. The algorithms can coordinate on

focal price equilibria or an Edgeworth cycle provided that uncertainty is not too large.

However, as the market environment becomes more uncertain, price wars emerge as

the only possible pricing pattern. Even though sequential Q-learning algorithms gain

supracompetitive profits, uncertainty tends to make collusive outcomes more di�cult

to achieve.
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1 Introduction

In the modern economy there is a widespread use of algorithms to set prices particularly

on online platforms such as Amazon and eBay (Chen et al., 2016) and even in the gasoline

market (Assad et al., 2020). However, the use of algorithms entails potential challenges and

risks to competition. A potential concern is that algorithms may lead to pricing outcomes

that are collusive even without having been designed to do so and even without explicit

communication 1. This concern raises the question about what competition authorities can

do to deal with such undesirable situations. In a recent paper, Harrington (2018) proposes

an experimental test in order to determine whether an algorithm can be used by firms or it

should be legally prohibited. It consists of designing an artificial marketplace and let pricing

algorithms interact repeatedly under controlled conditions. Then the outcomes are evalu-

ated. If supracompetitive prices emerge in this experimental setting, then these algorithms

may be prohibited because there are reasons to believe that they could reduce competition

and harm consumers.

A recent article by Calvano et al. (2020) considers an infinitely repeated Bertrand game

where firms use Q-learning algorithms to set their prices simultaneously, and they find that

algorithms can lead to collusive strategies. Similarly, Klein (2021) considers a setting adapted

from Maskin and Tirole (1988) where pricing algorithms update their prices sequentially in

a deterministic environment and he also finds that Q-learning algorithms often coordinate

on collusive outcomes. Furthermore, it is shown that the algorithms can converge to a focal

price equilibria above the competitive level or to an Edgeworth price cycle.

Despite these insights, the model presumes an unchanging market environment. Neverthe-

less, it is well-known that real markets are constantly subject to unexpected exogenous shocks

such as shifts in cost or demand and, as a consequence, firms compete under uncertain con-

ditions. Since it is well-known that uncertainty hinders tacitly collusive agreements (Ivaldi

1Apart from algorithmic collusion, algorithms could also influence competition by o↵ering better demand
predictions (Miklós-Thal and Tucker, 2019) or by serving as commitment devices (Brown and MacKay, 2021).
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et al., 2003; Harrington, 2017), it is not clear whether sequential Q-learning algorithms are

capable to learn collusive strategies in such complex environment. To answer this question, a

computational experiment is conducted in this paper by extending the model of Klein (2021)

and allowing stochastic marginal costs. This article contributes to the recent literature of

algorithmic pricing by addressing how di↵erent factors influence the algorithm performance.

My main result is that sequential Q-learning algorithms gain supracompetitive profits when

they compete under uncertainty. The algorithms can coordinate on focal price equilibria or

an Edgeworth cycle provided that uncertainty is not too large. Nonetheless, as the market

environment becomes more uncertain, price wars emerge as the only possible pricing pat-

tern. The intuition behind this results is the following. When marginal costs remain high

the algorithms tend to coordinate on a focal price, but when costs decrease, algorithms have

incentives to serve the entire market. Thus, a period of undercutting begins. Therefore,

uncertainty tends to make collusive outcomes more di�cult to achieve. This extends the

results in Klein (2021) to the case where the marginal costs are stochastic and it identifies

under which conditions focal price equilibrium can emerge after the repeated interaction of

sequential Q-learning algorithms. Such result could potentially give predictions regarding

when price wars or price rigidity would be observed in markets where firms use pricing al-

gorithms. My finding is also aligned with previous results in the literature of computational

methods for oligopoly models. Noel (2008) employs a dynamic programming approach to

simulate the canonical model of Maskin and Tirole (1988) when marginal costs vary from

period to period and through numerical simulations he also finds that the symmetric duopoly

model only converges to an Edgeworth cycle. Also, my paper is closest to that of Calvano

et al. (2021). These authors show how Q-learning algorithms can learn to collude in an en-

vironment in which the algorithms choose a quantity to produce under demand uncertainty

and imperfect monitoring adapted from Green and Porter (1984). Their findings indicate

that imperfect monitoring is not an obstacle to autonomous algorithmic collusion.

The rest of the paper is organized as follows. The next section describes the economic en-
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vironment where the algorithms operate. Section 3 defines the algorithms and the baseline

calibration. Section 4 discusses the results for two main cases. The first one refers to a

deterministic scenario in which the marginal costs remain constant over time. In the second

one the algorithms compete under uncertainty and the outcomes are analyzed for di↵erent

calibrations. Section 5 provides several robustness analysis. Finally, section 6 concludes with

a brief discussion of the limitations of the analysis and future research areas.

2 Economic Environment

Following Maskin and Tirole (1988) and Eckert (2004), I consider an alternating-move

duopoly model with stochastic marginal costs. There are two firms, indexed by i = 1, 2,

and competition between them takes place in infinitely repeated discrete time indexed by

t 2 {0, 1, 2, ...}. Firm 1 chooses a price in every odd period and firm 2 sets its price in

even periods. This timing reflects commitments to price for two periods. The price space

is discrete and it is given by P = {0, 1
k
, 2
k
, ..., 1} where k is a parameter to be defined. The

finite price grid also ensures that the best response function is well defined. For instance, if

firm i sets a price pi = p > 0, and firm j wants to undercut pi, the optimal price it can set is

pj = p� 1
k
. Each firm aims to maximize its cumulative stream of discounted future profits

max
1X

t=0

�t⇡it(pit, pjt, ct) (1)

where � 2 (0, 1) is the discount factor. It is assumed that there are no fixed costs or capacity

constraints, therefore the profit of firm i at time t can be written as

⇡it(pit, pjt, ct) = (pit � ct)Di(pit, pjt) (2)

where Di is the demand function which is defined as follows
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Di(pit, pjt) =

8
>>>>>><

>>>>>>:

1� pit if pit < pjt

1
2 (1� pit) if pit = pj,t

0 if pit > pjt

(3)

Both firms have the same marginal costs, ct, and it can be either high (cH) with probability

⇢ 2 (0, 1) or low (cL) with probability 1 � ⇢ in any period. The shocks are purely idiosyn-

cratic and have no persistency over time. The absence of auto-correlation among the shocks

implies that there is significant uncertainty. Define pc
L
and pc

H
as the competitive prices and

pm
L
and pm

H
as the monopoly prices under low and high marginal costs, respectively. I follow

Maskin and Tirole (1988) by imposing the Markov assumption: strategies only depend on

variables that are directly payo↵-relevant, which in this case are the price set by the rival

in the previous period and the current marginal cost. Therefore, I assume that each firm

observes the current marginal cost and the competitor’s past price before setting its price.

