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Abstract

We study the implications of regret-free truth-telling for voting rules. Regret-

freeness, a weakening of strategy-proofness, provides incentives to report prefer-

ences truthfully if agents want to avoid regret. We first show that for tops-only

rules regret-freeness is equivalent to strategy-proofness. Then, we focus on three

families of (non-tops-only) voting methods: maxmin, scoring, and Condorcet con-

sistent ones. We show positive and negative results for both neutral and anony-

mous versions of maxmin and scoring rules. We also show that Condorcet con-

sistent rules that satisfy a mild monotonicity requirement are not regret-free, and

neither are successive elimination rules. Furthermore, we provide full characteri-

zations for the case of three alternatives and two agents.

JEL classification: D71.
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1 Introduction

In the context of a standard voting problem in which several agents must jointly choose

one among several alternatives, we study procedures to associate an outcome to each
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possible profile of agents’ preferences, known as voting rules. In order to control the

strategic behavior of the agents, the property of strategy-proofness has played a vital

role. A voting rule is strategy-proof if it is always in the best interest of the agents

to reveal their true preferences. Unfortunately, the celebrated Gibbard-Satterthwaite

theorem (Gibbard, 1973; Satterthwaite, 1975) states that, with more than two alterna-

tives and universal domain of preferences, there is no efficient, strategy-proof, and

non-dictatorial voting rule. A large part of the literature has focused on finding suit-

able domain restrictions in order to avoid this impossibility (see, for example, Moulin,

1980).

Although we recognize that strategy-proofness is a relevant property, it presents

some drawbacks that the literature has highlighted: in some sense, the property as-

sumes that an agent that manipulates has complete knowledge about other agents’

preferences. Recent literature, in different contexts, has presented several incentive

compatibility concepts in which an agent that manipulates does so having only some

partial information about other agents’ preferences. This lack of information makes

this new concepts weaker than strategy-proofness, so positive results could be ex-

pected. We study the implications of the notion of regret-free truth-telling for voting

rules defined on the universal domain of (strict) preferences. Regret-free truth-telling

is introduced by Fernandez (2020) in the context of two-sided matching models. Here,

an agent sees the precise outcome of the rule and with that information and his own

preference infers which were the possible preferences profiles of the other agents. An

agent suffers regret if he takes an action and ex-post he finds it to be dominated. There-

fore, agents may optimally choose not to manipulate a rule if they wish to avoid regret.

In this paper, we first analyze the relation between regret-freeness and strategy-

proofness for tops-only rules (i.e., rules that are sensible only to the top alternatives of

the preference profiles) and show that under this informational simplicity requirement

both properties are equivalent. This equivalence implies that: (i) for problems with

only two alternatives, extended majority voting rules are the only regret-free rules; and

(ii) with more than two alternatives and universal domain of preferences, there is no

tops-only, efficient, and non-dictatorial voting rule that satisfies regret-freeness. There-

fore, when there are more than two alternatives, we must examine rules that are not

tops-only. We review some of the best known families of non-tops-only rules studied in

the literature and determine whether they satisfy the regret-free truth-telling require-

ment or not. Three of the most important families of voting methods are the maxmin

methods, that select those alternatives that “make the least happy agents as happy as
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possible”;1 the scoring methods, that assign points to each alternative according to the

rank it has in agents’ preferences and selects one of the alternatives with highest score;

and the Condorcet consistent methods, that select a Condorcet winner whenever one

exists.

The scoring and maxmin methods, in general, could choose more than one alter-

native (they are correspondences). To resolve this multiplicity, we will consider two

classical tie-breakings. One is defined by picking the preference of a fixed agent. The

other is defined by a fixed order of the alternatives. In this way, we get a neutral ver-

sion and an anonymous version of each of this two methods, respectively. We perform

a thorough account of all these rules and determine in which situations (if any) regret-

free truth-telling obtains.

Consider a problem with n agents and m alternatives. First, we show that all neutral

maxmin rules are regret-free and that anonymous maxmin rules are regret-free if and

only if n ≥ m − 1 or n divides m − 1. We also obtain general positive results for the

negative plurality rule, a special scoring rule in which all the rank positions get one

point except the last one that gets zero. The results are similar to those of maxmin

rules: we prove that all neutral negative plurality rules satisfy the property and that

an anonymous negative plurality rule is regret-free if and only if n ≥ m− 1.

For more general scoring rules, the results depend heavily on k?, the highest po-

sition where the score is not maximal.2 The case k? = 1 corresponds to negative

plurality, already discussed. When k? = m − 1, no scoring rule (neither anonymous

nor neutral) is regret-free. This case includes both anonymous and neutral versions

of Borda, plurality, and Dowdall rules; and all efficient and anonymous scoring rules.

When 1 < k? < m− 1, we consider two cases. First, the case k?n < m, which encom-

passes the class of scoring rules where, in any preference profile, there is always an

alternative that gets maximal score. Here, anonymous scoring rules are regret-free if

and only if k?n = m− 1, whereas all neutral scoring rules satisfy the property. Second,

when k?n ≥ m, we get a particular result when sk?−1 = sk? , which states that no rule

is regret-free. As a consequence of the results for these two cases it follows that, for

k < m− 1, anonymous k-approval rules are regret-free if and only if (m− k)n = m− 1

and that neutral k-approval rules are regret free if and only if (m− k)n < m.

Negative results apply to Condorcet consistent rules. This class of rules is very

large because they are only required to choose a precise alternative when a Condorcet

1This methods are presented and defended, among others, by John Rawls in its classic Theory of

Justice (Rawls, 1971).
2This is, k? is such that s1 ≤ s2 ≤ sk? < sk?+1 = . . . = sm.
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winner exists. In our paper, an additional mild condition of monotonicity, compat-

ible with both neutrality and anonymity, is imposed on rules. This condition says

that if an alternative is below the outcome of the rule for an agent and he changes his

preferences modifying only the ordering of alternatives above the outcome, then such

alternative continues not to be chosen. Under this monotonicity, our result states that

no Condorcet consistent rule is regret-free. In particular, we get that the six famous

Condorcet consistent rules associated with the names of Simpson, Copeland, Young,

Dodgson, Fishburn and Black (in both anonymous and neutral versions) are monotone,

and therefore not regret-free.3 We also show that a family of non-monotone Condorcet

consistent rules, the successive elimination rules, do not satisfy regret-freeness either.

Finally, for the case with two agents and three alternatives, we present two charac-

terization results. The first one says that a rule is regret-free, efficient, and anonymous

if and only if it is either successive elimination or an anonymous maxmin rule in which

the tie-breaking device is an antisymmetric and complete (not necessarily transitive)

binary relation. The second one says that a rule is regret-free and neutral if and only if

it is a dictatorship or a N-maxmin rule.

Weak versions of strategy-proofness are introduced in Reijngoud and Endriss (2012)

and Endriss et al. (2016). They present the concept of information function in order to

vary the amount of information an agent has about the preferences of the rest.4 For dif-

ferent voting rules, they study when an agent has an incentive to manipulate subject

to the restricted information available. Recently, Gori (2021) studies in detail a special

case of information function, where the information about the preferences of the other

individuals in the society is limited to the knowledge, for every pair of alternatives, of

the number of people preferring the first alternative to the second one. This notion is

called WMG-strategy-proofness by Gori (2021). In that paper, there are a positive re-

sult showing a class of Pareto optimal, WMG-strategy-proof and non-dictatorial voting

functions; and a negative result proving that, when at least three alternatives are con-

sidered, no Pareto optimal and anonymous voting function is WMG-strategy-proof.5

Another related work is Osborne and Rubinstein (2003), where they assume that the

partial information about the other agents’ behavior that an agent has is acquired from

3For the anonymous Simpson and Copeland rules, these results have been previously obtained by

Endriss et al. (2016).
4A particular information function analyzed in Reijngoud and Endriss (2012) and Endriss et al. (2016),

called the winner information function, leads to a property equivalent to regret-freeness. In what follows,

we will be more specific in this respect.
5As we will prove, there is also some conflict between anonymity and regret-freeness. However, in

some cases, we can identify rules that satisfy both properties.
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a small random sample of the population. The real distribution of votes in the popu-

lation is assumed to be the same as the distribution of votes in his sample, and on this

basis the agent decides how to vote strategically. A complementary approach in the

same direction is undertaken by Troyan and Morrill (2020). They introduce the concept

of non-obvious manipulability, which is another weakening of strategy-proofness, and

apply it to several market design environments to determine whether known mecha-

nisms are non-obvious manipulable or not. It is assumed that an agent knows the pos-

sible outcomes of the mechanism conditional on his own declaration of preferences.

Troyan and Morrill (2020) define a deviation to be an obvious manipulation if either

the best possible outcome under the deviation is strictly better than the best possi-

ble outcome under truth-telling, or the worst possible outcome under the deviation is

strictly better than the worst possible outcome under truth-telling. A mechanism that

does not allow any obvious manipulation is called non-obvious manipulable. In the

context of voting, the notion of obvious manipulability has been studied recently by

Aziz and Lam (2021). They present a general sufficient condition for not obvious ma-

nipulability and also show that Condorcet consistent and some strict scoring rules are

not obviously manipulable. Furthermore, for the class of k-approval voting rules, they

give necessary and sufficient conditions for obvious manipulability.

The rest of the paper is organized as follows. In Section 2, we introduce the model

and the property of regret-freeness. We show the equivalence of regret-freeness and

strategy-proofness for tops-only rules in Section 3, where we also characterize ex-

tended majority voting rules as the only regret-free rules when there are only two

alternatives to choose from. In Section 4, we study some positive and negative re-

sults for maxmin rules and scoring rules. In Section 5, we present negative results for

Condorcet consistent rules. The special case with two agents and three alternatives is

analyzed in Section 6, where two characterizations are presented. Some final remarks

are gathered in Section 7.

2 Preliminaries

2.1 Model

A set of agents N = {1, . . . , n}, with n ≥ 2, has to choose an alternative from a finite

and given set X, with |X| = m. Each agent i ∈ N has a strict preference Pi (a linear order)

over X. We denote by t(Pi) the best alternative according to Pi, to which we will refer

to as the top of Pi. We denote by Ri the weak preference over X associated to Pi; i.e.,
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for all x, y ∈ X, xRiy if and only if either x = y or xPiy. Let P be the set of all strict

preferences over X. A (preference) profile is a n-tuple P = (P1, . . . , Pn) ∈ Pn, an ordered

list of n preferences, one for each agent. Given a profile P and an agent i, P−i denotes

the subprofile obtained by deleting Pi from P. For each Pi ∈ P , denote by tk(Pi) to the

alternative in the k-th position from bottom to top. Many times we write t(Pi) instead

of tm(Pi). We often also write Pi as an ordered list

Pi : tm(Pi), tm−1(Pi), . . . , t1(Pi).

