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Abstract

In this paper, we develop and estimate an arbitrage-free model of bond prices in
which the evolution of the risk factors and the parameters of the stochastic discount
factor are subject to occasional discrete changes in regimes. We show that the com-
ponent of risk premia associated with regime shifts is related to the macroeconomic
environment. In particular, the explicit pricing of regime shifts and the nonlinearities
associated with the Markov switching model generates a strong connection between
bond risk premia and the macroeconomy as summarized by variables such as infla-
tion, industrial production, and unemployment.
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1 Introduction

There is ample evidence that interest rates are subject to occasional discrete changes
over time (Hamilton, 1988; Ang and Bekaert, 2002; Bansal and Zhou, 2002). Times of
high and volatile interest rates, such as the period between the late 1970s and early 1980s,
seem to be inherently different from normal times with low average interest rates and
low volatility, such as the 1990s (Sims and Zha, 2006). Likewise, while the yield curve
is upward sloping during normal times, we often observe inversions of the curve at the
beginning of a tightening in monetary policy or economic contraction (Fama, 1986; Har-
vey, 1988; Estrella and Hardouvelis, 1991). Naturally, investors assessing the possibility
of a sudden shift in the level and volatility of interest rates would seek compensation
for the changing risks they face. Yet, most bond pricing models abstract from sudden
regime-changes (Piazzesi, 2010) and, when considered, the models tend to neglect their
direct contribution to bond prices, in that regime shifts are non-priced risk factors (Ang
and Bekaert, 2002; Bansal and Zhou, 2002).1 In this regard, a notable exception is the
paper by Dai, Singleton and Yang (2007).

In this paper, we develop and estimate an arbitrage-free model of bond prices in
which the evolution of the risk factors and the parameters of the stochastic discount
factor are subject to occasional discrete changes in regimes. At each point in time, the
economy can be in one of a finite set of possible regimes whose evolution is governed
by a finite state Markov chain. In addition, there are three other risk factors summa-
rized by the traditional level, slope, and curvature of the yield curve, which we call the
continuous risk factors. The discrete Markov risk factor serves two purposes. First, it
is used to model nonlinearities by assuming that the continuous risk factors evolve as a
first order autoregression subject regime changes (as in Hamilton, 1988; Sola and Drif-
fill, 1994). And second, the parameters of the stochastic discount factor used to price
bonds depend on the discrete Markov regime in two ways: by directly discounting pos-
sible changes in regimes (or staying in the same regime), and by allowing for discrete
changes in the way that fluctuations in the continuous risk factors affect bond prices. In
this environment, the continuous risk factors and the discrete risk factor summarize the
relevant information set that investors use to price bonds. Therefore, bond prices and
expected excess returns reflect two sources of risk: the risks associated with fluctuations
in the continuous risk factors and the risk of regime shifts.

Using this pricing model, we show that the component of risk premia associated with

1This omission implicitly assumes that systematic shifts in regimes can be regarded as an idiosyncratic
risks that investors can diversify away.
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regime shifts is related to the macroeconomic environment. In particular, the explicit
pricing of regime shifts and the nonlinearities associated with the Markov switching
model generates a strong connection between bond risk premia and the macroeconomy
as summarized by variables such as inflation, industrial production, and unemployment.

We begin by documenting regime changes in the level and slope of the yield curve.
The level factor is characterized by higher unconditional mean and variance during the
early 1980s (as in Hamilton, 1988) and during the monetary policy tightening cycle of
the late 1960s.2 In addition, the yield curve tends to be inverted and the volatility of the
slope increases around business cycle contractions. Consistent with the hypothesis that
occasional regime shifts are relevant risks factors, we find that an indicator function that
captures the evolution of the discrete regimes is a significant predictor of excess bond
returns even after including the traditional level, slope, and curvature factors as addi-
tional regressors. This result implies that the regime indicator function is an unspanned
factor in that it captures relevant information to predict expected excess returns other
than that included in the usual level, slope, and curvature of the yield curve. Expected
excess returns are on average lower in a regime associated with high interest rates and
with an inverted and volatile slope of the yield curve.