This assumption entails a reaction function that specifies a price response for every possible

rival price and for each possible marginal cost.

The solution concept is the Markov Perfect Equilibrium, which is a subgame perfect Nash

equilibrium under the Markov assumption. Maskin and Tirole (1988) shows in their canon-

ical model that two sets of Markov Perfect Equilibrium are possible for a su�ciently high

discount factor: focal price equilibria and Edgeworth cycle equilibria. Focal price equilibria

are characterized by constant prices over time. Firms tacitly colluding and all charging the

monopoly price in each period is an example. In contrast, in Edgeworth cycle equilibria firms

gradually undercut each other. Once the prices have fallen to marginal cost, undercutting

ceases, and firms play a war of attrition with each firm mixing between raising price back to

the top of the cycle and remaining at marginal cost. Both firms have an incentive to raise

their price, but prefer the other firm to do so.

I assume that firms delegate their strategic decisions to pricing algorithms called Q-learning
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algorithms. Provided that marginal costs are constant over time, Klein (2021) finds that pric-

ing algorithms can coordinate on a focal price equilibria or an Edgeworth cycle. However,

in this paper I consider a significant departure from Klein (2021) by assuming stochastic

marginal costs. Particularly, I investigate the collusion capacity of Q-learning algorithms

under uncertainty. Maintaining the focus on the same type of algorithms helps to compare

the results and identify the specific e↵ects of time-varying costs. The next section provides

a brief description of the Q-learning algorithms used in this paper.

3 Sequential Q-Learning

Q-Learning is a reinforcement learning algorithm that aims to maximize the expected dis-

counted value of future rewards for unknown environments with repeated interaction. The

algorithm only learns trough experience, associating states and actions with the payo↵ they

generate. Specifically, an algorithm tries an action at a particular state, and evaluates its

consequences in terms of the immediate reward or penalty it receives and its estimate of the

value of the state to which it is taken. By trying all actions in all states repeatedly, it learns

which are best overall, judged by long-term discounted reward (Watkins and Dayan, 1992).

In this way, it may learn an optimal strategy. Formally, the objective of the algorithm i is

to maximize

max
{pit}1t=0

Vi(st) = E
" 1X

t=0

�t⇡i(pit, st)

#
s.t st+1 = g(pit, st)

s0 given

(4)

In each period the algorithm observes a state variable st 2 S and then chooses an action

pit 2 P . Given the state and the action chosen, the algorithm gets an immediate reward

⇡i that depends on the algorithm’s own action pit and on the state st. It is assumed that

the reward function ⇡i is bounded. The future state is determined by the function g which
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is the state transition function. Under the one-period memory assumption the state st is

a pair (pjt�1, ct). A finite memory is necessary for the state space to be finite, given that

the action space is finite as well. The solution of (4) is given by the optimal policy function

h⇤
i
: S ! P , which is defined as follows

h⇤
i
(st) = argmax

pit

V ⇤
i
(st) (5)

where V ⇤
i

is the value function and gives the discounted cumulative reward obtained by

following the optimal policy beginning at state st. Equation (5) suggests that to compute

the optimal policy function it is necessary to calculate the value function. To do so, we can

start rewriting the sequential problem (4) as a recursive problem by using the Bellman’s

principle of optimality

V ⇤
i
(st) = max

pit

⇥
⇡i(pit, st) + �⇡i(pit, st+1) + �2V ⇤

i
(st+1)

⇤
(6)

Assuming that the agent has perfect knowledge of the immediate reward function ⇡i and

the state transition function g, it can use the value iteration method to solve the recursive

problem and, as a result, can learn the optimal policy function (Stokey et al., 1989). In other

words, this means that the algorithms can predict in advance the exact outcome of setting

a certain price in any state, and this assumption is not reasonable in some applications.

Therefore in this paper it is assumed that ⇡i and g are unknown. Thus, instead of using the

value iteration method, our algorithms use another method called Q-learning2.

For our purposes, lets define the function Qi(pit, st) which gives the maximum discounted

cumulative reward that can be achieved starting from state st and applying the action pit

as the first action. In other words, the value of Qi is the reward received immediately upon

2For a textbook treatment on Q-learning, see Sutton and Barto (2018)
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executing action pit from state st, plus the value of following the optimal policy thereafter:

Qi(pit, st) ⌘ ⇡i(pit, st) + �⇡i(pit, st+1) + �2V ⇤
i
(st+1) (7)

By taking the maximum of both sides and using equation (6) yields

max
pit

Qi(pit, st) = V ⇤
i
(st) (8)

Therefore, we can rewrite the equation (5) in terms of Q as

h⇤
i
(st) = argmax

pit

Qi(pit, st) (9)

It shows that if the agent learns the Qi function instead of the V ⇤
i
function, it will be able to

select optimal actions even when it has no knowledge of the functions ⇡i and g. As equation

(9) makes clear, the algorithm needs only consider each available action pit in its current state

st and choose the action that maximizes Qi(pit, st). Hence, if the agent knew the Q-matrix,

it could then easily calculate the optimal action for any given state.