A (voting) rule on Pn is a function f : Pn → X that selects for each preference profile

P ∈ Pn an alternative f (P) ∈ X. Next, we define several classical properties that a

rule may satisfy and that we will use in the sequel. The rule f : Pn → X is strategy-

proof if agents can never induce a strictly preferred alternative by misrepresenting

their preferences; namely, for each P ∈ Pn, each i ∈ N and each P′i ∈ P ,

f (P)Ri f (P′i , P−i).

The rule f : Pn → X is efficient if, for each P ∈ Pn, there is no y ∈ X such that

yPi f (P) for each i ∈ N. This requirement imposes the classical Pareto optimality crite-

rion on the alternatives selected by the rule.

The rule f : Pn → X is tops-only if P, P′ ∈ Pn such that t(Pi) = t(P′i ) for each i ∈ N

imply f (P) = f (P′). Tops-onlyness constitutes a basic simplicity requirement.

The rule f : Pn → X is dictatorial if there exists i ∈ N such that for each P ∈ Pn,

f (P) = t(Pi). In a dictatorial rule, in each profile of preferences, the same agent selects

his most preferred outcome.

The rule f : Pn → X is unanimous if t(Pi) = x for each i ∈ N imply f (P) = x.

Unanimity is a natural and weak form of efficiency: if all agents consider an alternative

as being the most-preferred one, the rule should select it.

Anonymity requires that the rule treats all agents equally because the social out-

come is selected without paying attention to the identities of the agents. Formally, the

rule f : Pn → X is anonymous if for each P ∈ Pn and each bijection π : N → N,

f (P) = f (Pπ) where for each i ∈ N, Pπ
i = Pπ(i).

Finally, the rule f : Pn → X is neutral if for each P ∈ Pn and each bijection π : X →
X, π( f (P)) = f (πP) where πPi : π(t(Pi)), π(tm−1(Pi)), ..., π(t1(Pi)).

In general, the axioms of anonymity and neutrality are incompatible. A classical

way to give a partial solution to such incompatibility is to consider rules defined in

two stages as follows:6

6“In practice, we will be happy with (voting) correspondences that respect the three principles (ef-
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(i) First, consider a voting correspondence Y : P → 2X \ {∅} that for each preference

profile P ∈ Pn chooses a (non-empty) subset Y(P) ⊆ X, and assume that Y
satisfies both anonymity and neutrality.7

(ii) Second, given P ∈ Pn, consider a strict order on X and choose the first element

according to that order in Y(P). There are two classical selections of such an

order, one to preserve anonymity and the other to preserve neutrality:

(a) The strict order � is independent of P and is part of the rule’s definition. In

this case anonymity is preserved and the rule is defined by8

f (P) = max
�
Y(P).

(b) There exists an agent i ∈ N such that, for each P ∈ P , the strict order we

consider is Pi. In this case, neutrality is preserved and the rule is defined by

f (P) = max
Pi
Y(P).

From Section 4 onwards, we will study rules that can be defined by this two-stage

procedure. This way to define a rule is flexible enough to encompass many well known

and long studied families of rules.

2.2 Regret-freeness

As previously said, a regret-free rule provides incentives to report preferences truth-

fully if agents want to avoid regret. This means that, for each agent and each possible

misrepresentation of preferences the agent could try, there is a scenario where the agent

regrets deviating; this is, for those deviations that may be profitable in some situation,

there is another preference profile consistent with the observed alternative such that

the deviation would yield a detrimental outcome. This ensures that the agent will

never suffer regret. Consequently, truth is a regret-free report. Formally,

ficiency, anonymity and neutrality). If a deterministic election is called for, we will use either a non-

anonymous tie-breaking rule or a non-neutral one” (see Moulin, 1991, p.234).
7The extension of the definitions of anonymity and neutrality to correspondences is immediate. It

is clear that the incompatibility problem between anonymity and neutrality disappears if we consider

voting correspondences.
8Throughout the paper, given a strict order > defined on a set A and a subset B ⊆ A, we denote by

max> B to the maximum element of > in B.
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Definition 1 The rule f : Pn → X is regret-free (truth-telling) whenever for each i ∈ N,

each P ∈ Pn, and each P′i ∈ P such that f (P′i , P−i)Pi f (P), there is P?
−i ∈ Pn−1 such that

f (Pi, P?
−i) = f (P) and f (Pi, P?

−i)Pi f (P′i , P?
−i).

3 Tops-only rules and the case of two alternatives

It is clear that strategy-proofness implies regret-freeness. Our first result states that the

converse is also true for tops-only rules.

Proposition 1 If a rule is regret-free and tops-only, then it is strategy-proof.

Proof. Let f : Pn → X be a regret-free and tops-only rule. Assume f is not strategy-

proof. Then, there are P ∈ Pn, i ∈ N, and P′i ∈ P such that f (P′i , P−i)Pi f (P). Let P̃i ∈ P
be such that t(P̃i) = t(Pi) and t1(P̃i) = f (P). By tops-onlyness, f (P̃i, P−i) = f (P).

Therefore, since t1(P̃i) = f (P), it follows that

f (P′i , P−i)P̃i f (P̃i, P−i). (1)

Let P?
−i ∈ Pn−1 be such that f (P̃i, P?

−i) = f (P̃i, P−i). Since t1(P̃i) = f (P) = f (P̃i, P−i),

we have

f (P′i , P?
−i)R̃i f (P̃i, P?

−i). (2)

By (1) and (2), f is not regret-free. �

Consider the simplest social choice problem where X = {x, y}. In this problem,

there is a complete characterization of the class of regret-free rules. In order to obtain

it, we first need to define the family of extended majority voting rules on {x, y}.9 Fix

w ∈ {x, y} and let 2N denote the family of all subsets of N, referred to as coalitions. A

family Cw ⊆ 2N of coalitions is a committee for w if it satisfies the following monotonicity

property: S ∈ Cw and S ( T imply T ∈ Cw. The elements in Cw are called winning

coalitions (for w).

Definition 2 A rule f : Pn → {x, y} is an extended majority voting rule if there is a

committee Cx for x with the property that, for each P ∈ Pn,

f (P) = x if and only if {i ∈ N | t(Pi) = x} ∈ Cx.
9These rules are equivalent to the ones presented in Moulin (1980), where fixed ballots are used to

describe them instead of committees.

8



The following corollary provides the characterization result.

Corollary 1 Assume m = 2. Then,

(i) A rule is regret-free if and only if it is strategy-proof,

(ii) A rule is regret-free if and only it is an extended majority voting rule.

Proof. (i) If f is strategy-proof it is clear that f is regret-free. If f is regret-free, since

when m = 2 every rule is tops-only, f is strategy-proof by Proposition 1.

(ii) It follows from (i) and Moulin (1980). �

When there are more than two alternatives, tops-onlyness and efficiency lead to an

impossibility result.

Corollary 2 Assume m > 2. A rule is regret-free, efficient, and tops-only if and only if it is a

dictatorship.

Proof. It follows from Proposition 1 and Gibbard-Satterthwaite’s Theorem. �

In the rest of the paper we assume that there are three or more alternatives (m > 2).

Since a general characterization result with more than two alternatives seems hard

to obtain, we study rules that fulfill regret-freeness in three well known classes of

non-tops-only rules: the maxmin rules, the scoring rules and the Condorcet-consistent

rules. We believe that the class of all regret-free rules is quite large, and leave the full

characterization of this class as an open problem for future research.

4 Maxmin rules and scoring rules: positive and negative

results

The first rules we study consist of the maxmin methods, that select those alternatives

that “make the least happy agents as happy as possible”. This methods are presented

and defended, among others, by John Rawls in its classic Theory of Justice (Rawls,

1971). Given P ∈ Pn and x ∈ X, the minimal position of x according to P is defined by

mp(x, P) = min{k : there exists i ∈ N such that x = tk(Pi)}.

An alternative is a maxmin winner if there is no other alternative with higher minimal

position. We denote the set of maxmin winners according to P asM(P). Namely,

M(P) = {x : mp(x, P) ≥ mp(y, P) for each y ∈ X}.
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The idea of making the least happy agents as happy as possible is captured by rules

that pick, for each preference profile, a maxmin winner for that profile. We study both

anonymous and neutral versions of these rules. Formally,

Definition 3 A rule f : Pn → X is

(i) A-maxmin if there is a strict order � on X such that, for each P ∈ Pn,

f (P) = max
�
M(P).

(ii) N-maxmin if there is an agent i ∈ N such that, for each P ∈ Pn,

f (P) = max
Pi
M(P).

The following theorem summarizes the positive results concerning regret-freeness

for these rules:10

Theorem 1 (i) An A-maxmin rule is regret-free if and only if n ≥ m − 1 or n divides

m− 1.

(ii) Any N-maxmin rule is regret-free.

Proof. See Appendix A.1. �

Next, we present the family of scoring rules. Given P ∈ Pn and x ∈ X, let

N(P, k, x) = {i ∈ N : tk(Pi) = x} be the set of agents that have x in the k-th posi-

tion (from bottom to top) in their preferences, and let n(P, k, x) = |N(P, k, x)| . Let sk be

the score associated to the k-th position (from bottom to top) with s1 ≤ s2 ≤ . . . ≤ sm

and s1 < sm. The score of x ∈ X according to P is defined by

s(P, x) =
m

∑
k=1

[sk · n(P, k, x)].

The set of scoring winners according to P is

S(P) = {x ∈ X : s(P, x) ≥ s(P, y) for all y ∈ X}.

For future reference, given scores s1 ≤ s2 ≤ . . . ≤ sm, let denote by k? the highest

position where the score is not maximal, i.e., k? is such that s1 ≤ s2 ≤ sk? < sk?+1 =

. . . = sm.
10All the proofs of this section are relegated to Appendix A.
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Definition 4 A rule f : Pn → X is

(i) A-scoring associated to s1 ≤ s2 ≤ . . . ≤ sm if there is an order � on X such that, for

each P ∈ Pn,

f (P) = max
�
S(P).

(ii) N-scoring associated to s1 ≤ s2 ≤ . . . ≤ sm if there is an agent i ∈ N such that, for each

P ∈ Pn,

f (P) = max
Pi
S(P).

Remark 1 Some of the most well known scoring rules are:

(i) the Borda rule, in which sk = k for k = 1, . . . , m;

(ii) the Dowdall rule (see Reilly, 2002), in which sk =
1

m−k+1 for k = 1, . . . , m;

(iii) the k-approval rules, in which 0 = s1 = s2 = . . . = sm−k, sm−k+1 = . . . = sm−1 =

sm = 1 for some k such that m− 1 ≥ k ≥ 1, i.e., the top k scores are 1 and the rest are 0.