We use that evidence to motivate the particular structure that we use in our arbitrage-
free model of bond prices with regime shifts. In particular, we consider switches between
two possible regimes in the level factor of the yield curve and switches between two
possible regimes in the slope factor of the yield curve. For the level factor, we identify a
regime of high unconditional mean and high volatility. As for the slope factor, we iden-
tify a period of low unconditional mean and high volatility. The combination of these
two possibilities generates the Markov switching structure with four possible regimes
that we use when estimating the arbitrage-free model.

Our model nests the single-regime model (as in Duffee, 2002) and a switching model
without priced regime shifts (as in Bansal and Zhou, 2002, and Hevia et al., 2015).3 We
show that the data reject the restrictions implied by those specifications. The model with
priced regime shifts generates bond risk premia that are substantially different from
those of the restricted models. The single regime model generates risk premia that is
subject to sudden and long swings while the model with priced regime shifts behaves

2See Bernanke (2022) for a discussion of monetary policy and its relation to the macroeconomy in
those episodes.

3We note, however, that our model does not formally nest the model in Bansal and Zhou (2002) because
they impose a regime switching structure into a single-factor “CIR-style” model in which the evolution of
the risk factor is conditionally heteroskedastic while we assume that the distribution of the risk factors,
conditional on the regime, is homoskedastic as in Dai, Singleton and Yang (2007).
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less erratically with occasional jumps that reflect changes in regimes. The more erratic
behavior of risk premia of the single regime model is due to ignoring the impact that
changes in volatility have on bond prices, which the model with regime switching and
priced regime shifts is able to capture. Interestingly, the estimated risk premia of the
switching model without pricing regime shifts behaves closer to the risk premia of the
single regime model than to the risk premia of the switching model with priced regime
shifts. This observation emphasizes the importance of pricing regime risks. On average,
expected excess returns of holding long maturity bonds are positive in normal times,
in a regime with low volatility and positive slope of the yield curve, and tends to turn
negative when the yield curve flattens or becomes inverted and the slope factor becomes
more volatile.

In single regime, affine term structure models, the compensation of risk is propor-
tional to the variance of the risk factors and, as such, variations in the bond premia are
limited (Duffee, 2002). Moreover, traditional term structure models—when not taking an
explicit stand on the relationship between the term structure and the macroeconomy—
generate estimates of bond risk premia that are mostly disconnected from macroeco-
nomic fundamentals (Duffee, 2011, 2013). Our model with priced regime shifts addresses
both of those issues. Risk premia can be decomposed into a component related to fluctu-
ations in the continuous risk factors and a component related to regime switching risk.
We show that the component of the risk premium that captures the risk of switching
regimes is significantly and strongly related to macroeconomic fundamentals.

Bond risk premia derived from the baseline model with priced regime shifts are
highly correlated with inflation and with an indicator of economic activity, such as the
cyclical component of industrial production or unemployment. Expected excess returns
tend to be countercyclical, decreasing when both inflation and industrial production are
above trend. These two macroeconomic indicators explain almost a third of the variation
in one-month excess bond returns. This success is entirely related to the role of the price
of regime switches. Ludvigson and Ng (2009) point out that business cycle variations are
critical to explaining excess bond returns but they are not uncovered by factor models. In
our model, the relationship between bond risk premia and macroeconomic fundamentals
is revealed by the nonlinearity inherent in the price of regime switching. Defining the
regimes by looking at the properties of the level and slope factors in isolation captures
features of the data already subsumed by the factors. However, our regimes look at the
combined properties of the level and slope factors, which cannot be recovered by a linear
combination of the two factors. In our model, regimes in the level factor align well with
the monetary policy tightening cycles, whereas the slope factor regime roughly identifies
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contractions in economic activity.
Our paper contributes to the extensive literature on affine term structure models (see

Piazzesi, 2010, for a survey). In particular, in line with Hamilton (1988); Sola and Drif-
fill (1994); Ang and Bekaert (2002); Bansal and Zhou (2002); Dai and Singleton (2003);
Dai, Singleton and Yang (2007), we emphasize the importance of allowing for regime-
switching when characterizing interest rates. In arbitrage-free models with Markov
switching that allow for priced regime shifts developed in continuous time, the com-
pensation for the risk of remaining in the current regime is necessarily zero (Dai and
Singleton, 2003). Since we develop our model in discrete time, our model allows for a
possible discounting (or premium) for staying in the current regime. Ang and Bekaert
(2002), Bansal and Zhou (2002), and Hevia et al. (2015) estimate arbitrage-free dynamic
term structure models but without pricing regime shifts.

