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Abstract

We assess the extent and cost of misallocation in agriculture in less-developed coun-
tries comparing the analysis at the plot and farm levels. Using detailed data from
Uganda, we show that the plot-level analysis leads to extremely large estimates of
reallocation gains, even after adjusting for measurement error and unobserved hetero-
geneity. These results reflect two empirical limitations of the plot as unit of analysis:
excess measurement error and near constant returns to scale production estimates. We
find limited evidence of substantial measurement error at the farm level.
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1 Introduction

There is a growing literature documenting substantial dispersion in measures of marginal

products of inputs across production units, which has been interpreted as evidence of factor

misallocation (Hsieh and Klenow, 2009; Restuccia and Rogerson, 2017). A relevant con-

cern, however, is that the observed dispersion might reflect other factors such as overhead

costs, unobserved heterogeneity, or measurement error (Bartelsman et al., 2013; Asker et

al., 2014; Foster et al., 2016). There are several emerging approaches to deal with these

issues. For instance, an ambitious line of research models specific sources of misallocation

to identify their quantitative importance using microdata (Midrigan and Xu, 2014; David

and Venkateswaran, 2019; Yang, 2021). Another method exploits the availability of panel

data to purge measures of marginal products from time-invariant measurement error and

overhead costs (Bils et al., 2017).

A complementary approach involves the use of more granular data. For example, Kehrig

and Vincent (2020) study multi-plant firms in the United States and find larger levels of dis-

persion in marginal revenue products of capital within firms than across firms. The authors

show that firms make constraint-e�cient reallocation decisions that increase both output

and dispersion. In the context of small-scale agriculture, a similar approach emphasizes

plot-level variation to address measurement error (Gollin and Udry, 2021; Abay et al., 2019;

Desiere and Jolli�e, 2018). The approach exploits a specific feature of agricultural economies

whereby the predominant unit of production, the household farm, typically operates more

than one plot of land.

The intuition for why the plot-level approach may be useful in this context is simple. If

farmers can freely allocate inputs across plots within their farm operation, then the marginal

productivity of inputs should be equalized across operated plots. In this case, observed

within-farm dispersion in measures of marginal productivity can be attributed to sources
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other than misallocation, such as unobserved heterogeneity and measurement error. That is,

within-household productivity variation across plots represents a measure of mismeasurement

that can be subtracted from standard estimates of misallocation.

In this paper, we examine whether the assessment of misallocation in agriculture (and

therefore the role of mismeasurement) is a�ected by the choice of micro data aggregation:

plots or farms. Our main finding is that the level of data aggregation does matter, and can

lead to quantitatively di�erent conclusions.

Conceptually, the extent of misallocation is measured as the increase in aggregate output

that could be obtained from reallocating resources across production units according to an

e�cient benchmark. The magnitude of these e�ciency gains depends on the distribution of

total factor productivity and on the parameters of the production function.

Using data from Uganda, we document that e�ciency gains at the plot level are extremely

high, even after adjusting for measurement error, as in Gollin and Udry (2021). For instance,

plot-level estimates suggest e�ciency gains of reallocation at the national level of more

than 2,200%. Even after adjusting for measurement error e�ciency gains are greater than

500%. These gains from factor reallocation are very large compared to similar estimates in

agriculture and manufacturing around the developing world. In particular, estimates using

the same data but taking the farm as the relevant unit of analysis suggest more modest

reallocation gains of around 180% (Aragón et al., 2022).

These are striking di�erences in the assessment of misallocation between the plot and

the farm, which also obfuscate the assessment of mismeasurement in micro data. Whereas

Gollin and Udry (2021) attribute a large role of measurement error using plot-level data,

we find instead a much more modest role for mismeasurement in the same data at the farm

level.

Our analysis suggests that focusing on the farm as the relevant unit of analysis provides

a more accurate assessment of misallocation in agriculture. This conclusion arises from two
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important limitations of plot-level analysis that we highlight. First, production function

estimates at the plot level imply a much larger contribution of land, and greater returns

to scale (close to unity) than estimates using the same or similar data at the farm level

(Aragón et al., 2022; Manysheva, 2021). The di�erences in production function estimates are

economically relevant. For instance, e�ciency gains from a given plot-productivity dispersion

drop from 23.9-fold with plot-level estimates, to 5.3-fold with farm-level estimates. Moreover,

whereas the relationship between land input and productivity is negative in plot-level data,

it turns positive when assessed at the farm level.