In these rules, agents are asked to name their k best alternatives, and the alternative with

most votes wins. Note that in this rule k? = m− k.

Within this rules, two subclasses stand out:

(iii.a) the plurality rule, where k = 1 and therefore s1 = s2 = . . . = sm−1 = 0 and

sm = 1 (note that k? = m− 1);

(iii.b) the negative plurality rule, where k = m− 1 and therefore s1 = 0 and s2 = . . . =

sm−1 = sm = 1 (note that k? = 1).

Remark 2 If an A-scoring rule is efficient, then sm−1 < sm (i.e., k? = m− 1).

Observe that, by definition, k? ∈ {1, 2, . . . , m− 1}. The next theorems consider the

extreme cases in which k? = 1 and k? = m − 1, and allows us to present conclusive

results about efficient A-scoring rules, the Borda rule, the Dowdall rule, and plurality

and negative plurality rules.

Theorem 2 (i) An A-scoring rule with k? = 1 (i.e., an A-negative plurality rule) is regret-

free if and only if n ≥ m− 1.11

11For A-negative plurality rules, Theorem 6 in Reijngoud and Endriss (2012) presents only a sufficient

condition (n + 2 ≥ 2m) guaranteeing regret-freeness. We present a general and independent proof that

encompasses their result as well.
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(ii) Any N-scoring rule with k? = 1 (i.e., any N-negative plurality rule) is regret-free.

Proof. See Appendix A.2. �

Theorem 3 Assume n > 2. Then, no (anonymous or neutral) scoring rule with k? = m− 1

is regret-free.

Proof. See Appendix A.3. �

Corollary 3 Assume n > 2. Then, both anonymous and neutral versions of Borda, plurality,

and Dowdall rules are not regret-free. Moreover, no efficient A-scoring rule is regret-free.

From now on, we assume that k? is such that 1 < k? < m − 1. Next, we present

some results for scoring rules by means of two complementary theorems, one of which

can be considered as positive and the other one as negative. These theorems allow us to

present conclusive results about approval rules and scoring rules in which sk?−1 = sk? .

Theorem 4 below focuses on the case k?n < m, which encompasses the class of scoring

rules where, in any preference profile, there is always an alternative that gets maximal

score. This positive result gives a necessary and sufficient condition for an A-scoring

rule to be regret-free and also states that any N-scoring rule is regret-free.

Theorem 4 Assume that n > 2 and k?n < m. Then,

(i) An A-scoring rule is regret-free if and only if k?n = m− 1.

(ii) Any N-scoring rule is regret-free.

Proof. See Appendix A.4. �

On the other hand, Theorem 5 below gives a negative result for the case k?n ≥ m

when sk?−1 = sk? . When sk?−1 6= sk? , we believe that the existence of regret-free rules

depends sensibly on the specific scores defining each rule.

Theorem 5 Assume that n > 2 and k?n ≥ m. Then, there is no regret-free scoring rule

(neither anonymous nor neutral) with sk?−1 = sk? .

Proof. See Appendix A.5. �

The previous theorem extends the result of Theorem 3 in Reijngoud and Endriss

(2012) to the case n = 3 and also to the neutral scoring rules (their result only applies

when n > 3 in the anonymous case). Furthermore, our proof is general and indepen-

dent of theirs.

12



Corollary 4 Assume n > 2 and k? > 1. Then,

(i) An A-scoring rule with sk?−1 = sk? is regret-free if and only if k?n = m− 1. In particu-

lar, an anonymous (m− k?)-approval rule is regret-free if and only if k?n = m− 1.

(ii) An N-scoring rule with sk?−1 = sk? is regret-free if and only if k?n < m. In particular, a

neutral (m− k?)-approval rule is regret-free if and only if k?n < m.

Corollary 4 (i) contradicts Theorem 2 of Endriss et al. (2016) which states that there

is no anonymous approval rule satisfying regret-freeness. We think that their proof is

incorrect because they assume that there is a preference profile in which the outcome

is below the position k? + 1 for some agent. However, this assumption cannot be met

in the case where k?n < m.

5 Condorcet consistent rules: negative results

Let P ∈ Pn and consider two alternatives a, b ∈ X. Denote by CP(a, b) the number of

agents that prefer a to b according to P, i.e., CP(a, b) = {i ∈ N : aPib}. An alternative

a ∈ X is a Condorcet winner according to P if for each alternative b ∈ X \ {a},

CP(a, b) > CP(b, a). (3)

Notice that a Condorcet winner may not always exist but when it does, it is unique. If

(3) holds with weak inequality for each alternative b ∈ X \ {a}, then a is called a weak

Condorcet winner.

Definition 5 A rule f : Pn → X is Condorcet consistent if it chooses the Condorcet winner

whenever it exists.

Next, we define a minimal monotonicity condition to control the rule whenever a

Condorcet winner does not exist. This condition says that if an alternative is below

the outcome for an agent and he changes his preferences modifying only the ordering

of alternatives above the outcome, then such alternative continues not to be chosen.

Formally,

Definition 6 Let Pi, P′i ∈ P and let a ∈ X be such that a = tk(Pi). We say that P′i is a

monotonic transformation of Pi with respect to a if tk′(Pi) = tk′(P′i ) for each k′ ≤ k. A

rule f : Pn → X is monotone if, for each P ∈ Pn, each i ∈ N, and each b ∈ X such that

f (P)Pib,

f (P′i , P−i) 6= b

for each P′i that is a monotonic transformation of Pi with respect to f (P).
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Notice that CP(x, b) = C(P′i ,P−i)
(x, b) for each x ∈ X \ {b}. Thus, our monotonicity

condition is fully compatible with Condorcet consistency.

Furthermore, our notion of monotonicity is weaker than the well-known Maskin

monotonicity. Remember that P′i ∈ P is a Maskin monotonic transformation of Pi ∈ P
with respect to a ∈ X if xP′i a implies xPia. Then, f : Pn → X is Maskin monotonic

if, for each P ∈ Pn, f (P′i , P−i) = f (P) for each P′i ∈ P that is a Maskin monotonic

transformation of Pi with respect to f (P). It is clear that a monotonic transformation of

Pi (according to our definition) is a Maskin monotonic transformation of Pi.

Besides the intrinsic appeal of our monotonicity condition, this weakening of Maskin’s

property is necessary since Maskin’s monotonicity is incompatible with Condorcet

consistency. To see this, let X = {a, b, c} and consider a Condorcet consistent f : P3 →
X and a profile P ∈ P3 given by the following table:

P1 P2 P3

a b c

b c a

c a b

Since there is no Condorcet winner, and without loss of generality, assume f (P) =

a. Now, let P′1 ∈ P be such that cP′1bP′1a. It follows, by Condorcet consistency, that

f (P′1, P−1) = c. If f is also Maskin monotonic, then f (P′1, P−1) = c implies f (P) = c, a

contradiction.

With our mild requirement of monotonicity, we obtain the following negative result

concerning regret-freeness.

Theorem 6 Assume n 6= 4, 2 or n = 4 and m > 3. Then, there is no Condorcet consistent,

monotone and regret-free rule.

Proof. See Appendix A.6. �

Remark 3 When n = 4 and m = 3, the previous impossibility result does not apply. Let

X = {a, b, c} and consider a rule f : P4 → X that selects the Condorcet winner when it

exists and, otherwise, chooses an alternative within the set of alternatives that appear less times

in the bottom of the preference profile. If there are two alternatives in this set, the rule selects

the one that wins at least two times to the other and, in case of a tie, the tie-breaking is given

by a � b � c. This rule is monotone since, given P ∈ P4 and i ∈ N, when there are three

alternatives a monotonic transformation of Pi with respect to f (P) is different from Pi only

when t1(Pi) = f (P), and in this case there is no x ∈ X such that f (P)Pix. Then, monotonicity

14



is trivially satisfied. To see that this rule is also regret-free, consider profile P ∈ P4 such

that, w.l.o.g., P1 : x, y, z. If f (P) = x, agent 1 does not manipulate f . If f (P) = z, then

f (P′1, P−1) = t1(P1) for each P′1 ∈ P by definition of the rule, so agent 1 cannot manipulate

either. If f (P) = y and agent 1 manipulates f via P′1, then f (P′1, P−1) = x and, by definition

of the rule, t1(P′1) = y. Consider P?
2 : y, z, x, P?

3 = P?
2 , and P?

4 : z, y, x. Then, f (P1, P?
−1) = y

and f (P′1, P?
−1) = z. Therefore, agent 1 regrets manipulating f via P′1.

Six of the most important Condorcet consistent rules are Simpson, Copeland, Young,

Dodgson, Fishburn and Black rules (see Fishburn, 1977). Each one of these rules uses

pairwise comparison of alternatives in a specific way in order to get a winner alterna-

tive for each profile of preferences. Their definitions are as follows. Given P ∈ Pn,

(i) the Simpson score of alternative a ∈ X is the minimum number CP(a, b) for b 6= a,

Simpson(P, a) = min
b 6=a

CP(a, b)

and a Simpson winner is an alternative with highest such score.12

(ii) the Copeland score of alternative a ∈ X is the number of pairwise victories minus

the number of pairwise defeats against all other alternatives

Copeland(P, a) = |{b : CP(a, b) > CP(b, a)}| − |{b : CP(b, a) > CP(a, b)}|

and a Copeland winner is an alternative with highest such score.

(iii) the Young score of alternative a ∈ X is the largest cardinality of a subset of voters

for which alternative a is a weak Condorcet winner

Young(P, a) = max
N′⊆N

{
|N′| : {|i ∈ N′ : aPib}| ≥

|N′|
2

for all b ∈ X \ {a}
}

and a Young winner is an alternative with highest such score.

(iv) the Dodgson score of alternative a ∈ X, Dodgson(P, a), is the fewest inversions13

in the preferences in P that will make a tie or beat every other alternative in X on

the basis of simple majority, and a Dodgson winner is an alternative with lowest

such score.
12Simpson rule is also known as Simpson-Kramer rule.
13Let Pi, P′i ∈ P and let x, y ∈ X. P′i is an inversion of Pi with respect x and y if xPiy implies yP′i x.
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(v) the Fishburn partial order on X, FP, is defined as follows: aFPb if and only if for

each x ∈ X, CP(x, a) > CP(a, x) implies CP(x, b) > CP(b, x) and there is w ∈ X

such that CP(w, b) > CP(b, w) and CP(a, w) ≥ CP(w, a). A Fishburn winner is a

maximal alternative for FP.