Learning. Note that equation (8) allows rewriting equation (7) as

Qi(st) = ⇡i(pit, st) + �⇡i(pit, st+1) + �2 max
pit+1

Qi (pit+1, st+1) (10)

This recursive definition of Qi provides the basis for estimating the Q-matrix by an iterative

approximation procedure. Starting from an arbitrary initial matrix Q0, after choosing action

pit in state st, the algorithm observes ⇡i and st+1 and updates the corresponding cell of the

matrix Qt(pit, st) according to the following equation:

Qit+1(pit, st) = (1� ↵)Qit(pit, st) + ↵


⇡i(pit, st) + �⇡i(pit, st+1) + �2 max

pit+1

Qit(pit+1, st+1)

�
(11)

where ↵ 2 (0, 1) is a learning parameter that regulates how quickly new information replaces
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old information. When ↵ is equal to 0 then there is no learning process since the agent does

not take into account the new information acquired. Analogously, when ↵ is equal to 1, the

algorithm would immediately forget what it has learned in the past. Thus, to ensure that

an e↵ective learning process takes place, ↵ must take any value between 0 and 1.

According to equation (11), the new estimate of the optimal long-run value given state st

consists of three components: direct profit ⇡i(pit, st), next period profit ⇡i(pit, st+1) when new

state st+1 realizes but the price has not changed (discounted for one period), and the highest

possible Q-value maxpit+1 Qit(pit+1, st+1) in this new state st+1 (discounted for two periods).

This enables an itaratively approximation in which initially the Q-values are imprecise, but

over time, they become better estimates of the long-run consequences of choosing pit in state

st. It is worth noticing that Q-learning is slow because it updates only one cell of the Q-

matrix at a time, and approximating the true matrix generally requires that each cell be

visited many times. The larger the state or action space, the more iterations will be needed.

The action selection. I use a procedure called "-greedy exploration: with probability "t

it chooses a price randomly at period t and with probability 1 � "t it chooses the currently

optimal action (i.e., the one with the highest Q-value in the relevant state). During the

exploration phase, the algorithm explores the state-action space in order to discover the

payo↵s associated with a certain action in a given state.

pit =

8
>><

>>:

p ⇠ U(P ) with probability "t

argmax
pi

Qi(pi, st) with probability 1� "t

(12)

where U(P ) is a discrete uniform distribution over the action set P and the exploration rate

is defined as "t = (1 � ✓)t with ✓ 2 (0, 1). This implies that initially the algorithm chooses

an action randomly, but then the probability of selecting the greedy choice increases as time

goes by. Figure 1 shows "t over the curse of the simulation. In case of ties the algorithm

randomizes over all currently optimal actions.
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Figure 1: The "-greedy policy with decreasing probability of exploration

Period t

"t

Convergence. In a single-agent setting Q-learning converges to the optimal strategy under

certain conditions (Watkins and Dayan, 1992). Intuitively, a su�cient condition for such

convergence is that each action-state pair should be visited infinitely often. However, in a

multi-agent setting, when two or more algorithms interact repeteadly with each other, the

problem becomes non-stationary and history dependent and there is no theoretical result

that guarantees ex-ante that the agents will learn an optimal policy. However, this does not

imply that Q-learning is expected to behave badly; it simply means that theory is not able

to say how well Q-learning is expected to work. In the absence of theoretical guidance, this

paper takes an experimental approach to develop an empirical understanding of multi-agent

Q-learning. I rely on computational simulations to derive results on algorithmic collusion.

A pseudocode of the algorithm used in the simulations3 is provided below.

3.1 Baseline specification

In order to facilitate comparisons, I use the same calibration as in Klein (2021). I set k = 12

price intervals between 0 and 1. The discount factor � is 0.95 and the learning parameter

is ↵ = 0.3. Each experiment consists of T = 500, 000 periods and the experimentation

parameter is ✓ = 2.75 ⇥ 10�5 which implies that the probability of exploration gradually

decreases from 100% at the beginning to 0.1% halfway through the run, reaching 0.0001%

at the end (so "0.5T = 0.001 and "T = 0.000001). A lower value of ✓ implies a more extensive

experimentation phase. If ✓ were equal to 0, the algorithm would never attain a stable

3The code was run in Matlab version 2017b and it can be obtained from the author upon request.
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Algorithm 1: Pseudocode Sequential Q-Learning
Data

Set demand and learning parameters
Initialization

Initialize Qi according to Qi(pi, s) = 0 for all (pi, s)
Initialize (pit, pjt) and ct for t = 1, 2
Initialize i = 1, j = 2 and t = 3
Loop over each period

Compute (⇡t�2, ⇡t�1) according to equation (2)
Update Qi(pit�2, st�2) according to equation (11).
Set ct = cH with probability ⇢ or ct = cL with probability 1� ⇢
Set pit according to equation (12) and set pjt = pjt�1

Update t = t+ 1
Update i = j and j = i

Until t = T

behavior because it would be constantly experimenting. Analogously, a greater value of ✓

entails a shorter experimentation phase and, as a result, the algorithm would not be able to

learn how to successfully play since it would not visit all the action-state pairs. As for the

initial matrix Q0, the baseline choice is to initiate the Q-values with all zeros. The fact that

the initial Q-values are all equal can be interpreted as the algorithm not knowing the quality

of their actions for any state at the beginning. Each experiment is run under the same set of

parameters and the initial state s0 is drawn randomly at the beginning of each experiment.

To reduce the stochastic noise, I run S = 300 simulations.

4 Computational Results

The following subsections provides an analysis of the simulation results for two cases: the

deterministic cost benchmark, where the marginal costs remain constant over time (e.g.,

⇢ = 0), and the stochastic cost scenario, where marginal costs in any period can be either

high (cH) with probability ⇢ 2 (0, 1) or low (cL) with probability 1 � ⇢. This exercise aims

to show that sequential Q-learning algorithms lead to supracompetitive outcomes even if

they compete under structural uncertainty. Furthermore, by comparing the outcomes of
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both cases it is possible to identify the specific e↵ects time-varying costs have on collusion

capacity. I analyzed the outcomes for the final 1000 periods. This is because the algorithms

attain a stable behavior during the last periods, provided that the experimentation rate "t

is decreasing over time. Consequently, by considering the last 1000 periods it is possible to

study the strategies that algorithms have learned.

4.1 Sequential pricing algorithms under deterministic costs

In this subsection I analyze the outcomes for the baseline parametrization described in

Section 3.1 when the marginal costs remain constant over time, ct = c for all t = 1, 2, ..., T .