Second, the value of the plot-level approach rests crucially on the reliability of plot-level

measurements compared to that at the farm level. In practice, however, measurement error is

likely to be substantially worse at the plot level due to the inherent di�culty of attributing

all inputs and outputs to a subset of the farm operation, for example as labor and tools

are used interchangeably across plots. This issue is particularly relevant in the context of

small farmers in developing countries due to the reliance on self-reported values. We provide

evidence of excess measurement error in plot-level data by comparing self-reported area of

parcels (a unit above the plot but below the farm) to their GPS measures. Not only do we

find evidence of substantial and systematic measurement error in land at the parcel level,

but also the magnitude of the measurement error at the median observation is more than

4-fold at the parcel than at the farm level.

In addition to the methodological implications of using plot or farm measures, there

are important implications for understanding and addressing misallocation. From a policy

standpoint, the focus on the farm is relevant given the fact that land institutions in many

developing countries allocate land rights at the household level (Restuccia, 2020). Also, in

the context of small-scale agriculture, the presence of fixed factors shared across plots makes

the household farm the appropriate production unit (De Janvry et al., 1991).
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2 Does the level of micro data aggregation matter?

We start by comparing estimates of productivity dispersion and reallocation gains across

plots and across farms. In our analysis, a farm is the set of plots cultivated by the household.

The data comprises three waves from the Uganda Panel Survey (2009-2014), a household

survey collected as part of the World Bank’s Integrated Surveys of Agriculture (LSMS-ISA).

Gollin and Udry (2021) and Aragón et al. (2022) provide a detailed description of the data.

The concept of misallocation requires a benchmark for comparison. We consider the

e�cient allocation of resources as the benchmark, namely the allocation of resources that

maximizes agricultural output subject to aggregate resources; and calculate the e�ciency

gain (i.e., the ratio of e�cient to actual aggregate output) assuming input reallocation at

di�erent geographical levels. The e�ciency gain is a standard measure of the extent of

misallocation in the literature (Hsieh and Klenow, 2009). We consider an economy comprised

of a given set of production units with the following Cobb-Douglas technology,

Yi = si(Li)–L(Xi)–X , (1)

where Li and Xi are the amounts of land and labor used in production unit i, and si denotes

its productivity.

The e�cient allocation equates marginal products of land and labor across production

units. Denoting zi © s1/(1≠–L≠–X)
i , we can characterize the e�cient allocation as:

T e
i = ziq

i zi
T, Le

i = ziq
i zi

L, (2)

where T and L are the aggregate amounts of land and labor. The e�ciency gain from

reallocation is the ratio q
i Y e

i /
q

i Yi where Y e
i is production-unit output associated with

the e�cient-input allocation. Note that to calculate the e�ciency gain, in addition to ac-
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tual output, we need estimates of production-unit productivity si and production function

parameters –L and –X .

To assess misallocation at the plot level, we rely on estimates from Gollin and Udry

(2021), who use state-of-the-art methods to estimate plot-level productivity and adjust it for

measurement error and unobserved heterogeneity. For our analysis we use the two-stage least

squares (2SLS) estimates in Gollin and Udry (2021), however, the results are robust to using

the alternative instrumental variables correlated random coe�cients (IVCRC) estimates.

Table 1 presents e�ciency gains and productivity dispersion using di�erent productivity

measures. Column 1 uses the baseline plot productivity before adjustment by measurement

error and unobserved heterogeneity. This variable is called TFPA in Gollin and Udry (2021).

Column 2 uses the measure of plot productivity adjusted for measurement error, called

TFPB. Column 3 simply aggregates plot productivity (TFPA) to the farm level by calculating

a weighted average. Denoting sij the unadjusted productivity of plot j in farm i, and given

the Cobb-Douglas technology on land and labor, aggregated farm productivity is given by
q

j sij(„L
ij)–L(„X

ij )–X , where „L
ij and „X

ij are the shares of farm i’s total land and labor used

in plot j.

We emphasize three relevant observations from Table 1. First, reallocation gains esti-

mated using plot-level data are extremely large (column 1). The estimates imply that if the

allocations of land and labor were to change to the e�cient allocation at the national level,

agricultural output would increase by a factor of 23.9-fold, or more than 2,200%. Reallo-

cation gains remain large even when reallocation is limited to smaller geographical areas:

1,538% within regions and 305% within villages.