(vi) a Black winner is a Condorcet winner whenever it exists and, otherwise, a Borda

winner.14

An anonymous (neutral) Simpson, (Copeland, Young, Dodgson, Fishburn, Black) rule al-

ways chooses a Simpson, (Copeland, Young, Dodgson, Fishburn, Black) winner and

uses a fixed order (agent) as tie-breaker when there are more than one. The following

result shows that the six rules are monotonic.

Corollary 5 Assume n > 2. Then Simpson, Copeland, Young, Dodgson, Fishburn and Black

rules (in both their anonymous and neutral versions) are not regret-free.

Proof. See Appendix A.7. �

Another interesting class of Condorcet consistent rules which are widely used in

practice, for instance, by the United States Congress to vote upon a motion and its pro-

posed amendments, is the class of succesive elimination rules (see Chapter 9 of Moulin,

1991, for more detail). These rules, which consider an order among alternatives an con-

sist of sequential majority comparisons, are defined as follows.

Definition 7 A rule f : Pn → X is a successive elimination rule with respect to an order

� such that a1 � a2 � . . . � am if it operates in the following way. First, a majority vote

decides to eliminate a1 or a2, then a majority vote decides to eliminate the survivor from the first

round or a3, and so on. The same order � is used as tie-breaker in each pairwise comparison, if

necessary.

It is clear that a successive elimination rule is Condorcet consistent but it may be

not monotone, as the next example shows.

Example 1 (The successive elimination rule is not monotone). Let P ∈ P5 be given by the

following table:

P1 P2 P3 P4 P5

a a c c d

b c d b b

d d a d a

c b b a c

14A Borda winner is an alternative with highest Borda score.
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Then, f (P) = d. Now, let P′1 ∈ P be such that P′1 : b, a, d, c. Then P′1 is a monotonic transfor-

mation of P1 with respect to d but f (P′1, P−1) = c, so f is not monotone.

Unfortunately, we also obtain a negative result concerning regret-freeness for this

class of rules.

Theorem 7 Assume n > 2. Then, no successive elimination rule is regret-free.

Proof. See Appendix A.8. �

6 The case with two agents and three alternatives

In what follows, we focus in the case where we have only two agents, N = {1, 2},
and three alternatives, X = {a, b, c}. In this case we can obtain characterizations of the

classes of all: (i) regret-free and neutral, and (ii) regret-free, efficient, and anonymous

rules. Notice that for the first characterization efficiency is not needed since it is implies

by regret-freeness and neutrality, as we prove next in Theorem 8.

First, observe that with two agents and three alternatives a N-maxmin rule (associ-

ated to agent i) coincides with:

(i) the N- negative plurality rule (associated to agent i), and

(ii) the N-scoring rule (associated to agent i) corresponding to s = (s1, s2, s3) =

(1, 3, 4).

The following theorem shows that N-maxmin and dictatorships are the only regret-free

and neutral rules.

Theorem 8 Assume n = 2 and m = 3. Then, a rule is regret-free and neutral if and only if it

is a N-maxmin rule or a dictatorship.

Proof. See Appendix A.9. �

A similar result to the previous theorem can be obtained changing neutrality for

anonymity. As efficiency is not a consequence of regret-freeness and anonymity we

require it in the next theorem.15

In this case, we need to enlarge the class of A-maxmin rules by dropping the re-

quirement of transitivity for the tie-breaking associated to the rules and to add the suc-

cessive elimination rules into the picture, as we did with dictatorial rules in Theorem

8.
15For example, a constant rule is regret-free and anonymous but not efficient.
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Definition 8 A rule f : P2 → X is an A-maxmin? rule if there is an antisymmetric and

complete (not necessarily transitive) binary relation �? on X such that, for each P ∈ P2,

f (P) = max
�?
M(P).

Observe that, since |N| = 2, |M(P)| ≤ 2 and therefore max
�?
M(P) is well defined.

In a similar way to Definition 8 we can define the A-scoring? rule associated to �? .

Notice that the A-maxmin? rule associated to �? coincides with the A-scoring? rule

with s = (s1, s2, s3) = (1, 3, 4) associated to �?.

Theorem 9 Assume n = 2 and m = 3. Then, a rule is regret-free, efficient, and anonymous if

and only if it is a successive elimination rule or an A-maxmin? rule.

Proof. See Appendix A.10. �

Concerning the independence of axioms in the characterizations, it is clear that

regret-freeness and neutrality in Theorem 8 are independent. Successive elimination

rules are regret-free and not neutral, and the rule that always chooses the bottom

of agent 1 is neutral and not regret-free. On the other hand, in Theorem 9, a con-

stant rule is regret-free, anonymous, and not efficient and a dictatorship is regret-

free, efficient, and not anonymous. Now, given order a � b � c, consider the rule

f (P) = max�{t(P1), t(P2)}. This rule is anonymous, efficient, and not regret-free.

m = 2 regret-free ⇐⇒ ext. majority voting Cor. 1

n = 2, m = 3 regret-free + neutral ⇐⇒ N-maxmin or dictatorship Th. 8

n = 2, m = 3 regret-free + eff. + anon. ⇐⇒ A-maxmin? or succ. elim. Th. 9

Table 1: Characterization results with m = 2 or n = 2 and m = 3.

7 Concluding remarks

Table 1 summarizes the characterization results when there are only two alternatives,

or two agents and three alternatives. Table 2 summarizes our main findings about

tops-only, maxmin, scoring, and Condorcet consistent rules.

We finish noticing that when there are two agents and more than three alternatives:

(i) anonymous maxmin rules are regret-free if and only if the number of alternatives is

odd (Theorem 1), (ii) no anonymous negative plurality rules are regret-free (Theorem
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Tops-only strategy-proof ⇐⇒ regret-free Pr. 1

A-maxmin n ≥ m− 1 or n divides m− 1 ⇐⇒ regret-free Th. 1

N-maxmin all regret-free Th. 1

k? = 1 n ≥ m− 1 ⇐⇒ regret-free Th. 2

A-scoring†

1 < k? < m− 1
k?n < m k?n = m− 1 ⇐⇒ regret-free Th. 4

(n > 2) k?n ≥ m sk?−1 = sk? =⇒ none regret-free Th. 5

k? = m− 1 none regret-free Th. 3

k? = 1 all regret-free Th. 2

N-scoring†

1 < k? < m− 1
k?n < m all regret-free Th. 4

(n > 2) k?n ≥ m sk?−1 = sk? =⇒ none regret-free Th. 5

k? = m− 1 none regret-free Th. 3

Condorcet Monotone n 6= 4 or m > 3 =⇒ none regret-free Th. 6

consistent Succesive
none regret-free Th. 7

(n > 2) elimination

† Remember that k? is such that s1 ≤ s2 ≤ sk? < sk?+1 = . . . = sm. The results for k? = 1 also apply

when n = 2.

Table 2: Summary of results for tops-only, maxmin, scoring, and Condorcet consistent rules.

2), and (iii) neutral maxmin rules and neutral negative plurality rules are always regret-

free (Theorems 1 and 2). However, it is an open question which other scoring rules (if

any) are regret-free.
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A Appendix

A.1 Proof of Theorem 1

We first show the equivalence in part (i). Let f : Pn → X be a A-maxmin rule.

(=⇒) Assume that n < m− 1 and that n does not divide m− 1. Then, there exists h ≥ 1

and 1 ≤ s < n such that nh + s = m− 1. Then, nh + r = m with h ≥ 1 and 2 ≤ r ≤ n.

Let X = {x1, . . . , xm} and assume that f has associated order xm � xm−1 � . . . � x1.

Let P ∈ Pn be given by the following table:
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P1 P2 P3 . . . Pr Pr+1 . . . Pn
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

last

(h + 1)

positions



xm xm−1 xm−2 . . . xm−(r−1) . . . . . . . . .

x1 xh+1 x2h+1 . . . x(r−1)h+1 xrh+1 . . . x(n−1)h+1

x2 xh+2 x2h+2 . . . x(r−1)h+2 xrh+2 . . . x(n−1)h+2
...

...
...

...
...

...
...

...

xh x2h x3h . . . xrh x(r+1)h . . . xnh

Note that nh = m− r, so xm−(r−1) = xnh+1. Then,M(P) = {xm, xm−1, . . . , xm−(r−1)} and

f (P) = xm. Now, consider agent 1 and preference P′1 ∈ P that differs from P1 only

in that the positions of xm and x1 are interchanged. We have that M(P′1, P−1) =

{x1, xm−1,..., xm−(r−1)}, f (P′1, P−1) = xm−1 and, therefore,

f (P′1, P−1)P1 f (P1, P−1). (4)

Let P?
−1 ∈ Pn−1 be such that f (P1, P?

−1) = f (P) = xm. Since hn + r = m, it follows that

mp((P′1, P?
−1), f (P′1, P?

−1) ≥ m− (h + 1). There are two cases to consider:

1. mp((P′1, P?
−1), f (P′1, P?

−1) > m− (h + 1). By the definition of P′1, f (P′1, P?
−1) /∈

{x1, ..., xh} and, therefore,

f (P′1, P?
−1)R1 f (P1, P?

−1). (5)

By (4) and (5), f is not regret-free.

2. mp((P′1, P?
−1), f (P′1, P?

−1)) = m− (h + 1). As nh + r = m,
∣∣M(P′1, P?

−1)
∣∣ = r ≥

2 and f (P′1, P?
−1) 6= x1 (because x1 is the last one in order �). Now, by the defi-

nition of P′1,M(P′1, P?
−1) ∩ {x2, ..., xh} = ∅. Then, f (P′1, P?

−1) ∈ X \ {x1, x2, ..., xh}.
Thus, both (4) and (5) hold in this case as well, and f is not regret-free.

(⇐=) Assume that there exist i ∈ N, (Pi, P−i) ∈ Pn and P′i ∈ P such that

f (P′i , P−i)Pi f (Pi, P−i). (6)

We will prove that there is P?
−i ∈ Pn−1 such that f (P) = f (Pi, P?

−i) and f (Pi, P?
−i)Pi f (P′i , P?

−i).