This analysis is performed for three di↵erent values c 2 {0, 0.2, 0.4}. These magnitudes were

deliberately chosen in order to ensure that the monopoly price increases as the marginal costs

vary and all of them are in the action space. The results of the deterministic case replicates

the findings of Klein (2021) and they serve as a benchmark to compare the collusive behavior

under structural uncertainty.

4.1.1 Prices and profits

Table 1 summarizes pricing outcomes during the last 1000 periods. This table shows the types

of behavior the algorithms learn after repeated interaction. It also shows the average market

price, the minimum and maximum price for each possible marginal cost. The algorithms

converge to a constant price in a significant fraction of the experiments whereas in the rest

of them the algorithms converge to a non-constant price. This replicates the results in Klein

(2021) and are also supported by the experimental evidence as documented by Leufkens and

Peeters (2011). It is observed that for each possible marginal cost the average market price is

above the competitive level regardless the pricing pattern the algorithms have converged to,

which implies that algorithms manage to charge supracompetitive prices. Also it is observed

that as the marginal costs increases, the average market price tends to increase as well. This

finding suggests that the algorithms adapt their behavior to di↵erent market conditions.
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Table 1: Pricing outcomes

constant price non-constant price
c pc pm Freq. pmin p̄ pmax Freq. pmin p̄ pmax

0.00 0.00 0.50 19% 0.25 0.42 0.58 81% 0.00 0.35 0.83
0.20 0.25 0.58 30% 0.42 0.53 0.75 70% 0.25 0.46 0.83
0.40 0.42 0.67 27% 0.58 0.67 0.75 73% 0.42 0.59 0.92
Note: The parameter values are k = 12, � = 0.95, ↵ = 0.3, T = 500, 000 and S = 300.

The upper panel of the Figure 2 illustrates the histogram of the market price charged during

the last 1000 periods for those experiments that converge to a constant price. It is shown that

the distributions are centered around the monopoly price pm or one step away. Therefore,

as it was suggested above, the algorithms coordinate on a constant price which is above the

competitive level. The lower panel shows the distribution of changes in market price for all

other simulations which have converged to a non-constant price. Across specifications, the

lower panel reveals a recognizable pattern: price decreases occur much more often but are

smaller in magnitude than price increases. This finding suggests that the algorithms generate

a stylized fact which claims that prices rise like rockets but fall like feathers (Tappata, 2009).

Figure 3 illustrates both types of price paths the algorithms display after repeated interaction.

Just for the sake of illustration, I only consider the final 50 periods. The upper panel shows

the price path for a particular simulation that have converged to a constant price. It shows

that both algorithms sustain a fixed price near the monopoly level, which can be interpreted

as the algorithms converging to a focal price equilibrium. On the other hand, the lower

panel shows the price path for a particular simulation that has converged to a non-constant

price. It shows that algorithms generate a pattern that resembles to an Edgeworth cycle,

where algorithms successive undercut their competitor and after they reach the competitive

price, they return to a price level that is above the monopoly price. This pricing pattern

pushes the average market price above its competitive level. The lower panel also reveals

that algorithm 2 always resets the price cycle. This is because Q-learning is restricted to

playing pure strategies.
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Figure 2: Histogram of pricing outcomes

Note: The parameter values are k = 12, � = 0.95, ↵ = 0.3, T = 500, 000 and S = 300.

Since in some experiments the algorithms coordinate on a supracompetitive fixed price and

in the rest of them they converge to a price cycle that is reset after reaching the competitive

level, these pricing dynamics suggest profits that are on average supracompetitive. To explore

this hypothesis, following Calvano et al. (2020) I compute the normalized aggregate profit

for each experiment, which is defined as follows

� =
⇡̄ � ⇡c

⇡m � ⇡c
(13)

where ⇡̄ is the average aggregate profit during the final 1000 periods, ⇡c is the profit in perfect

competition and ⇡m is the monopoly profit. Thus, � = 0 corresponds to the competitive

outcome and� = 1 to the perfectly collusive outcome. Figure 4 shows the average profit gain

for each possible marginal cost. It is observed that algorithms converge to supracompetitive
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Figure 3: Focal price and Edgeworth price cycle

Algorithm 1 Algorithm 2 Marginal cost

Note: Price path during the final 50 periods of a simulation that have converged to a constant price (upper
panel) and a non-constant price (lower panel). The parameter values are k = 12, � = 0.95, ↵ = 0.3,
T = 500, 000 and S = 300.

average profits. For example, the average profit gain is� = 82.25% for c = 0 and� = 74.98%

for c = 0.2.

4.1.2 Punishment strategies

Besides the fact that algorithms obtain supracompetitive profits on average, to assure the

existence of algorithmic collusion it is necessary to determine whether they learn strate-

gies that embody a reward-punishment scheme to sustain such supracompetitive outcome.

Therefore, following the approach used in Calvano et al. (2020) and Klein (2021), I analyze

whether the algorithms have learned to punish deviations only for those simulations in which

the algorithms have converged to a constant price above the competitive level. Starting from

the average fixed price that the algorithms have converged to, I exogenously force one algo-

rithm to deviate in one period by slightly undercutting its competitor. The other algorithm

instead continues to play according to its learned strategy. By doing this, I observe the

reaction of the algorithms in the subsequent periods when the forced cheater reverts to its
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Figure 4: Normalized profits

0 0.2 0.4

0

0.2

0.4

0.6

0.8

1

Note: For each marginal cost c, the box extends form the first quartile to the third quartile with a red line
at the median. The whiskers show the range of the data. The black dot stands for the mean. The parameter
values are k = 12, � = 0.95, ↵ = 0.3, T = 500, 000 and S = 300.

learned strategy as well. The deviation price is always just below the pre-deviation price.

Thus the deviating agent always choose the most profitable one-period deviation. Table 2

reports the resulting average market price for each value of c. In all cases deviations are

punished since the one-period deviation in ⌧ = 0 is followed by a price war. After the price

cut, the other algorithm sets a lower price which implies that deviation triggers a punishment

to restore the focal price. The algorithms gradually return to their predeviation behavior

after 5-7 periods.