The implied reallocation gains are exceedingly larger than those documented in macro

studies of the agricultural sector using farm-level data. For example, the estimated reallo-

cation gains (at the national level) in China, Ethiopia and Malawi are 53%, 97% and 259%,

respectively (Adamopoulos et al., 2021; Chen et al., 2021; Restuccia and Santaeulalia-Llopis,
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Table 1: E�ciency gain and productivity dispersion in plot- and farm-level analysis

Plot-level data Farm-level data
Plot Plot Plot Farm

productivity productivity productivity productivity
(adjusted) aggregated

at farm level
(1) (2) (3) (4)

A. E�ciency gains

Nationwide 23.92 6.66 14.28 2.86
Region 16.38 5.36 8.35 2.48
Parish (Village) 4.05 2.47 2.11 1.57
B. Dispersion

Variance of log 1.26 0.53 0.78 0.84

Notes: E�ciency gain is the ratio of aggregate output in the e�cient allocation to actual output averaged
over season-years. Columns 1-3 use 2SLS estimates of plot productivity from Gollin and Udry (2021).
Column 1 uses the baseline (unadjusted) productivity measure (TFPA), whereas Column 2 uses the adjusted
productivity measure (TFPB). Column 3 aggregates TFPA at the farm level by computing a weighed average.
Column 4 uses direct estimates of farm productivity from Aragón et al. (2022).

2017). Reallocation gains are comparatively large even within narrower geographical areas.

For instance, the within-village reallocation is 305% using plot-level data in Uganda whereas

only 24% in China (Adamopoulos et al., 2021).

Second, adjusting for measurement error and unobserved heterogeneity greatly reduces

productivity dispersion and e�ciency gains. However, the estimated magnitude of misallo-

cation remains very high (column 2). Note that Gollin and Udry (2021)’s adjustment for

measurement error reduces log-variance of plot-productivity by almost two thirds from 1.26

to 0.53. This reduction in dispersion is associated with a proportional drop in the implied

e�ciency gains. Nevertheless, the estimated e�ciency gains with adjusted productivity,

ranging from 147% to 566%, are sizable and well-above the estimates from other studies

emphasizing productivity and reallocation at the farm level.

Third, simply aggregating estimates of plot-productivity to the farm level accomplishes

a sizeable reduction in productivity dispersion and e�ciency gains (column 3). For instance,
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the e�ciency gains for village-level reallocation are almost half the estimated gains using

plot-level productivity and even smaller than when using the plot-productivity adjusted

measure in column 2. However, in all cases, the estimated misallocation remains quite large.

The high levels of misallocation across plots in Ugandan agriculture may arise precisely

from the analysis at the plot level. To illustrate why this may be the case, we calculate

e�ciency gains using estimates at the farm level from Aragón et al. (2022) and report them

in column 4. We emphasize that these estimates are obtained from the same dataset but

aggregated to the farm level.

The estimated gains from reallocation fall substantially when using farm-level data (col-

umn 4). The e�ciency gains are 186% at the national level and 57% at the village level.

These gains are almost half the lowest estimates obtained at the plot level, even after ad-

justing for measurement error, and closer in magnitude to estimates from macroeconomic

studies in other contexts.

The substantial reduction in assessed misallocation at the farm level occurs despite the

fact that dispersion of farm-productivity is higher than dispersion of plot-productivity (af-

ter adjusting for measurement error). This finding also illustrates the limitation of using

productivity dispersion to assess misallocation. In general, the magnitude of e�ciency gains

is not only a function of productivity dispersion, but also of economies of scale and of the

relationship between input allocation and productivity across production units.

The main takeaway is that focusing on the plot as unit of analysis is not a useful starting

point for the study of misallocation in agriculture. The large discrepancy in assessed e�-

ciency gains casts doubts on the validity of extrapolating insights obtained using plot-level

analysis to results obtained at the farm level.

Importantly, plot-level analysis can lead to the wrong assessments of the extent of misal-

location and its possible explanations. For example, a researcher comparing observations of

plot-level productivity when adjusting for within-farm variation across plots could wrongly
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conclude that misallocation in agriculture is unimportant since measurement error seemingly

accounts for the bulk of the apparent misallocation. This conclusion, however, hinges on the

extremely large initial estimates of e�ciency gains and productivity dispersion.

3 What explains plot versus farm-level results?

We highlight two important limitations of plot-level analysis to assess misallocation in agri-

culture.1 First, plot-level analysis may provide inadequate production function estimates

that obviate the fact that household farms have some fixed factors that are used across

plots within the farm, including tools or managerial skills. This leads to drastically di�erent

estimates of returns to scale and productivity, key inputs in the assessment of reallocation

gains. Second, plot-level analysis inherits excessive measurement error at the plot, inducing

excessive productivity dispersion. Together, these issues exacerbate the pattern (and mag-

nitude) of misallocation and overstate the significance of measurement error in agricultural

economies.