Let P̂ = (P′i , P−i). As f is an A-maxmin rule,

mp(P, f (P)) ≥ mp(P, f (P̂)) (7)
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and

mp(P̂, f (P̂)) ≥ mp(P̂, f (P)). (8)

Let k be such that tk(Pi) = f (P). By (7) and since f (P̂)Pi f (P),

mp(P, f (P̂)) = k? ≤ k ≤ m− 1, (9)

where tk?(P̂j) = f (P̂) for some j ∈ N \ {i}. Then, as P̂j = Pj and k? ≤ k,

mp(P, f (P̂)) ≥ mp(P̂, f (P̂)). (10)

If mp(P, f (P)) = mp(P, f (P̂)) and mp(P̂, f (P̂)) = mp(P̂, f (P)), then

f (P), f (P̂) ∈ M(P̂) ∩M(P), (11)

contradicting that f (P) 6= f (P̂). Therefore, by (7) and (8), mp(P̂, f (P̂)) > mp(P̂, f (P))

or mp(P, f (P)) > mp(P, f (P̂)). By (10),

mp(P, f (P)) > mp(P̂, f (P)). (12)

Let k̂ be such that mp(P̂, f (P)) = k̂. Then, by (12), tk̂(P̂i) = f (P) and f (P)P̂jtk̂(P̂j) for

all j ∈ N \ {i}. If k ≤ k̂, then

mp(P̂, f (P)) = k̂ ≥ k ≥ mp(P, f (P)),

which contradicts (12). Therefore,

k̄ > k̂. (13)

This implies that there exists an alternative c ∈ X such that

f (P) = tk̄(Pi)Pic and cR′itk̄(P′i )P′i f (P). (14)

There are two cases to consider:

1. n ≥ m− 1. Let P?
−i ∈ Pn−1 be such that t(P?

j ) = f (P), tm−1(P?
j ) = c for each

j ∈ N \ {i}, and for each x ∈ X \ { f (P), c} choose an agent jx such that t1(P?
jx) = x

(this is feasible because n− 1 ≥ m− 2). Now, let P? = (Pi, P?
−i). Then, mp((Pi, P?

−i), x) =

1 for all x ∈ X \ { f (P), c} and from definition of P?
−i, (14) and the fact that k ≤

m− 1, we have mp((Pi, P?
−i), f (P)) = k̄ > mp((Pi, P?

−i), c). Therefore, f (Pi, P?
−i) =

f (P). Furthermore, mp((P′i , P?
−i), x) = 1 for each x ∈ X \ { f (P), c} and from

definition of P?
−i, (14) and the fact that k ≤ m − 1, we have mp((P′i , P?

−i), c) >

mp((P′i , P?
−i), f (P)). Therefore, f (P′i , P?

−i) = c.

We conclude that f (P) = f (Pi, P?
−i) and, by (14) and the fact that f (P′i , P?

−i) = c,

f (Pi, P?
−i)Pi f (P′i , P?

−i). Hence, f is regret-free.
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2. n divides m− 1. Thus, m− 1 = hn with h ≥ 1. Therefore,

mp(P, f (P)) ≥ h + 1. (15)

Let Y = {x ∈ X : xPi f (P)}. Then,

|Y| < m−mp(P, f (P)) ≤ m− (h + 1) = hn + 1− h− 1 = h(n− 1). (16)

Let P?
−i ∈ Pn−1 be such that t(P?

j ) = f (P), tm−1(P?
j ) = c for each j ∈ N \ {i},

and for each x ∈ Y choose an agent j and a position u ≤ h such that tu(P?
j ) = x

(the construction of P?
−i is feasible by (16) and the fact that m − 2 = hn − 1 ≥

h(n − 1)). Now, let P? = (Pi, P?
−i). Then, mp((Pi, P?

−i), x) ≤ h for each x ∈ Y,

mp((Pi, P?
−i), f (P)) ≥ mp(P, f (P)) ≥ h + 1 (this holds by (15) and the definition

of P?
−i), and mp((Pi, P?

−i), f (P)) = k̄ > mp((Pi, P?
−i), z) for each z ∈ X \Y (this fol-

lows from the definitions of P?
−i and Y). Hence, f (Pi, P?

−i) = f (P). Furthermore,

mp((P′i , P?
−i), x) ≤ h for each x ∈ Y and mp((P′i , P?

−i), c) > mp((P′i , P?
−i), f (P))

(this follows from (9), (14), and the definition of P?
−i). Therefore, f (P′i , P?

−i) ∈
X \Y and f (P′i , P?

−i) 6= f (P).

We conclude that f (P) = f (Pi, P?
−i) and f (Pi, P?

−i)Pi f (P′i , P?
−i). Hence, f is regret-

free.

Next, we show part (ii). Assume that f : Pn → X is a N-maxmin rule. Then, there

exists j ∈ N such that

f (P̃) = max
P̃j

M(P̃) for each P̃ ∈ Pn. (17)

Let P, P′i , P̂, k, and k̂ be as in (⇐=) of part (i). It is easy to see that equations (6), (7), (8),

(9) and (10) also hold here.

If mp(P, f (P)) = mp(P, f (P̂)) and mp(P̂, f (P̂)) = mp(P̂, f (P)), then (11) holds as in

the proof of part (i). As f (P′i , P−i)Pi f (Pi, P−i), we have j 6= i. But then (11) contradicts

f (P) 6= f (P̂) since Pj = P̂j. Therefore, by (7) and (8), mp(P̂, f (P̂)) > mp(P̂, f (P))

or mp(P, f (P)) > mp(P, f (P̂)). Now, it is easy to see that equations (12), (13) and

(14) hold in this proof as well, so there exists c ∈ X such that f (P) = tk̄(Pi)Pic and

cR′itk̄(P′i )P′i f (P).

Now, we define profile P?
−i ∈ Pn−1 where, for each j ∈ N \ {i}, P?

j is differs from

Pj in that f (P) is now in the top of P?
j and c is in the second place, while all the other

alternatives keep their relative ranking. Formally, let P?
−i ∈ Pn−1 be such that, for each
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j ∈ N \ {i}, t(P?
j ) = f (P), tm−1(P?

j ) = c, and if k′ and k′′ are such that tk′(Pj) = f (P)

and tk′′(Pj) = c, if we let k1 = max{k′, k′′} and k2 = min{k′, k′′}, define

tk(P?
j ) =


tk+2(Pj) if m− 2 ≥ k ≥ k1 − 1,

tk+1(Pj) if k̄− 1 > k ≥ k2.

Next, we present two claims.

Claim 1: f (Pi, P?
−i) = f (P). Let P? = (Pi, P?

−i). Since f (P)Pic and by definition of P?
−i,

mp(P?, f (P)) > mp(P?, c) (18)

Then, f (P?) 6= c. As f (P′i , P−i)Pi f (P) = tk(Pi),

mp(P?, f (P)) = k. (19)

Now, let b ∈ X \ { f (P), c}. By definition of P? and the fact that f is a N-maxmin rule,

mp(P?, b) ≤ mp(P, b) ≤ mp(P, f (P)) ≤ k. (20)

Therefore, f (P) ∈ M(P?) and mp(P?, f (P)) = k. On the one hand, if j 6= i, then

t(P?
j
) = f (P) and, by definition of f , f (P) = f (P?). On the other hand, if j = i and

there is b ∈ M(P?) \ { f (P)}, then by (40) and (20), mp(P, b) = mp(P, f (P)) = k. Thus,

by (17) and the fact that j = i, f (P)Pib. Therefore, as P?
i = Pi, f (P) = f (P?). This proves

the Claim.

Claim 2: f (Pi, P?
−i)Pi f (P′i , P?

−i). If f (P′i , P?
−i) = c, then by Claim 1 and (14) the proof

is trivial. Now assume f (P′i , P?
−i) 6= c. First, we will prove that f (P′i , P?

−i) 6= f (P). As

f (P) = tk̂(P′i ),

k̂ = mp((P′i , P?
−i), f (P)).

Furthermore, as cR′itk(P′i ) and k̄ ≤ m− 1, by definition of P?
−i,

mp((P′i , P?
−i), c) ≥ k̄. (21)

Then, by (13),

mp((P′i , P?
−i), c) > k̂ = mp((P′i , P?

−i), f (P)),

implying that f (P′i , P?
−i) 6= f (P).

Now, let b ∈ X \ { f (P), c} be such that bPi f (Pi, P?
−i). Since f (Pi, P?

−i) = f (P) =

tk̄(Pi), by definition of f there exists j ∈ N \ {i} such that tk̄(Pj)Rjb. By definition of

P?
−i, tk̄(P?

j )R?
j b. Therefore,

mp((P′i , P?
−i), b) ≤ k. (22)
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On the one hand, if j 6= i, since tm−1(P?
j
) = c the definition of f , (21), and (22) imply

that f (P′i , P?
−i) 6= b. On the other hand, if j = i, since bPi f (Pi, P?

−i) the definition of f

implies mp((Pi, P?
−i), b) < mp((Pi, P?

−i), f ((Pi, P?
−i))). Then,

mp((Pi, P?
−i), b) < k.

Therefore, as bPi f (Pi, P?
−i) = tk̄(Pi),

mp((P′i , P?
−i), b) < k

Then, by the definition of f and (21), f (P′i , P?
−i) 6= b in this case as well. Therefore, we

conclude that

f (Pi, P?
−i)Pi f (P′i , P?

−i),

proving the Claim.

By Claims 1 and 2 we conclude that f is regret-free. �

A.2 Proof of Theorem 2

We first show the equivalence in part (i). Let f : Pn → X be an A-scoring rule with

k? = 1.

(=⇒) Suppose that n < m − 1 (this implies m > 3). Assume that a, b are the first

two alternatives in the tie-breaking with a � b and let z the last alternative in the tie-

breaking. Let P ∈ Pn be such that t3(Pi) = b, t2(Pi) = a, t1(Pi) = z, and tm(Pj) = b,

tm−1(Pj) = a, and tm−2(Pj) = z for each j ∈ N \ {i}. Then, f (P) = a. Now, let P′i ∈ P
be such that t1(P′i ) = a. Then, f (P′i , P−i) = b and, therefore,

f (P′i , P−i)Pi f (P). (23)

Now, let P?
−i ∈ Pn−1 be such that f (P) = f (Pi, P?

−i). As n + 1 < m,
∣∣S(P′i , P?

−i)
∣∣ ≥ 2.

Therefore, as z is the last alternative in the order �, f (P′i , P?
−i) 6= z and

f (P′i , P?
−i)Ri f (Pi, P?

−i). (24)

Hence, by (23) and (24), f is not regret-free.

(⇐=) Assume n ≥ m− 1 and there exist i ∈ N, P ∈ Pn and P′i ∈ P such that

f (P′i , P−i)Pi f (P). (25)

Next, we show there is P?
−i ∈ Pn−1 such that f (P) = f (Pi, P?

−i) and f (Pi, P?
−i)Pi f (P′i , P?

−i).