The paper that is most related to ours is Dai, Singleton and Yang (2007). In both
papers, the stochastic discount factor extends the usual log-linear discount factor with a
term that adds discounting to future cash flows across different regimes given the current
regime. However there are two important differences with that paper. First, Dai, Single-
ton and Yang (2007) consider a two-regime model, which they interpret as high and low
volatility regimes. Instead, through a preliminary analysis of the data, we emphasize
the importance of allowing for independent switches in the level and slope factors of the
yield curve. The interaction between these independent changes in the level and slope
of the yield curve imply a model with four possible regimes, which is a critical property
to uncover a strong connection between bond risk premia and macroeconomic funda-
mentals. And second, we adopt the traditional timing protocol used in regime-switching
models by specifying that the distribution of the continuous risk factors depend on the
current regime, as in Hamilton (1989) and Bansal and Zhou (2002). In contrast, Dai,
Singleton and Yang (2007) condition the distribution of the current continuous risk fac-
tor on the previous period’s regime. While this timing protocol is convenient because
it delivers exact closed-form solutions for bond prices, it also implies that changes in
volatility are perfectly forecastable one period in advance and, therefore, investors know
with certainty the particular node of the probability tree at which de economy will be in
the following period. We choose the traditional timing convention for the model to be
consistent with the view that turbulent times are inherently random. With our timing
convention, investors assign probabilities to the possibility that volatility may change in
the future and this inherent uncertainty affects bond prices and risk premia differently
than if they knew the future volatility with certainty. We show that a general equilibrium
consumption-based model in which consumption and the shocks to the marginal util-
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ity of consumption are indexed by a finite state Markov chain gives rise to a stochastic
discount factor and timing protocol consistent with our model.

But using the traditional timing convention does not permit exact closed-form so-
lutions for bond prices. As in Bansal and Zhou (2002) we look for approximate solu-
tion that, conditional on the current regime, are log-linear in the continuous risk fac-
tors. The difference, however, is that we approximate the non-linear term in the pricing
equation using a first order Taylor approximation around the state-dependent long-run
mean of the risk factors while Bansal and Zhou (2002) use the standard approximation
exp(y)− 1 ≈ y which implies approximating around zero. Given the approximate con-
ditionally log-linear solution for bond prices, we obtain an analytic representation for the
likelihood function that we use in our empirical analysis of U.S. Treasury zero-coupon
bond yields.

Finally, while our empirical model follows the tradition of assuming that the relevant
factors that determine the evolution of the yield curve can be recovered from a portfolio
of bonds (as in Litterman and Scheinkman, 1991; Dai and Singleton, 2000; Joslin, Sin-
gleton and Zhu, 2011; and many others), it is well known that there is a strong relation
between those factors and the macroeconomy (Bauer and Rudebusch, 2017). Therefore,
while not directly referring to any specific macroeconomic regime, as in Sims and Zha
(2006), our work relates to a more recent stream of the literature that focuses on the
impact that changes in macroeconomic regimes have on the term structure of interest
rates (see, for example, Bikbov and Chernov, 2013). The critical insight of our work is
that regime switches and their evolution over time affect bond risk premia.

The rest of the paper is organized as follows. Section 2 presents a preliminary analy-
sis of the data used to motivate the parametrization of our arbitrage-free model. Section
3 develops the arbitrage-free model with regime shifts and discusses a general equi-
librium model for an endowment economy that generates a stochastic discount factor
identical to that in the arbitrage-free model discussed previously. In Section 4 we dis-
cuss the specification and estimation of the model and Section 5 analyzes bond risk
premia and its relation to the macroeconomy. Section 6 concludes.