3.1 Di�erent production function estimates

Production function estimates are key inputs to assess factor misallocation. The main econo-

metric challenge in estimating the production function parameters is the presence of determi-

nants of production, such as productivity shocks, that are unobserved to the econometrician

but observed by the farmer. If inputs are chosen by farmers based on these productivity

shocks, then there is an endogeneity problem and OLS estimates would be inconsistent.

Panel data o�er a way to address this endogeneity problem. For instance, if the un-

observed productivity shocks are time-invariant (such as location, soil quality, or farming

ability), the production function can be consistently estimated using a panel data model
1Conceptually, it is not clear what it means to reallocate resources, including land, across plots since the

plot is not an administrative unit of production.
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with fixed e�ects (Ackerberg et al., 2015). In contexts with imperfect input markets, a

simplified dynamic panel model can also address auto-regressive, time-varying, productivity

shocks (Shenoy, 2017, 2020).2

There are several agricultural surveys, such as the World Banks’ Integrated Surveys of

Agriculture, that already include a panel of households. However, the available plot-level

data is mostly cross-sectional.3 This issue limits the type of methods that can be used to

estimate the production function. For instance, Gollin and Udry (2021) are unable to use

panel data methods, but rely instead on a clever instrumental variable approach using self-

reported productivity shocks on nearby plots. In contrast, Aragón et al. (2022) use the same

dataset aggregated at the household level and estimate a panel data model with fixed e�ects.

Table 2 displays the production function estimates from the cross-sectional plot-level

approach and the panel data farm-level specification. The main observation is that there are

sizable di�erences in the contributions of land and labor, and in the implied returns to scale.

In particular, the IV estimates using plot-level data suggest a larger contribution of land,

and returns to scale closer to unity. This is consistent with the farm being an aggregation of

constant-return-to-scales’ plots with some fixed factors. Given that productivity is obtained

as a residual, these di�erent estimates also generate di�erences in measures of total factor

productivity.

These di�erences in production function estimates matter for the assessment of mis-

allocation. To illustrate this, we consider the estimates of unadjusted plot-productivity

(TFPA) but instead assess e�ciency gains using the production function estimates obtained

in the household-panel specification in column 2, Table 2. The drop in e�ciency gains
2Proxy variables methods such as Olley and Pakes (1996), Levinsohn and Petrin (2003) and Ackerberg

et al. (2015) also exploit panel data. However, they are of limited use in contexts with suspect factor
misallocation because, as shown by Shenoy (2020), their identification assumptions fail when market frictions
distort input choices.

3Collecting a panel dataset at the plot level does not necessarily address this concern, given the endo-
geneity of plot formation, which would likely introduce additional biases.
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Table 2: Production function estimates at the plot and farm levels

IV (2SLS) Panel data with
fixed e�ects

(1) (2)

Land contribution (–L) 0.69 0.37
Labor contribution (–X) 0.22 0.34
Returns to scale (–L + –X) 0.91 0.71

Aggregation level Plot Household

Notes: Column 1 displays 2SLS estimates reported in Table 9 (column 3) in Gollin and Udry (2021). Column
2 display estimates reported in Table A.1 (column 1) in Aragón et al. (2022).

associated with the change in production parameters is substantial. For instance, simply

changing the production function parameters with almost constant returns to scale at the

plot level (–L + –X = 0.91) to the ones with decreasing returns to scale at the farm level

(–L + –X = 0.71) reduces e�ciency gains at the national level from 23.9-fold to 5.3-fold.4

A similar pattern is found for gains at the regional level (from 16.4 to 4.7-fold) and the

parish (village) level (from 4.1 to 2.3-fold). The stark di�erence in measures of misallocation

highlights the importance of production function estimates in assessing misallocation.

We can also gauge the di�erence between plot- and farm-level analysis on the extent of

misallocation by plotting the relationship between land use and productivity across produc-

tion units. As shown in equation (2), the e�cient allocation of inputs across production

units requires a strong positive relationship between productivity and input use. Deviations

from this benchmark would be indicative of the extent of misallocation and has been the

focus of an expanding literature in development and agricultural economics (Adamopoulos

and Restuccia, 2014; Restuccia, 2020).