Let P̂ = (P′i , P−i). If t1(Pi) = t1(P′i ), then S(P) = S(P̂), contradicting the definition of

f and the fact that f (P̂) 6= f (Pi, P−i). Therefore,

t1(Pi) 6= t1(P′i ). (26)
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If t1(Pi) = f (P), then as t1(Pi) 6= t1(P′i ), s(P̂, f (P)) > s(P, f (P)). By definition of f ,

s(P, f (P)) ≥ s(P, x) for each x ∈ X. Then, s(P̂, f (P)) > s(P, x) for each x ∈ X \ { f (P)}.
Now, as P̂ = (P′i , P−i), s(P̂, f (P)) > s(P̂, x) for each x ∈ X \ {t1(Pi)}. Therefore, as

t1(Pi) = f (P), f (P̂) = f (P) which contradicts (25). Thus,

t1(Pi) 6= f (P). (27)

Furthermore,

s(P̂, x) = s(P, x) for each x /∈ {t1(Pi), t1(P′i )},

s(P̂, t1(Pi)) = s(P, t1(Pi)) + 1, and

s(P̂, t1(P′i )) = s(P, t1(P′i ))− 1.

Then, as s(P, x) ≤ s(P, f (P)) for each x ∈ X,

S(P̂) = {t1(Pi)} or S(P) \ {t1(P′i )} ⊂ S(P̂) ⊂ S(P) ∪ {t1(Pi)}.

Thus, by (25),

S(P) \ {t1(P′i )} ⊂ S(P̂) ⊂ S(P) ∪ {t1(Pi)}. (28)

Next, we claim that

t1(P′i ) = f (P) (29)

holds. Assume otherwise that t1(P′i ) 6= f (P). Then, by (28) and the definition of f ,

f (P̂) = f (P) or f (P̂) = t1(Pi), which contradicts that f (P̂)Pi f (P). Then, (29) holds.

Now, let P?
−i be such that {t1(P?

j ) : j 6= i} = X \ { f (P), t1(Pi)} (P?
−i exists because

n ≥ m− 1). As t1(Pi) 6= f (P), S(Pi, P?
−i) = { f (P)} and, therefore,

f (P) = f (Pi, P?
−i)

By (29), t1(P′i ) = f (P). Then, S(P′i , P?
−i) = {t1(Pi)} implying f (P′i , P?

−i) = t1(Pi) and,

therefore,

f (Pi, P?
−i)Pi f (P′i , P?

−i). (30)

By (25) and (30), f is regret-free.

In order to see (ii), Assume that f is a N-scoring rule with k? = 1. Then, there exists

j such that

f (P̃) = max
P̃j

S(P̃) for each P̃ ∈ Pn. (31)

Let P, P′i , P̂, be as in (⇐=) of part (i). By definition, (25) also holds here.
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If t1(Pi) = t1(P′i ), then S(P) = S(P̂). As f (P′i , P−i)Pi f (Pi, P−i), we have j ∈ N \ {i}.
Now, S(P) = S(P̂) contradicts f (P) 6= f (P̂) since Pj = P̂j. Therefore, (26) holds here

and it follows that both (27) and (28) hold as well. If j = i, we get a contradiction with

f (P̂)Pi f (P) and S(P̂) ⊂ S(P) ∪ {t1(Pi)}, so j 6= i.

Now, let P?
−i ∈ Pn−1 be such that t(P?

j
) = t1(Pi), tm−1(P?

j
) = f (P) and, for each

j ∈ N \ {i, j}, t(P?
j ) = f (P) and t2(P?

j ) = t1(Pi). Therefore, by (27), f (P) ∈ S(Pi, P?
−i)

and t1(Pi) /∈ S(Pi, P?
−i). By definition of f and P?

j
it follows that

f (P) = f (Pi, P?
−i).

Then, by (26), t1(Pi) ∈ S(P′i , P?
−i). By definition of f and P?

j
we have

f (P′i , P?
−i) = t1(Pi)

Therefore,

f (Pi, P?
−i)Pi f (P′i , P?

−i). (32)

By (25) and (32), f is regret-free. �

A.3 Proof of Theorem 3

Let f : Pn → X be a scoring rule with k? = m− 1 (this implies that sm−1 < sm). Let

a, b, c ∈ X and assume w.l.o.g. that if f is an A-scoring then the tie-breaking is given

by order � with a � b � c � . . ., whereas if f is a N-scoring rule agent 1 break ties.

There are two cases to consider:

1. n = 2t with t ≥ 2. Let P ∈ Pn be given by the following table:

P1 P2 P3 P4 · · · Pt+1 Pt+2 · · · P2t

a c c a · · · a b · · · b

b b a b · · · b a · · · a

c a b c · · · c c · · · c
...

...
...

... · · · ...
... · · · ...︸ ︷︷ ︸ ︸ ︷︷ ︸

t− 2 agents t− 1 agents

As k? = m− 1, f (P) ∈ {a, b, c}. Furthermore, as s(P, a) = s(P, b), a � b and aP1b,

f (P) ∈ {a, c}. There are two subcases to consider:
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1.1. f (P) = a. Then, s(P, a) = s(P, b) ≥ s(P, c). Let P′2 ∈ P be such that P′2 :

b, c, a, . . ., and let P̂ = (P′2, P−2). This implies that

s(P̂, b) > s(P, b) = s(P, a) = s(P̂, a)

and

s(P̂, b) > s(P, b) ≥ s(P, c) > s(P̂, c).

Therefore,

f (P̂) = bP2a = f (P). (33)

Next, consider P?
−2 ∈ Pn−1 such that f (P2, P?

−2) = a. Then, f (P′2, P?
−2) ∈

{a, b} because s((P2, P?
−2), b) < s((P′2, P?

−2), b), s((P2, P?
−2), c) > s((P′2, P?

−2), c),

and s((P2, P?
−2), x) = s((P′2, P?

−2), x) for each x ∈ X \ {b, c}. Therefore,

f (P′2, P?
−2)R2 f (P2, P?

−2) (34)

By (33) and (34), f is not regret-free.

1.2. f (P) = c. Then, s(P, c) ≥ s(P, a) = s(P, b). Consider agent j such that

t + 2 ≤ j ≤ 2t (i.e., Pj : b, a, c, . . .) and let P′j ∈ P be such that P′j : a, b, c, . . .

and P̂ = (P′j , P−j). As s(P̂, a) ≥ s(P̂, c), s(P̂, a) > s(P̂, b), a � c and aP1c,

f (P̂) = aPjc = f (P). (35)

Next, consider P?
−j ∈ Pn−1 such that f (Pj, P?

−j) = c. Then, f (P′j , P?
−j) ∈ {c, a},

because s((Pj, P?
−j), a) < s((P′j , P?

−j), a), (s(Pj, P?
−j), b) > s((P′j , P?

−j), b), and

s((Pj, P?
−j), x) = s((P′j , P?

−j), x) for each x ∈ X \ {b, a}. Therefore,

f (P′j , P?
−j)Rj f (Pj, P?

−j) (36)

By (35) and (36), f is not regret-free.

2. n = 2t + 3 with t ≥ 0. Let P ∈ Pn be given by the following table:

P1 P2 P3 P4 · · · Pt+3 Pt+4 · · · P2t+3

a c b a · · · a b · · · b

c b a b · · · b a · · · a

b a c c · · · c c · · · c
...

...
...

... · · · ...
... · · · ...︸ ︷︷ ︸ ︸ ︷︷ ︸

t agents t agents

As s(P, a) = s(P, b) ≥ s(P, c), a � b � c and aP1bP1c, it follows that f (P) = a.

Now, the proof proceeds similarly to Case 1.1.

�
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A.4 Proof of Theorem 4

Assume n > 2 and let f : Pn → X be a scoring rule such that k?n < m. We first show

the equivalence in part (i). Let further assume that f is an A-scoring rule.

(=⇒) Assume that k?n < m− 1, we will prove that f is not regret-free. Assume that

a and b are the first two alternatives in the tie-breaking � with a � b and let z the last

alternative in the tie-breaking. Let P ∈ Pn be such that tk?+2(Pi) = b, tk?+1(Pi) = a,

tk?(Pi) = z and, for each j ∈ N \ {i}, Pj : b, a, z, . . . . Then, f (P) = a. Now, let P′i ∈ P
be such that tk?(P′i ) = a, tk?+1(P′i ) = z and tk(P′i ) = tk(Pi) for each k 6= k?, k? + 1.

Therefore, f (P′i , P−i) = b and

f (P′i , P−i)Pi f (P). (37)

Now, let P?
−i ∈ Pn−1 be such that f (Pi, P?

−i) = f (P). As k?n < m− 1,
∣∣S(P′i , P?

−i)
∣∣ ≥ 2.

Therefore, as z is the last alternative in order �, f (P′i , P?
−i) 6= z and

f (P′i , P?
−i)Ri f (Pi, P?

−i). (38)

By (37) and (38), f is not regret-free.

(⇐=) Assume that k?n = m − 1. Let P ∈ Pn. As m > k?n, there exists x ∈ X such

that s(P, x) = n · sm. Therefore, f (P) = z where s(P, z) = n · sm and zPjtk?(Pj) for each

j ∈ N.

Let P′i ∈ P be such that

f (P′i , P−i)Pi f (P), (39)

and let y = f (P′i , P−i). Then, yPizPitk?(Pi). By definition of k?,

s(P, y) ≥ s((P′i , P−i), y) (40)

Also,

tk?(Pi)R
′
iz. (41)

Otherwise, zP
′
i tk?(Pi) implies s(P, z) = s((P′i , P−i), z). By (40), s(P, y) = s(P, z) and

s((P′i , P−i), y) = s((P′i , P−i), z), contradicting the definition of f since y 6= z. So (41)

holds.

Therefore, there exists w ∈ X such that tk?(Pi)Riw and wP
′
i tk?(Pi). As k?n = m− 1

is equivalent to (n − 1)k? = m − k? − 1, we can consider P?
−i ∈ Pn−1 such that the

two following requirements hold: (i) P?
j : w, z, . . . for each j ∈ N \ {i}, and (ii) for each

x ∈ X \ {z} such that xPitk?(Pi) there exist j ∈ N \ {i} such that tk?(P?
j )P?

j x. Therefore,

S(Pi, P?
−i) = {z} and

f (Pi, P?
−i) = z.
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As s((P′i , P?
−i), w) = n · sm and, by (41) and the definition of P?

−i, s((P′i , P?
−i), r) < n · sm

for each r such that rPitk?(Pi), we have

f (Pi, P?
−i)Pi f (P′i , P?

−i). (42)

By (39) and (42), f is regret-free.