Table 2: Pre and post-deviation market prices

Period ⌧
c Freq. pc pm �1 0 1 2 3 4 5 6 7 8 9 10

0.00 19% 0.00 0.50 0.42 0.33 0.21 0.20 0.38 0.53 0.51 0.47 0.43 0.42 0.42 0.42
0.20 30% 0.25 0.58 0.53 0.44 0.34 0.40 0.55 0.60 0.57 0.53 0.53 0.53 0.53 0.53
0.40 27% 0.42 0.67 0.67 0.59 0.50 0.53 0.63 0.71 0.69 0.68 0.67 0.67 0.67 0.67

Note: The parameter values are k = 12, � = 0.95, ↵ = 0.3, T = 500, 000 and S = 300.

Figure 5 illustrates the price reaction to defection for c = 0.2. It suggests that the algorithms
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learn to punish price deviations by playing a reward-punishment scheme. The non-deviating

agent reacts to defection by lowering its price in ⌧ = 1, the period after defection. The

defecting agent expects this punishment and sets her price near the punishment price as

well. Then both agents simultaneously start to slowly increase their prices. Already after

five periods, the prices return to the pre-defection level.

Figure 5: Deviation and Punishment

Deviating agent Nondeviating agent Marginal cost

Note: One algorithm is forced to deviate in period ⌧ = 0. The deviation lasts for one period only. The figure
plots the average market price for those simulations in which the algorithms have converge to a fixed price.
The parameter values are k = 12, c = 0.2, � = 0.95, ↵ = 0.3, T = 500, 000 and S = 300.

4.2 Sequential pricing algorithms under stochastic costs

In the previous subsection, I replicated the results of Klein (2021) as a benchmark to compare

how uncertainty influences the algorithm performance. In this subsection I analyze the

outcomes when the marginal costs are stochastic and they can takes two values, ct = cL

with probability 1 � ⇢ or ct = cH with probability ⇢ for all t = 1, 2, ..., T . The shocks are

purely idiosyncratic and have no persistency. The absence of auto-correlation among the

shocks implies that the algorithms face considerable uncertainty. Low marginal cost is set

to cL = 0 and the high marginal cost varies according to particular specifications as well as
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the probability of the shock. I consider cH 2 {0.2, 0.40} and ⇢ 2 {0.1, 0.3, 0.5, 0.7, 0.9}. As

it is shown below, when sequential Q-learning algorithms compete under uncertainty, they

achieve supracompetitive profits.

4.2.1 Prices and profits

Table 3 summarizes the pricing outcomes under uncertainty as the probability ⇢ varies and

for each value of high marginal cost cH . As in the deterministic benchmark, I start by

classifying the pricing outcomes. To make such classification I follow a practical criterion:

constant pricing pattern is deemed to be achieved if the market price remains constant over

at least 50% of the last 1000 periods. That is, a simulation attains a constant pricing pattern

if the market price remains without changes in most periods. Based on this criterion, I find

that the algorithms coordinate on a constant price if the probability that costs change is

not too large. Panel (a) of Table 3 reports that the algorithms learn to play a fixed price

in a considerable fraction of experiments for ⇢ = 0.10 and ⇢ = 0.90. Alternatively, and

similar to findings of Noel (2008), as the probability that costs change increases, algorithms

only converge to a non-constant pricing pattern. Panel (b) of Table 3 shows that when

⇢ 2 {0.30, 0.50, 0.70} the algorithms charge a non-constant market price for each possible

value of high marginal cost.

The table also reports the average market price, p̄, and to facilitate comparison it also shows

the theoretical average competitive price, p̄c, which is the average of the competitive prices

that would occur in one-shot games: pc
H

with probability ⇢ and pc
L
with probability 1 � ⇢.

Similarly, the theoretical average monopoly price, p̄m, is the average of the monopoly prices

that would occur in one-shot games: pm
H
with probability ⇢ and pm

L
with probability 1�⇢. It

is observed that algorithms always charge supracompetitive prices on average, regardless the

type of behavior they display. For a given probability ⇢, the average market price increases

as the size of the high marginal cost increases. The same finding is observed when the high

marginal cost cH remains constant and the probability of the cost shock increases. All these
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observations suggest that algorithms adjust their prices by increasing them when they face

higher uncertainty. This implies that algorithms learn how to adapt their behavior in order

to operate under uncertainty.

Table 3: Pricing outcomes under uncertainty as ⇢ varies

(a) constant price

⇢ cH Freq. p̄c p̄m p̄
0.10 0.20 15% 0.08 0.50 0.38

0.40 11% 0.08 0.50 0.45
0.90 0.20 18% 0.25 0.58 0.49

0.40 41% 0.42 0.67 0.61

(b) non-constant price

⇢ cH Freq. p̄c p̄m p̄
0.10 0.20 85% 0.08 0.50 0.38

0.40 89% 0.08 0.50 0.40
0.30 0.20 100% 0.08 0.50 0.39

0.40 100% 0.17 0.58 0.43
0.50 0.20 100% 0.17 0.58 0.41

0.40 100% 0.25 0.58 0.47
0.70 0.20 100% 0.25 0.58 0.44

0.40 100% 0.33 0.67 0.52
0.90 0.20 82% 0.25 0.58 0.47

0.40 59% 0.42 0.67 0.58

Note: The parameter values are k = 12, � = 0.95, ↵ = 0.3, T = 500, 000 and S = 300.

Figure 6 illustrates both types of price paths the algorithms play after repeated interaction.

Just for the sake of illustration, I only consider the final 50 periods. The upper panel shows

the price path for a particular simulation that has converged to a constant price for ⇢ = 0.10

and cH = 0.40. It shows that both algorithms sustain a fixed price near the monopoly level

when the marginal costs are low, but after the shock the algorithms enter into a price war

that lasts for several periods and then revert to the pre-deviation price. Thus a constant

pricing pattern can be understood as a focal price equilibria. In addition, the lower panel

shows the price path for a particular simulation that has converged to a non-constant price

for ⇢ = 0.50 and cH = 0.40. As in the deterministic benchmark, the pricing path follows a

pattern similar to an Edgeworth cycle that is reset after reaching the competitive price level.