2 Preliminary Analysis

This section documents regime shifts in the dynamics of interest rate factors and
their relevance for bond risk premia. The analysis in this section is purely statistical in
that we do not impose any restrictions derived from the lack of arbitrage across bonds.
We use the insights of this section to impose structure and restrictions into the general
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arbitrage-free model of bond prices that we develop in Section 3.
As a first step, we analyze the dynamics of the yield of a 10-year government bond

and the spread between the 10-year and the 3-month bonds. These variables represent
the level and slope factors of the yield curve that are widely used to forecast returns
and estimate risk premia. In this section, and in what follows, we use data on U.S. zero
coupon bonds for the period Jan-1962 through Nov-2019 from Le and Singleton (2018)
and updated by Anh Le. Specifically, we investigate if there are occasional discrete shifts
in the parameters governing the evolution of the level and slope factors by estimating
different specifications of an autoregressive model with dependent regime parameters,

xt − θst =
p

∑
j=1

ϕj,st(xt−j − θst−j) + σst ϵt, (1)

where st represents a two-state Markov chain; xt is, either, the level or the slope factor;
ϵt is a normal shock with zero mean and unit variance; and θst , σst , ϕj,st for j = 1, 2, . . . , p
are parameters that depend on the Markov state st.

We consider three specifications of equation (1). In the first specification, the un-
conditional mean θst is the only parameter that can change. The second specification
allows for simultaneous shifts in the unconditional mean θst and variance σst . The third
specification allows for simultaneous changes in all the parameters of equation (1). For
comparison purposes, we also estimate a linear (single regime) model.4

Table 1 reports summary statistics of the in-sample fit for the different specifications
using as dependent variable the level factor (top panel) and the slope factor (bottom
panel). In both cases, the three information criteria select models which allow for simul-
taneous changes in the unconditional mean and variance but constant autoregressive
coefficients. Allowing for shifts in the autoregressive coefficients, however, does not lead
to significant improvements in the log-likelihood and it produces worse scores in terms
of information criteria relative to the model that allow for simultaneous shifts in the
unconditional mean and variance. In addition, allowing for regime shifts substantially
improves the fit relative to the linear model.

In light of the previous results, in what follows we focus on the model that allows for
simultaneous changes only in the long-run mean and volatility parameters θst and σst .

Consider first the level factor (the 10-year yield). The model identifies a regime of
high unconditional mean and high volatility of interest rates. The upper left panel of
Figure 1 shows the evolution of the level factor along with the smoothed probability of

4In all cases, we set the number of lags in equation 1 to p = 4 to allow for sufficiently rich dynamics.
The results are robust to different lag choices.
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Table 1: Alternative Regime Switching Specifications

Level Factor

Log-likelihood Akaike Hannan-Quinn Bayesian

Single Regime -187.319 0.556 0.571 0.596
RS LRM -151.630 0.465 0.488 0.524
RS LRM+VOL -107.778 0.341 0.366 0.407
RS LRM+AR+VOL -106.400 0.348 0.384 0.440

Slope Factor

Log-likelihood Akaike Hannan-Quinn Bayesian

Single Regime -385.364 1.126 1.141 1.165
RS LRM -300.740 0.896 0.919 0.956
RS LRM+VOL -214.853 0.651 0.676 0.716
RS LRM+AR+VOL -211.368 0.652 0.688 0.744

Notes: This table reports different measures of model fit for alternative specifications
of an AR(4) model with regime switching in the level factor (upper panel) and the
slope factor (lower panel). RS LMR stands for with a model with regime switching
only in the long-run mean µst ; RS LRM+VOL allows for simultaneous shifts in the
long-run mean and volatility parameters µst and σst ; RS LRM+AR+VOL also includes
switches in the autoregressive parameters ϕj,st . As a reference, we also report the re-
sults for a linear (single regime) model. The columns report the log-likelihood, Akaike,
Hannan–Quinn, and Bayesian information criteria of the different models. Highlighted
entries correspond to the model with the lowest value of the information criterion.

the high unconditional mean and high volatility regime. The upper right panel shows
the monthly change in the 10-year yield and the smoothed probability of the regime.
The filter identifies for the level factor a period of high mean and volatility from the
early to the mid-1980s (see Hamilton (1988)) . Specifically, the high mean and volatility
regime starts in the last quarter of 1979 and lasts over the entire Volcker disinflation
period (see also Romer and Romer, 1989). It also selects observations from the mid-2003
and the 2008 recession as part of that regime, characterized by increased volatility in the
level factor. Both of these events are associated with significant changes in monetary
policy uncertainty and coincide with some form of forward guidance by the Fed (see,
e.g., Bauer, Lakdawala and Mueller, 2021).