To see part (ii), let f : Pn → X be a N-scoring rule. Then, there exists j ∈ N such that

f (P̃) = max
P̃j

S(P̃) for each P̃ ∈ Pn. (43)

Let P ∈ Pn. As m > k?n, there exists x ∈ X such that s(P, x) = n · sm. Therefore,

f (P) = z where s(P, z) = n · smand zPjtk?(Pj) for each j ∈ N.

Let P′i ∈ P be such that

f (P′i , P−i)Pi f (P). (44)

Then i ∈ N \ {j}. Let y = f (P′i , P−i). Therefore, yPizPitk?(Pi). By definition of k?,

s(P, y) ≥ s((P′i , P−i), y).

Notice that tk?(Pi)R
′
iz. Otherwise, zP

′
i tk?(Pi) implies s(P, z) = s((P′i , P−i), z), contra-

dicting y = f (P′i , P−i). Therefore, tk?(Pi)P′i z and there exists w ∈ X such that tk?(Pi)Piw

and wP
′
i tk?(Pi).

Now, let P?
−i ∈ Pn−1 be such that P?

j : w, z, . . . for each j ∈ N \ {i}. Then, s((Pi, P?
−i), z) =

n · sm and f (Pi, P?
−i) = z, s((P′i , P?

−i), w) = n · sm and f (P′i , P?
−i) = w. As zPiw,

f (Pi, P?
−i)Pi f (P′i , P?

−i). (45)

By (44) and (45), f is regret-free. �

A.5 Proof of Theorem 5

Assume n > 2 and let f : Pn → X be a scoring rule such that k?n ≥ m and sk?−1 = sk?

(this implies k? > 1). If k? = m− 1, the result follows from Theorem 3, so assume that

k? < m − 1. If f is and A-scoring rule, assume that a and b are the first two alterna-

tives in the tie-breaking � with a � b and let z the last alternative in the tie-breaking,

whereas if f is a N-scoring rule, let agent 1 be the one who break ties. By the defini-

tion of k?, sk?−1 = sk? < sk?+1 = sm−1 = sm. Let a, b ∈ X. As k?n ≥ m and k? > 1,

k?(n− 1) ≥ m− k?. Then, there exists P ∈ Pn such that:

(i) a = tk?−1(P2) and b = tk?(P2),
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(ii) for each j ∈ N \ {2}, t(Pj) = a and tm−1(Pj) = b,

(iii) for each x ∈ X such that xP2b, there exist j ∈ N \ {2} such that tk?(Pj)Rjx.

Since s(P, a) ≥ s(P, x) for each x ∈ X such that xP2b, a � x and aP1b, it follows that

bP2 f (P). Let P′2 ∈ P be such that tk?+1(P′2) = b = tk?(P2), tk?(P′2) = tk?+1(P2), and

tk(P′2) = tk(P2) for each k 6= k?, k? + 1. Let P̂ = (P′2, P−2). Then, by the definition of k?,

s(P̂, b) > s(P, b) = s(P, a) = s(P̂, a)

and s(P̂, b) ≥ s(P̂, x) if bP2x. Therefore,

f (P′2, P−2)P2 f (P). (46)

Let P?
−2 ∈ Pn−1 be such that f (P2, P?

−2) = f (P). Since s((P2, P?
−2), f (P)) = s((P′2, P?

−2), f (P))

and s((P2, P?
−2), x) ≥ s((P′2, P?

−2), x) for each x ∈ X \ {b}, it follows that f (P′2, P?
−2) ∈

{ f (P), b}. Therefore,

f (P′2, P?
−2)R2 f (P2, P?

−2). (47)

By (46) and (47), f is not regret-free. �

A.6 Proof of Theorem 6

Let f : Pn → X be a Condorcet consistent and monotone rule. There are two cases to

consider:

1. n 6= 2, 4. Then, there are t ≥ 1 and s ≥ 0 such that n = 3t + 2s. Let P ∈ Pn be

given by the following table:

P1 · · · Pt Pt+1 · · · P2t+s P2t+s+1 · · · P3t+2s

a · · · a b · · · b c · · · c

b · · · b c · · · c a · · · a

c · · · c a · · · a b · · · b
... · · · ...

... · · · ...
... · · · ...︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

t agents t + s agents t + s agents

Since CP(a, c) = t < 3t+2s
2 , CP(c, b) = t + s < 3t+2s

2 , and CP(b, a) = t + s < 3t+2s
2 ,

it follows that there is no Condorcet winner according to P.

Let x = f (P). Then, there exists i? ∈ N such that x = tk(Pi?) with k ≤ m − 2.

Assume first that i? is such that t + 1 ≤ i? ≤ 2t + s. Let N′ = {j ∈ N : t + 1 ≤
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j ≤ 2t + s} and consider the subprofile P′N′ ∈ P
t+s where, for each j ∈ N′, P′j ∈ P

is such that t(P′j ) = c, tm−1(P′j ) = b, tm−2(P′j ) = a, and tk(P′j ) = tk(Pj) for each

k ≤ m− 3. Then, c is the Condorcet winner in (P′N′ , P−N′). As i? ∈ N′, x 6= c. This

implies the existence of S ⊂ N′ and j? ∈ N′ \ S such that

f (P′S, P−S) = x (48)

and

f (P′S∪{j?}, P−S∪{j?}) 6= x. (49)

Now, by monotonicity and (49), f (P′S∪{j?}, P−S∪{j?})Pj?x, implying

f (P′S∪{j?}, P−S∪{j?})Pj? f (P′S, P−S). (50)

Now let, P?
−j? ∈ Pn−1 be such that f (Pj? , P?

−j?) = f (P′S, P−S). By (48), f (Pj? , P?
−j?) =

x. Then, by monotonicity, f (P′j? , P?
−j?)Rj?x. Hence

f (P′j? , P?
−j?)Rj? f (Pj? , P?

−j?). (51)

By (50) and (51), f is not regret-free. The cases where i? is such that 1 ≤ i? ≤ t or

2t + s + 1 ≤ i? ≤ 3t + 2s are similar and therefore we omit them.

2. n = 4 and m > 3. Let P ∈ Pn be given by the following table:

P1 P2 P3 P4

a b c d

b c d a

c d a b

d a b c
...

...
...

...

As CP(a, c) = CP(a, b) = CP(b, d) = 2, there is no Condorcet winner according

to P. Let f (P) = x. Assume that f (P) /∈ {b, c, d} (the other 3 cases in which

f (P) /∈ {w, u, h} with {w, u, h} ⊂ {a, b, c, d} follow a similar argument). Next, let

P′2 ∈ P be such that t(P′2) = d, tm−1(P′2) = b, tm−2(P′2) = c, tm−3(P′2) = a, and

tk(P′2) = tk(P2) for each k ≤ m− 4. Similarly, let P′3 ∈ P be such that t(P′3) = d,

tm−1(P′3) = c, tm−2(P′3) = a, tm−3(P′3) = b, and tk(P′3) = tk(P3) for each k ≤ m− 4.

Then, d is the Condorcet winner according to (P′{2,3}, P−{2,3}). There are two cases

to consider:
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2.1. f (P′2, P−2) 6= x. Then, by monotonicity, f (P′2, P−2)P2x. Hence,

f (P′2, P−2)P2 f (P). (52)

Now, let P?
−2 ∈ Pn−1 be such that f (P2, P?

−2) = f (P). Then, by monotonicity,

f (P′2, P?
−2)R2 f (P2, P?

−2). (53)

By (52) and (53), f is not regret-free.

2.2. f (P′2, P−2) = x. Then, f (P′{2,3}, P−{2,3}) = dP3x = f (P′2, P−2) and an analogous

reasoning to the one presented in Case 2.1 for agent 2, now performed with agent

3, shows that f is not regret-free.

�

A.7 Proof of Corollary 5

We first show that each of the rules is monotone.

Lemma 1 Simpson, Copeland, Young, Dodgson, Fishburn and Black rules (both anonymous

and neutral) satisfy monotonicity.

Proof. Let x ∈ X, P ∈ Pn and P′i ∈ P be such that P′i is a monotonic transforma-

tion of Pi with respect to x. Let z ∈ X be such that xPiz and let y ∈ {x, z}. Then,

CP(y, a) = C(P′i ,P−i)
(y, a) for each a ∈ X. Therefore, (both anonymous and neutral)

Simpson, Copeland and Fishburn rules are monotonic. To see that Young and Dodg-

son rules are monotonic, simply note that yPia if and only if yP′i a for each a ∈ X \ {y}.
Finally, to see that Black rule is monotonic, note that (i) y is a Cordorcet winner in P

if and only if y is a Condorcet winner in (P′i , P−i), and (ii) the Borda score for y is the

same in profiles P and (P′i , P−i). �

Proof of Corollary 5. Assume first that N = {1, 2, 3, 4} and X = {a, b, c}. In all of the cases

that we consider in what follows, w.l.o.g., we assume that the tie-breaking is given by

a � b � c in the anonymous case, or by agent 1 in the neutral case.

Let f : P4 → {a, b, c} be a Simpson (Young, Dodgson, Fishburn) rule. Le P ∈ P4 be

given by the following table:

P1 P2 P3 P4

b c c a

a b b c

c a a b
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Then, c is the only Simpson (Young, Dodgson, Fishburn) winner at P and f (P) = c.

Now, consider P′1 ∈ P such that P′1 : a, b, c. Then, a is a Simpson (Young, Dodgson,

Fishburn) winner at (P′1, P−1). Therefore, f (P′1, P−1) = aP1c = f (P). Let P?
−1 ∈ Pn−1 be

such that f (P1, P?
−1) = f (P). Since f (P) = c = t1(P1), f (P′1, P?

−1)R1 f (P1, P?
−1). Hence,

f is not regret-free.

Next, let f : P4 → {a, b, c} be a Copeland (Black) rule. Let P ∈ P4 be given by

P1 P2 P3 P4

b c c a

a a b c

c b a b

Then, c is the only Copeland (Black) winner at P and f (P) = c. Now, consider P′1 ∈ P
such that P′1 : a, b, c. Then, a is a Copeland (Black) winner at (P′1, P−1) and a similar

reasoning to the one presented for Simpson’ rule shows that f is not regret-free.

Finally, assume n 6= 4, 2 or n = 4 and m > 3. By Lemma 1, Simpson, Copeland,

Young, Dodgson, Fishburn and Black rules are monotonic. Since all of them are also

Condorcet consistent, the result follows from Theorem 6. �

A.8 Proof of Theorem 7

Let f : Pn → X be a succesive elimination rule with associated order a � b � c � . . .

and let t ≥ 1 and 1 ≥ s ≥ 0 be such that n = 2t + s. Next, let P ∈ Pn be given by the

following table:16

P1 P2 P3 · · · Pt+2 Pt+3 · · · P2t+s

a c b · · · b a · · · a

b a c · · · c b · · · b
... b a · · · a c · · · c
...