Table 4 reports the normalized profits under uncertainty. It shows that they are closed to

the collusive level, and the minimum is attained when ⇢ = 0.50. Thus, when algorithms

face considerable uncertainty they perform worse than in other specifications. To asses the
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Figure 6: Constant and non-constant price path

Algorithm 1 Algorithm 2 Marginal cost

Note: Price path during the final 50 periods of a simulation that have converged to a constant price (upper
panel) and a non-constant price (lower panel). The parameter values are k = 12, � = 0.95, ↵ = 0.3,
T = 500, 000 and S = 300.

Table 4: Normalized profits under uncertainty as ⇢ varies

H
H

H
H

H
H

cH

⇢
0.10 0.30 0.50 0.70 0.90

0.20 82.53% 78.67% 70.24% 74.16% 74.21%
0.40 84.39% 81.44% 71.42% 77.14% 79.27%

impact of stochastic marginal costs on collusion, I compare the normalized profits gained in

the deterministic case for c = 0.2 (see Section 4.1.1) and the normalized profits gained in

the stochastic scenario when cL = 0.2, cH = 0.4 and ⇢ = 0.5. Both cases are comparable

since they are characterized by the same average marginal cost of c̄ = 0.2. Therefore, in this

way I can identify the e↵ect of the stochastic marginal costs on the algorithm performance.

Table 5 reports that the di↵erence between profit gains under deterministic marginal costs

and stochastic marginal costs is 3.56% in absolute terms. It implies that uncertainty tends

to make collusive outcomes more di�cult to achieve with sequential pricing algorithms. The

magnitude is also consistent with the finding of Calvano et al. (2021).
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Table 5: The impact of uncertainty on collusive outcomes

Deterministic marginal costs Stochastic marginal costs
74.98% 71.42%

Figure 7 extends the computational results reported in Table 4 by showing the distribution

of normalized profits gain for ⇢ = 0.5 as cH varies. It is observed that for each possible value

of cH , the distribution of profits does not display a remarkable statistical dispersion and the

mean remains approximately constant regardless the value of the high marginal cost.

Figure 7: Normalized profits under uncertainty as cH varies

0.2 0.4

0

0.2

0.4

0.6

0.8

1

Note: For each marginal cost c, the box extends form the first quartile to the third quartile with a red line
at the median. The whiskers show the range of the data. The black dot stands for the mean. Values beyond
the whiskers are considered outliers and are plotted as individual points. The parameter values are k = 12,
� = 0.95, ↵ = 0.3, T = 500, 000 and S = 300.

4.2.2 Punishment strategies

As in the deterministic benchmark, high price levels alone are not proof of algorithmic collu-

sion as learning to play those prices could be merely myopic. In other words, the algorithm

could have learned to play certain prices without developing an underlying understanding of

the strategic components of the market environment. From a theoretical perspective, punish-
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ment strategies are vital for collusion to be sustainable in the long run. Thus, to confirm that

the market price of the algorithms are indeed collusive, it is necessary to establish whether

the algorithms learn to punish price deviations. To test this hypothesis I basically perform

the same analysis mentioned in Section 4.1.2. Starting from the strategies the algorithms

have converged to, I let them interact and then I observe what happens if one algorithm

is forced to deviate in one period by slightly undercutting its competitor while the other

continues to play according to its learned strategy. However, since marginal costs vary over

time, a decrease in price after the deviation maybe due to the fact that the other algorithm

triggers a punishment to restore the focal price or simply because the cost state has changed

from high to low state and the other algorithm sets a lower price. To avoid such confounding

e↵ects, the marginal costs are set equal to the high state and it remains constant over time.

Table 6 summarizes the average market price for those simulations that were able to converge

to a single fixed price given that the marginal costs are constant. In period ⌧ = �1 both

algorithms play according to the strategy they have learned. Then, in period ⌧ = 0, one

algorithm is forced to deviate by undercutting the price of the competitor. Afterwards, both

algorithms play according to their learned strategies again. It is shown that the average

market price is close to the average monopoly price for all calibrations. Additionally, as

in the deterministic benchmark, deviations are followed by price wars and the algorithms

gradually return to their predeviation behavior after a few periods. Therefore, these results

suggest that algorithms do not only learn to play high prices but also strategies that make

collusion incentive compatible, even when they operate under structural uncertainty. Figure

8 complements these computational results by illustrating the price reaction to defection for

cH = 0.4 and ⇢ = 0.5.

4.2.3 Price wars in equilibrium

In the previous sections, I argued that the algorithms can learn collusive strategies and they

coordinate on a focal price equilibrium or an Edgeworth cycle provided that the probability
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Table 6: Pre and post-deviation market prices

Period ⌧
⇢ cH pc

H
pm
H

Freq. �1 0 1 2 3 4 5 6 7 8 9 10
0.10 0.20 0.25 0.58 8% 0.54 0.46 0.63 0.58 0.57 0.58 0.56 0.57 0.55 0.56 0.55 0.56

0.40 0.42 0.67 10% 0.63 0.55 0.73 0.76 0.66 0.65 0.64 0.64 0.64 0.64 0.64 0.64
0.30 0.20 0.25 0.58 9% 0.52 0.43 0.40 0.78 0.6 0.55 0.53 0.52 0.52 0.52 0.52 0.52

0.40 0.42 0.67 18% 0.63 0.54 0.70 0.70 0.68 0.64 0.64 0.64 0.63 0.62 0.64 0.64
0.50 0.20 0.25 0.58 11% 0.52 0.44 0.46 0.51 0.47 0.49 0.57 0.53 0.52 0.52 0.52 0.52

0.40 0.42 0.67 20% 0.65 0.56 0.58 0.65 0.66 0.65 0.63 0.65 0.64 0.64 0.64 0.64
0.70 0.20 0.25 0.58 15% 0.49 0.40 0.33 0.33 0.72 0.58 0.53 0.50 0.49 0.49 0.49 0.49

0.40 0.42 0.67 31% 0.64 0.56 0.51 0.65 0.64 0.67 0.64 0.64 0.64 0.64 0.64 0.64
0.90 0.20 0.25 0.58 18% 0.51 0.43 0.27 0.54 0.53 0.61 0.52 0.51 0.51 0.51 0.51 0.51

0.40 0.42 0.67 41% 0.66 0.58 0.49 0.57 0.66 0.69 0.67 0.66 0.66 0.66 0.66 0.66
Note: The parameter values are k = 12, � = 0.95, ↵ = 0.3, T = 500, 000 and S = 300.