Consider now the slope factor (the 10-year yield minus 3-month yield). In this case,
the model identifies a period of low unconditional mean and high volatility of the slope
factor. The bottom panels of Figure 1 show the evolution of the slope factor (left panel)
and its change (right panel) together with the smoothed probability of the low uncon-
ditional mean and high volatility regime. Changes in the regimes corresponding to the
slope factor tend to be associated with periods of rapid monetary policy reversals, in the
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sense that term spreads are relatively low and highly volatile. A higher probability of
this regime tends to be observed preceding all USA recessions except that in 1991.

Figure 1: Level, slope, and estimated regime probabilites
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Note: The upper panels of the figure report the level factor and its change together with the estimated
smoothed probability of a high unconditional mean and high volatility regime for the level factor
computed by estimating equation (1) using xt = y10y

t . The lower panel reports the slope factor and
its change along with the estimated smoothed probability of a low unconditional mean-high volatility
regime for the slope factor computed by estimating equation (1) using xt = y10y

t − y3m
t .

The previous evidence suggests that there are discrete changes in the economy that
affect the dynamics of the level and slope of the yield curve. We next assess to what
extent those discrete changes in regimes can help predict bond risk premia.

To that end, we start by constructing 1-month excess returns for bonds of different
maturities. The 1-month excess return of an n−period bond is defined as xrn

t+1 = pn−1
t+1 −
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pn
t − y3

t , where pn
t is the log-price at time t of a bond come due in n months and y3

t is
the 3-month interest rate. We perform predictive regressions of excess returns xrn

t+1 for
different maturities n on the usual level, slope, and curvature factors along with regime
indicators that we construct in different ways.

We first split the sample into periods of high and low unconditional mean for the
level factor. To consider whether the level factor is in a regime of a high unconditional
mean, we construct a moving average of the level factor using exponential weights.
We label a period to be of high unconditional mean if this moving average is above
the 80th percentile of the distribution of the level factor over the entire sample period.
Likewise, we define periods with high or low volatility of the slope factor by constructing
an exponentially weighted moving average of the square deviations of the slope factor
relative to its unconditional mean. We define a period to be of high volatility when this
moving average is above the 75th percentile of the distribution of the square deviations
of the slope factor relative to its unconditional mean over the entire sample period.
Using these definitions of the regimes, we obtain roughly the same separation of regimes
as when using the Markov switching model reported in Figure 1.5 An advantage of
defining the regimes in this way instead of using the estimated probabilities in Figure 1
is that it is much simpler to replicate when bootstrapping yields to construct p-values,
following the procedure suggested by Bauer and Hamilton (2017).

Having defined the regimes, we consider three cases depending on whether the level
and slope regimes are each considered in isolation or combined. In the latter case, we
define three dummy variables corresponding to periods of (i) high mean of the level
factor and low volatility of the slope factor, (ii) low mean of the level factor and high
volatility of the slope factor, and (iii) high mean of the level factor and high volatility
of the slope factor. Next, we run predictive regressions of excess returns xrn

t+1 for n =

12, 24, 36, . . . , 120 months on the time-t values of the level, slope, and curvature factors of
the yield curve together with the dummy variables that captures the different regimes.

Table 2 reports bootstrapped p-values of the Wald test of significance of the dummy
variables associated with the different regimes. If we construct the regimes using only
the level factor or the slope factor in isolation, the regime dummy variables are not
significant predictors of future excess returns. Intuitively, defining the regimes by look-
ing at the properties of the level and slope factors in isolation captures features of the
data that are already subsumed by the factors themselves, making the regime indicators

5Alternatively, we could define regimes by constructing moving averages of the volatility of the level
factor and of the mean of the slope factor and separate regimes when these moving averages cross some
threshold percentile of the distributions. This procedure selects roughly the same periods for each regime,
with a concordance statistic greater than 80% for both cases.
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redundant. Yet, when we combine the level and slope factors to define our regime in-
dicator, we find that this combination is a significant predictor of future excess returns,
particularly so at the short end of the yield curve. In particular, the dummy variable that
simultaneously captures a high mean of the level factor and a high volatility of the slope
factor predicts significantly lower excess returns. For instance, being in this particular
regime is associated with excess returns of roughly 50 basis points below what it would
otherwise be predicted by the level, slope, and curvature factors for n = 12 (p-value less
than 1%) and up to 70 basis points lower for n = 24 (p-value of about 2%).