...
... · · · ...

... · · · ...

c
...

... · · · ...
... · · · ...︸ ︷︷ ︸ ︸ ︷︷ ︸

t agents t + s− 2 agents

Since CP(a, b) = t + s ≥ t = CP(b, a), CP(a, c) = t + s − 1 < t + 1 = CP(c, a), and

CP(c, x) = n− 1 > 1 = CP(x, c) for each x ∈ X \ {a, b}, it follows that f (P) = c. Let

P′1 ∈ P be such that t(P′1) = b, tm−1(P′1) = a, and t1(P′1) = c, and let P̂ = (P′1, P−1).

16Notice that, as n ≥ 3, t + s− 2 ≥ 0.
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Since CP̂(a, b) = t + s − 1 < t + 1 = CP̂(b, a), CP̂(b, c) = n − 1 > 1 = CP̂(c, b), and

CP̂(b, x) > CP̂(x, b) for each x ∈ X \ {a, c}, it follows that f (P′1, P−1) = b. Therefore,

f (P′1, P−1)P1 f (P). (54)

Furthermore, as f (P) = t1(P1),

f (P′1, P?
−1)R1 f (P1, P?

−1) (55)

for each P?
−1 ∈ Pn−1 such that f (P1, P?

−1) = f (P). By (54) and (55), f is not regret-free.

�

A.9 Proof of Theorem 8

(=⇒) Let f : P2 → {a, b, c} be a regret-free and neutral voting rule.

Claim: f is efficient. Assume f is not efficient. W.l.o.g., there are two cases to consider:

1. P ∈ P2 is such that f (P) = c, Pi : a, b, c, and Pj is such that x = t(Pj) 6= c. By

regret-freeness, f (P′i , Pj) = c for each P′i ∈ P . Let π be the permutation of X such

that π(c) = x. By neutrality, f (πP) = x. Then, by regret-freenes, f (P′i , πPj) = x

for each P′i ∈ P . This implies that, as f (πP) = xPjc = f (πPi, Pj) and f (P′i , πPj) =

x for each P′i ∈ P , agent j manipulates f and does not regret it.

2. P ∈ P2 is such that f (P) = b and Pi = Pj : a, b, c. Let π be the permutation of

X such that π(a) = b. By neutrality, f (πP) = a. By the previous case, f (πPi, Pj) 6=
c. We claim that f (πPi, Pj) = b. Assume f (πPi, Pj) = a. Let P?

j be such that

f (Pi, P?
j ) = b. If f (πPi, P?

j ) = c, then agent i manipulates f at (πPi, P?
j ) via Pi and

does not regret it. Therefore, f (πPi, P?
j ) 6= c. This implies that agent i manipulates

f at P via πPi and does not regret it. This proves the claim that f (πPi, Pj) = b.

By a similar reasoning to the one presented for agent i, we can see that agent j

manipulates f at (πPi, Pj) via πPj and does not regret it.

Since in both cases we reach a contradiction, f is efficient. This proves the claim.

Next, assume that f is not a dictatorship. We will prove that f is a N-maxmin rule.

Let P ∈ P2 be such that P1 : a, b, c and P2 : b, a, c. By efficiency, f (P) ∈ {a, b}. Assume,

w.l.o.g., that f (P) = a. We will prove that

f (P) = max
P1
M(P) for each P ∈ P2.

Let P ∈ P2. There are three cases to consider:
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1. t(P1) = t(P2). By efficiency, f (P) = t(P1) = maxP1 M(P).

2. t(P1) 6= t(P2) and t1(P1) = t1(P2). As f (P) = a, by neutrality, f (P) = t(P1) =

maxP1 M(P).

3. t(P1) 6= t(P2) and t1(P1) 6= t1(P2). Then,

M(P) = X \ {t1(P1), t1(P2)}. (56)

If f (P) = t1(Pi) = x for some i ∈ {1, 2}, then f (P) = t(Pj) = x with j 6= i

(because of efficiency). Then, by regret-freeness,

f (Pj, P′i ) = x for all P′i .

Then, again by regret-freeness,

f (P′j , P′i ) = x for all P′i and all P′j such that t(P′j ) = x.

Then, j is a dictator when he has top in x. Therefore, by neutrality, j is a dictator

which is a contradiction. Thus,

f (P) 6= t1(Pi) for all i ∈ {1, 2}. (57)

Therefore, by (56) and (57),M(P) = { f (P)} and f (P) = maxP1 M(P).

(⇐=) Let f be a N-maxmin rule. It is clear that f is neutral and, furthermore, by

Theorem 1 (ii), f is regret-free. If f is a dictatorship, it is trivial that it is neutral and

regret-free. �

A.10 Proof of Theorem 9

(⇐=) Let f : P2 → {a, b, c} be a successive elimination rule or an A-maxmin? rule.

It is clear that f satisfies efficiency and anonymity. We will prove that f is regret-free.

Assume there are (P1, P2) ∈ P2 and P′1 ∈ P such that

f (P′1, P2)P1 f (P1, P2). (58)

We will prove that there exists P?
2 ∈ P such that f (P1, P?

2 ) = f (P) and

f (P1, P?
2 )P1 f (P′1, P?

2 ). (59)

There are two cases to consider:
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1. f is a successive elimination rule with associated order a � b � c. It is clear

that

f (P̃)R̃ia for each P̃ ∈ P2 and each i ∈ {1, 2}. (60)

If f (P1, P2) = a, by (58) and efficiency, aP2 f (P′1, P2), contradicting (60). Therefore,

f (P1, P2)P1a and, by (58), t1(P1) = a. There are two cases to consider:

1.1. bP1cP1a. Then, by (58), f (P1, P2) = c and, by definition of f , cP2aP2b. There-

fore, there is no P′1 ∈ P such that f (P′1, P2) = b, contradicting (58).

1.2. cP1bP1a. Then, by (58), f (P1, P2) = b and, by definition of f , t(P2) = b. It

follows from (58) that f (P′1, P2) = c, implying that cP2a and cP′1aP′1b. Now,

let P?
2 ∈ P be such that bP?

2 aP?
2 c. Then, f (P1, P?

2 ) = b and f (P′1, P?
2 ) = a.

Since bP1a, (59) holds and f is regret-free.

2. f is a A-maxmin? rule with associated binary relation�?. By definition of f , it

is clear that

f (P̃) 6= t1(P̃i) for each P̃ ∈ P2 and each i ∈ {1, 2}. (61)

W.l.o.g, let P1 : a, b, c. By (58), t(P2) 6= a and f (P) 6= a. Then, by (61), f (P) =

b ∈ {t(P2), t2(P2)}. By (58) and (61), f (P′1, P2) = a ∈ {t(P2), t2(P2)}. Therefore, as

t(P2) 6= a, P2 : b, a, c. Then, by definition of f , b �? a. Therefore, as f (P′1, P2) = a,

t1(P′1) = b. Now let P?
2 : b, c, a. Then, by (61), f (P1, P2) = b = f (P1, P?

2 ) and

f (P′1, P?
2 ) = c. Since bP1c, (59) holds and f is regret-free.

(=⇒) Assume that f is regret-free, efficient, and anonymous. We will prove that f is a

successive elimination rule or an A-maxmin? rule. There are two cases to consider:

1. there exist a ∈ X and P ∈ P2 such that f (P) = t1(Pi) = a for some i ∈ {1, 2}.
By efficiency, f (P) = t(Pj) = a for j = N \ {i}. It follows, by regret-freeness, that

f (Pi, Pj) = a for each Pi ∈ P .

Then, again by regret-freeness,

f (P) = a for each P ∈ P2 such that t(Pj) = a.

Therefore, by anonymity,

f (P) = a for all P such that a ∈ {t(P1), t(P2)}.
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This implies, by regret-freeness, that

f (P)Ria for each P ∈ P2 and each i ∈ {1, 2}. (62)

Let P̂ ∈ P2 be such that P̂1 : b, c, a and P̂2 : c, b, a. By efficiency, f (P̂) ∈ {c, b}.
W.l.o.g., assume that

f (P̂) = b. (63)

Let f� be the successive elimination rule with associated order a � b � c and let

P ∈ P2. We will prove that f = f�. There are two cases to consider:

1.1. there exists i ∈ {1, 2} such that aPib or aPic. Therefore, by (62), efficiency,

and the definition of f�, f (P) = f�(P).

1.2. bPia and cPia for each i ∈ {1, 2}. If t(P1) = t(P2), then by efficiency f (P) =

t(P1) = f�(P). Assume now that t(P1) 6= t(P2). Then, by anonymity and

(63), f (P) = f (P̂) = b = f�(P).

2. f (P) 6= t1(Pi) for each P ∈ P2 and each i ∈ {1, 2}. First, let P̂ ∈ P2 be such

that P̂1 : b, c, a and P̂2 : c, b, a. By efficiency, f (P̂) ∈ {b, c}. Assume, w.l.o.g.,

that f (P̂) = b. Second, let P ∈ P2 be such that P1 : b, a, c and P2 : a, b, c. By

efficiency, f (P) ∈ {b, a}. Assume, w.l.o.g., that f (P̂) = a. Third, let P̃ ∈ P2 be

such that P̃1 : c, a, b and P̃2 : a, c, b. By efficiency, f (P̃) ∈ {c, a}. Assume, w.l.o.g.,

that f (P̃) = c. We will prove that f is a A-maxmin rule? with associated binary

relation �? where b �? c, a �? b, and c �? a . This is, we need to show that

f (P) = max
�?
M(P) (64)

for each P ∈ P2. To do so, let P ∈ P2. If P ∈ {P̂, P, P̃}, it is clear that (64) holds.

Assume P ∈ P \ {P̂, P, P̃}. There are three cases to consider:

2.1. t(P1) = t(P2). By efficiency, f (P) = t(P1) = max
�?
M(P), so (64) holds.

2.2. t1(P1) 6= t1(P2). As |X| = 3, there is x ∈ X such that {x} = X \ {t3(P1), t3(P2)}.
Therefore, as f (P) 6= t1(Pi) for each i ∈ {1, 2} (see hypothesis of Case 2),

f (P) = x. Furthermore, as t3(P1) 6= t3(P2), M(P) = {x} and then, (64)

holds.

2.3. t(P1) 6= t(P2) and t1(P1) = t1(P2). Then, (P1, P2) = (P′1, P′2) with P′ ∈
{P̂, P, P̃}. By anonymity and the fact that (64) holds for P′,

f (P) = f (P′) = max
�?
M(P′) = max

�?
M(P).

Therefore, f is a successive elimination rule or an A-maxmin? rule, as stated. �
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