Figure 8: Deviation a Punishment starting from high marginal cost state

Deviating agent Nondeviating agent High marginal cost

Note: One algorithm is forced to deviate in period ⌧ = 0. The deviation lasts for one period only. The
figure plots the average market price for those simulations in which the algorithms have converge to a fixed
price, starting from the high marginal cost state. The parameter values are k = 12, � = 0.95, ↵ = 0.3,
T = 500, 000, S = 300, cH = 0.40 and ⇢ = 0.50.

that costs change is not too large. However, as the probability that costs change increases,

algorithms only converge to a an Edgeworth cycle. Therefore, when the market environment

becomes more uncertain, the likelihood that a price war will occur increases. In this section,

I study the underlying mechanism that may drive such price wars by analyzing the reaction

functions the algorithms have learned for the case in which the high marginal cost is cH = 0.4
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and the probability is ⇢ = 0.50. Given the assumption of one-period memory, the reaction

function of firm i, Ri(pjt�1, ct), depends on the price set previously by i’s rivals, namely firm

j, and on the current marginal cost. This reaction function specifies a price response for

every possible rival price and for each possible marginal cost. Since the algorithms learn

their strategies by experimentation, the reaction function that the algorithms converge to

depend quite sensitively on the specific history of the interaction between them. As a result,

there is a considerable variation in the learned reaction functions. Averaging across the 300

simulations, eliminates much of the noise and reveals a clear pattern. Figure 9 depicts the

average reaction functions the algorithms converge to for each possible state of marginal cost

and Table 7 illustrates numerically the reaction function for firm 1. The table gives the price

and corresponding period profits when costs are low or high. To facilitate the interpretation

of the strategies, Figure 9 also depicts the monopoly price in each state and the expected

competitive and monopoly price. The upward-sloping straight line on each graph has a slope

of 1 and represents the price matching line. Where the reaction function is below this line

represents an undercut, and where the reaction function is above this line corresponds to

price restorations.

The figure shows some remarkable behaviors. Firstly, firms repeatedly undercut each other

at high prices if costs are high, and at lower prices if costs are low. In the low-cost state

the algorithms successively undercut their competitor and before they reach the expected

competitive price, they return to a price level that is above the expected monopoly price.

In the high-cost state, the algorithms undercut until they reach the expected monopoly

price, then they restore the cycle by setting a price that is substantially above the high cost

monopoly price. These observations suggest that the undercutting phase is more aggressive

in the low-cost state. The intuition behind this finding is similar to that of Rotemberg and

Saloner (1986), in periods in which costs are low, the temptation to undercut the competitors’

price is greater than when costs are high. Therefore, decreases in costs induce price wars

since a firm facing low cost has incentive to serve the entire market.
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Secondly, the dynamic reaction functions reveals that firms tend to gravitate more easily

towards a focal price in the high-cost state than in the low-cost state. The high-cost focal

price is given by the expected monopoly price, where the reaction functions overlap the price

matching line. This is consistent with the results depicted earlier in Figure 8, where it was

shown that the algorithms play reward-punishment scheme to sustain focal price equilibria

in the high-cost state.

Figure 9: Reaction functions

Low cost reaction function for firm 1

Low cost reaction function for firm 2

Low cost monopoly price

Expected competitive price

Expected monopoly price

High cost reaction function for firm 1

High cost reaction function for firm 2

High cost monopoly price

Expected competitive price

Expected monopoly price

Note: The parameter values are k = 12, � = 0.95, ↵ = 0.3, T = 500, 000, S = 300, cH = 0.40 and ⇢ = 0.50.

Both findings suggest that if costs remain low, firms wish to take advantage of the tem-

porarily low costs by serving the entire market. As a result, a period of undercutting begins.

Alternatively, if costs remain high, firms tend to coordinate on the expected monopoly price.

With strategies of this sort, price wars occur in stochastic environments with one-period

memory. Such finding could potentially predict that when firms use sequential Q-learning

algorithms to set prices, then price wars would be observe provided that firms compete under

uncertainty.
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Table 7: Reaction function for firm 1

p2 R1(p2, cL) ⇡1(p2, cL) R1(p2, cH) ⇡1(p2, cH)
1.00 0.51 0.25 0.74 0.09
0.92 0.52 0.25 0.74 0.09
0.83 0.51 0.25 0.72 0.09
0.75 0.52 0.25 0.67 0.09
0.67 0.51 0.25 0.61 0.08
0.58 0.47 0.25 0.62 0.00
0.50 0.42 0.24 0.74 0.00
0.42 0.33 0.22 0.75 0.00
0.33 0.27 0.20 0.80 0.00
0.25 0.56 0.00 0.77 0.00
0.17 0.80 0.00 0.80 0.00
Note: Average reaction function over 300 simulations and profits

5 Robustness

The above results suggest that sequential Q-learning algorithms achieve supracompetitive

profits even when they face an environment with stochastic marginal costs. This finding

is robust for each combination of cH and ⇢. In this section, I consider that the baseline

calibration of the stochastic experiment is defined by cH = 0.4 and ⇢ = 0.5 and then I

analyze how robust the baseline results are to changes in the economic environment. In the

following subsections, I briefly report the main results of this analysis.

5.1 Alternative action set

I explore the consequences of enlarging the discrete price grid by setting k = 24. I find that

the normalized aggregate profit gain is � = 76.60% when k = 24, so it remains above the

competitive level. It is worth noting that a higher cardinality of the action set implies that

the Q-matrix is much larger than the baseline model. Consequently, it is more di�cult that

algorithms converge to supracompetitive outcomes a priori. Nonetheless, the normalized

aggregate profit remains approximately constant in comparison with the results reported in

Table 4. Hence, results are robust to an increase in the amount of pricing intervals k.
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5.2 Discount factor

In the baseline parametrization I have set disconunt factor � = 0.95 reasonably close to 1.