Table 2: Excess returns and regime shifts

Level Only Slope Only Combined

Average (1y-5y) 0.704 0.428 0.066
Average (1y-10y) 0.892 0.598 0.124

1y 0.684 0.332 0.002
2y 0.530 0.627 0.010
3y 0.842 0.379 0.225
4y 0.987 0.606 0.037
5y 0.320 0.163 0.093
6y 0.667 0.436 0.171
7y 0.945 0.954 0.142
8y 0.158 0.770 0.042
9y 0.523 0.539 0.268

10y 0.554 0.885 0.167
Notes: Table 2 reports the p-values testing whether the regime dummies are un-
spanned factors. The first two columns consider the significance of a dummy for the
periods associated with high unconditional mean for the level factor (Level Only) or
high volatility of the slope factor (Slope Only). The last columns includes the results
associated with the dummies that interact the level and slope factors regimes. The p-
values are computed using the boostrap procedure discussed in Bauer and Hamilton
(2017). In all cases, the predictive regressions include as independent variables time−t
level, slope, and curvature factors as additional regressors.

Summarizing, these results suggest that there are nonlinear interactions between the
factors that appear to be relevant correlates of bond risk premia besides those captured
by the traditional level, slope, and curvature factors of the yield curve. Moreover, these
nonlinearities can be captured by occasional discrete changes in the economy. Using
these insights, in the next section we develop an arbitrage-free model of the yield curve
that explicitly prices the risks associated with occasional discrete shifts in regimes in US
bond markets.
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3 The model

In this section, we develop a statistical arbitrage-free model of bond prices that al-
lows for priced regime shifts. As is common in the asset pricing literature, we specify
processes for the short rate and the stochastic discount factor that are both functions of
a set of risk factors. In addition, the parameters describing the evolution of the short
rate and the risk factors are indexed by another stochastic process that evolves as a finite
state Markov chain. Algebraic details not shown in the body of the paper are relegated
to Appendix A.

To motivate the timing protocol and stochastic discount factor used in the statistical
model of bond pricing, we next describe a general equilibrium model of a representative
agent with time separable preferences that is subject to shocks to the marginal utility
of consumption. Both, the parameters governing the evolution of consumption and the
shocks to the marginal utility of consumption are indexed by a finite state Markov chain.
While this particular consumption-based model is one way to motivate the statistical
arbitrage-free model, there may be other equilibrium models that could lead to similar
reduced form arbitrage-free prices.

3.1 The statistical arbitrage-free model

Time is discrete and denoted by t = 0, 1, 2, . . .. Each time period in the model repre-
sents one month. A stochastic process that takes a finite number of values (regimes from
now on) st ∈ {1, . . . , S} determines the distribution of an M−dimensional vector of risk
factors Xt. The regime st evolves according to a Markov chain with transition probability
of switching from regime st = j to regime st+1 = k given by

πjk = Pr (st+1 = k|st = j) (2)

for j, k = 1, ..., S, with ∑S
k=1 πjk = 1 for all j.

The conditional distribution of the risk factors Xt+1 is a function of the form

Pr (Xt+1|Xt, st = j, st+1 = k) = Pr (Xt+1|Xt, st+1 = k)

that depends on the regime at t + 1, st+1, and the value of the risk factors at time t, Xt.
In particular, given Xt and st+1 = k, Xt+1 follows the process

Xt+1 = µk + ΦkXt + Σkϵt+1, (3)
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where ϵt+1 ∼ N (0, I) and Σk is lower triangular. The parameters of this conditionally
linear process (µk, Φk, Σk) depend on the value of the regime at time t + 1, st+1 = k.

This Markovian structure implies that, at time t, the state vector (st, Xt) is sufficient
to characterize the entire probability distribution of (st+1, Xt+1). Throughout the paper,
we assume that bond prices at time t are a function of the state vector (st, Xt).