Figure 1 displays the relationship between land input and productivity from the micro

data in Uganda using alternative production units: the plot (Gollin and Udry, 2021) and the
4Similar estimates of returns to scale are found in other studies at the farm level such as Shenoy (2017)

and Manysheva (2021).
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household-farm (Aragón et al., 2022). Based on the estimated returns to scale in Table 2,

the slope of the (log) land-productivity relationship in the e�cient allocation is 11.1 across

plots and 3.4 across farms. In both cases, the main observation from Figure 1 is that the

slope of the relationship between productivity and land input is much smaller than that

required in the e�cient allocation. While the farm estimates (Panel b) show a weak but

positive relationship , i.e. a slope of 0.26, the plot-level estimates (Panel a) show a negative

relationship, i.e. an elasticity of -0.16. This result implies an even larger deviation from the

e�cient benchmark in the plot-level analysis, and thus a greater implied factor misallocation.

Note that the same pattern between land input and productivity arises when adjusting plot-

productivity by the within-farm dispersion across plots as in Gollin and Udry (2021) since the

adjustment in this approach amounts to a scalar reduction in variance which is proportional

to the productivity variance across plots within farm households.

Figure 1: Land size and productivity across production units

(a) IV estimates (plots) (b) Panel estimates (farms)

Notes: Both panels display the scatter-plot of size of production unit (measured by area planted) and
productivity, and a fitted linear regression. Panel (a) uses plot-level measures of size and productivity from
2SLS estimates in Gollin and Udry (2021). Panel (b) uses farm-level measures of size and productivity from
a panel data model in Aragón et al. (2022).
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3.2 Excess measurement error in plot-level data

An appealing property of the approach that uses plot-level data is that if the farm household

does not face frictions in adjusting inputs across plots, then the within-farm plot-productivity

dispersion represents a measure of mismeasurement. However, there are at least two key

empirical threats to this approach.

First, there is ample evidence from an established literature emphasizing a variety of fric-

tions within the household, driven by intra-household allocations or variation in plot-level

property rights (Shaban, 1987; Goldstein and Udry, 2008; Udry, 1996).5 These frictions

diminish the value of within-farm plot-productivity dispersion as a measure of mismeasure-

ment.

Second, even if the farmer can allocate inputs across plots without frictions, to what

extent is plot-level measurement comparable to the farm level? The main concern is that

measurement error is likely much more pronounced at the plot level than at the farm-

household level. For example, a farmer may be able to more accurately report the labor

input used at the farm but make errors in attributing it to plots. If this is the case, then

productivity dispersion picks up additional measurement error in plot-level data and within-

farm productivity dispersion would not be a useful metric in assessing misallocation and

mismeasurement. In addition, there are inputs for which measurement in survey data is

provided at the household level but not the plot, such as capital or intermediate inputs used

in agricultural production, potentially aggravating productivity mismeasurement at the plot

relative to the farm. We focus on providing evidence of the extent of measurement error

within and across farms.

Most survey data on smallholder agriculture are based on farmers’ self-reporting. This

feature creates the possibility of misreporting and measurement error: farmers may round-up
5Similarly, Kehrig and Vincent (2020) find that productivity dispersion is larger across plants within firms

than across firms in the U.S. manufacturing sector.
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quantities, or simply provide guesstimates instead of actual values. In same cases, measure-

ment error can be introduced when allocating indirect costs (such as capital expenses or

management labor) among particular activities or crops. The pervasiveness of measurement

error, especially of self-reported land areas, has been documented in several contexts, includ-

ing the Ugandan case (see, for instance, Judge and Schechter, 2009; Carletto et al., 2015;

Gourlay et al., 2019; Abay et al., 2021). This issue is a concern because measurement error

can bias estimates of the production function, or be included as part of the residual often

attributed to productivity.

We provide direct evidence of measurement error by comparing data at two levels of

aggregation within the farm household. We compare the area of land holdings using two

measures available in the Ugandan Panel Survey: self-reported by the farmer and GPS

measures, which are deemed to be more precise and less subject to farmer’s misreporting

(Carletto et al., 2017).

Figure 2 displays the distribution of land holdings using both measures. Panel (a) shows

the distribution of the original data at the parcel level, while panel (b) shows the distribution

of the data aggregated to the farm level. Note that GPS data is not available at the plot

level, instead only at the parcel level. However, as the parcel is a level of aggregation above

the plot and indeed much closer to the farm size, this represents a conservative assessment

of measurement error.