In this subsection I analyze how the results change as the discount factor takes lower values.

Figure 10 summarizes how the normalized aggregate profits varies with �. Consistent with

the theoretical literature and the experimental evidence (Bruttel, 2009; Ivaldi et al., 2003),

it is observed that a lower discount factor is an obstacle to achieve collusive outcomes. In

particular, it reveals that when � is low, algorithms consistently learn to coordinate on a

competitive outcome. Particularly, when � = 0 the average profit gain is close to � = 0.

Figure 10: Normalized profits � as a function of the discount factor �

Note: The parameter values are k = 12, � = 0.95, ↵ = 0.3, T = 500, 000, S = 300 and cH = 0.40.

5.3 Learning parameter

In the baseline stochastic experiment, I have set the learning parameter ↵ = 0.3. Figure 11

shows that the results appears to be robust under di↵erent learning rates, and the maximum

average normalized profit is attained when ↵ = 0.1. This finding is in line with Calvano et al.

(2020), since the authors argue that a value of 0.1 is commonly used in the computer science

26



literature. Interestingly, It is observed that the average profit gain for ↵ = 0.05 is lower than

the average profit gain for ↵ = 0.95. However this di↵erence is not statistically significant.

Intuitively, when algorithms operate in an environment that is constantly changing due to

exogenous shocks, there is no advantage in acquiring new information rather than relying

solely on what has been learned in the past.

Figure 11: Normalized profits � as ↵ varies

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0.65

0.7

0.75

0.8

0.85

0.9

Note: For each marginal cost c, the box extends form the first quartile to the third quartile with a red line
at the median. The whiskers show the range of the data. The black dot stands for the mean. Values beyond
the whiskers are considered outliers and are plotted as individual points. The parameter values are k = 12,
� = 0.95, ↵ = 0.3, T = 500, 000, S = 300, cH = 0.40 and ⇢ = 0.50.

5.4 Higher uncertainty

In the baseline stochastic model I have assumed that marginal costs can take two values,

cL = 0 and cH = 0.4 with probability ⇢ = 0.5. In this subsection, I consider three marginal

costs levels: cL = 0, cM = 0.2 and cH = 0.4. Each cost state has the same probability of

occurring, thus p(cL) = p(cM) = p(cH) = 1
3 . This implies that the algorithms face higher

uncertainty. I examine how the level of collusion varies if uncertainty increases. I find

that the averaged normalized profit gain is � = 74.98%. This robustness check confirms
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that sequential Q-learning algorithms manage to achieve supracompetitive profits despite of

facing structural uncertainty.

5.5 Triopoly

As a final robustness check, I extend the baseline stochastic model by considering a three

firm game since it is a well-documented finding in the literature that tacit collusion becomes

less likely as the number of firms in the market increases (Huck et al., 2004). The reason

behind this fact is twofold. On one hand, a larger number of market participants implies

higher deviation profits, which increases the incentive to deviate from a collusion price level.

On the other hand, with more firms in the market the cardinality of the state space also

increases since agents have to condition their behavior on one additional variable, namely,

the past price chosen by the extra competitor. This increase in strategic complexity may

further hinder collusion.

In the three-firm setting, each firm can adjust its price every third period and its price is

fixed for the following two. Firm 1 adjusts its price in period 3t + 1, firm 2 in 3t + 2 and

firm 3 in 3t + 3 where t = 0, 1, 2, .... In this setting, the learning equation (11) is rewriting

as follows:

Qit+1(pit, st) = (1� ↵)Qit(pit, st) + ↵


⇡i(pit, st) + �⇡i(pit, st+1) + �2⇡i(pit, st+2) + �3 max

pit+2

Qit(pit+2, st+2)

�
(14)

where st = (pjt�2, plt�2, ct) with j, l 2 {1, 2, 3}, i 6= j, i 6= l and j 6= l. The per period profit

function is the standard formulation. The lowest priced firm serves the entire market, or if

two or more firms have the lowest price, they split the market in halves or thirds accordingly.

As equation (14) illustrates, the algorithms should care about its profits gain during three

periods when they have to choose the price. Consistently with the findings in the literature,

I find that in a market with three firms the average profit gain is � = 53.30%, and thus

significantly lower than the average profit of the baseline model � = 71.42%. Therefore,
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collusive outcomes are more di�cult to achieve when there are more players.

6 Conclusion

This article presents an extension of Klein (2021) by allowing stochastic marginal costs.

It was shown that sequential Q-learning algorithms leads to supracompetitive profits and

this finding is robust to parameter changes and various extensions. The algorithms can

coordinate on focal price equilibrium or an Edgeworth cycle provided that uncertainty is not

too large. However, as the market environment becomes more uncertain, price wars emerge

as the only possible pricing pattern. The underlying mechanism that triggers such price

wars is similar to that of Rotemberg and Saloner (1986). When marginal costs remain high

the algorithms tend to coordinate on a focal price, but when costs decrease, algorithms have

incentive to serve the entire market. Thus, a period of undercutting begins. Therefore, even

though sequential Q-learning algorithms gain supracompetitive profits, uncertainty tends to

make collusive outcomes more di�cult to achieve. This main finding extends the results in

Klein (2021) by identifying under which conditions focal price equilibria can emerge after

the repeated interaction of sequential Q-learning algorithms. Such result could potentially

give predictions regarding when price wars or price rigidity would be observed in markets

where firms use pricing algorithms.

This paper can be extended in several dimensions. First, I assume only one pricing algorithm,

but in real markets, companies may use a wider class of algorithms. In this sense, a future

area of research is to address what happens in a market environment where heterogeneous

algorithms compete against each other. Secondly, in this paper I have analyzed the outcomes

generated by a repeated interaction between algorithms, but in platforms the algorithms also

interact with human beings (Crandall et al., 2018; Werner, 2021). Thus, it is necessary to

study whether humans and machines can learn to cooperate to achieve collusive outcomes

in the framework considered in this paper.
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