Consistent with measurement error, there are evident discrepancies between both mea-

sures. The GPS measure follows a smooth bell-shaped distribution, while the self-reported

measures are heaped around certain values. This ‘heaping’ has been reported in several

contexts and is indicative of respondents (or enumerators) rounding the reported size (Abay

et al., 2019, 2021; Carletto et al., 2013). The discrepancies between both measures is more

pronounced among smaller units, on the left side of the distribution. This evidence suggests
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Figure 2: Distribution of landholding size, self-reported and GPS measured

(a) Parcel level (b) Farm level

Notes: Distribution of the log area of landholdings at the parcel level (panel a) and aggregated to the farm
level (panel b). Solid lines represent self-reported values, while red-dashed lines represent GPS measures.

that the measurement error is not classical, but correlated to unit size.6

The discrepancies in land input, however, are attenuated when using data aggregated

at the farm level. For the median observation, the log di�erence between self-reported and

GPS measure (a proxy for measurement error) is 1.9% at the parcel level and drops to 0.45%

at the farm level, a 4-fold di�erence in measurement error at the parcel level on land input

alone. Aggregating the data to the farm level also reduces the dispersion of measurement

error: the variance of the log of self-reported to GPS land ratio is 0.54 at the parcel level

and 0.45 at the farm level.

We conclude from the evidence that not only measurement error in self-reported land is

attenuated at the farm level compared to the parcel, but also focusing on the plot restricts the

analysis to self-reported values as opposed to more accurate GPS measures often unavailable

at the plot level.
6This pattern has been documented in other studies. For instance, Abay et al. (2021) reports a negative

correlation between plot size and measurement error in land in four Sub-Saharan African countries.
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4 Measurement error and misallocation

If plot-level data is problematic, how can we assess the extent of measurement error in

measures of misallocation? A growing literature have instead turned to approaches exploiting

panel data. We follow Bils et al. (2017) in exploiting time-variation in the data to address

measurement error. The extent to which variation over time in inputs is not reflected in

variation in output, which varies across levels of measured distortions, provides a metric of

the extent of measurement error.

For comparison, Gollin and Udry (2021) argue that measurement error and other sources

of unobserved heterogeneity play a substantial role in accounting for the apparent misallo-

cation in agriculture. Using plot-level data, they show that adjusting for measurement error

by the within-farm dispersion in productivity, reduces estimates of misallocation by almost

two thirds. As discussed earlier, the implied large reduction in misallocation is due in great

part to the exceptionally large estimates of misallocation at the plot level.

This method to identify mismeasurement, however, is not applicable to the farm level

since it relies on the assumption of e�cient within-farm allocation of resources. An alterna-

tive approach, proposed by Bils et al. (2017), exploits panel data to quantify the extent to

which misallocation reflects additive measurement error. The starting point is the observa-

tion that the ratio of first di�erences (i.e., the change in revenue divided by the change in

inputs) is a measure of marginal product purged from constant measurement error. Based on

this insight, they develop a metric, ⁄, that captures the fraction of the dispersion in revenue

productivity (TFPR) that is due to true variation in distortions.

Using the panel household-farm data for Uganda from Aragón et al. (2022), we find

that the estimate of ⁄ is fairly high (0.925), implying that only about 7.5% of the variation

in misallocation can be ascribed to measurement error. This result is consistent with the

findings in Adamopoulos et al. (2021) using Chinese panel data, where this method detects
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only 4% measurement error in farm-level measures and 10% in cross sectional farm-level

data.

The extent of farm-level measurement error is substantially smaller than that implied

by an analysis at the plot level. It is also much smaller than that in the manufacturing

sector analyzed in Bils et al. (2017) for India and the United States, which suggests caution

is needed when making comparisons of measurement error across sectors, countries, and

applications.

5 Conclusion

Does exploiting granularity in micro data provide a better assessment of misallocation in de-

veloping economies? We address this question using a common dataset for Uganda analyzed

at two levels of aggregation: plots versus farms. We show that the plot-level analysis exacer-

bates the extent of misallocation in agricultural economies and as a consequence overstates

the role of mismeasurement on agricultural productivity. In particular, a farm-level analysis

provides reasonable measures of the gains from reallocation and a much more limited role

for measurement error.

We trace the di�erential results between the plot and the farm level analyses to di�erences

in the estimates of production function parameters and excess measurement error in plot-level

data. While the use of plot-level data may provide some advantages in identifying shocks and

certain measurement issues pertaining to productivity in agriculture (and quantify them),

this approach is not appropriate when assessing the potential gains from factor reallocation

in agriculture, particularly in the context of small-scale farming in low-income countries.
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