In using the process (3), we adopt the timing protocol of Hamilton (1988) that speci-
fies the distribution of Xt+1 conditional on the contemporaneous regime st+1. This tim-
ing convention has been used in the bond pricing literature by Bansal and Zhou (2002)
and Ang and Bekaert (2002). In contrast with those papers, however, we allow for priced
regime shifts in the sense that the stochastic discount factor includes an explicit term
discounting future cash flows depending on the realized values of the Markov chain
in the following period. In the empirical section below we show that this additional
regime-specific discounting is fundamental to understand the dynamics of risk premia
and bond prices. On the other hand, Dai, Singleton and Yang (2007) impose that the the
parameters of the conditional distribution of the risk factors Xt+1 depends on the past
regime st. This timing convention allows them to obtain exact closed-form solutions for
bond prices but it also implies that investors know with certainty the particular node
of the probability tree at which the economy will be in the following period. In that
respect, the solution of their model is similar to that obtained when solving a single
regime model.

Given the state vector (st, Xt), the continuously compounded yield on a one-period
zero-coupon bond, denoted by rt ≡ r(st, Xt), is given by

rt = δst
0 + δst′

1 Xt, (4)

where δst
0 is a scalar and δst

1 is an N−dimensional vector.
Let Pn

t,st
= Pn (st, Xt) denote the price at time t of a zero-coupon bond with maturity

of n periods when current regime is st and the risk factors are Xt. To complete the
specification of the model, we impose the following stochastic discount factor to price
future cash flows

Mt,t+1 =e−rt−Γ(st,st+1)− 1
2 Λ

st+1′
t Λ

st+1
t −Λ

st+1′
t ϵt+1 , (5)

Λst+1
t =λ

st+1
0 + λ

st+1
1 Xt, (6)

where the S × S matrix Γ(st, st+1) is the market price of risk of switching from regime st

to regime st+1, λ
st+1
0 is an N−dimensional vector, and λ

st+1
1 is an N × N matrix.

As in Dai, Singleton and Yang (2007), the stochastic discount factor (5) extends the
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usual log-linear stochastic discount factor with a term Γ(st, st+1) that adds an additional
discounting to future cash flows across different regimes st+1 given that the current
regime is st. We do not impose that Γ(st, st) = 0, so there may be a discount (or premium)
for staying in the current regime. To avoid clutter, we often use the more compact
notation Γjk ≡ Γ (st = j, st+1 = k).

Given the current state (st = j, Xt), the pricing equation for zero-coupon bonds is

Pn+1
t,j =E

[
Mt,t+1Pn

t+1,st+1
|st = j, Xt

]
=E

[
e−rt−Γst ,st+1−

1
2 Λ

st+1′
t Λ

st+1
t −Λ

st+1′
t ϵt+1 Pn

t+1,st+1
|st = j, Xt

]
=e−rt

S

∑
k=1

πjke−Γjk− 1
2 Λk′

t Λk
t E
[
e−Λk′

t ϵt+1 Pn
t+1,k|st = j, st+1 = k, Xt

]
. (7)

In general, the solution to this functional equation is nonlinear and requires numerical
methods to be solved. To estimate the model using the method of maximum likelihood,
however, we find it convenient to look for approximate log-linear solutions of the form

log(Pn
t,j) = An

j + Bn′
j Xt, (8)

for some scalar An
j and M-dimensional vector Bn

j .
Using the approximation (8) into equation (7) and taking logs gives

An+1
j + Bn+1′

j Xt = −rt + log

(
S

∑
k=1

πQ
jkeFn

k +Bn′
k ΦQ

k Xt

)
, (9)

where

Fn
k =An

k + Bn′
k µQ

k + 1
2 Bn′

k ΣkΣ′
kBn

k , (10)

µQ
k =µk − Σkλk

0, (11)

ΦQ
k =Φk − Σkλk

1, (12)

πQ
jk =πjke−Γjk . (13)

To find the parameters of the approximate solution, we perform a first order Taylor
approximation to the log-term in the right hand side of equation (9) around the (state-
dependent) long-run value of the risk factors Xt = µ̄j ≡ (I − Φj)

−1µj given the current
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regime st = j. In Appendix A we show that the Taylor approximation is

log

(
S

∑
k=1

πQ
jkeFn

k +Bn′
k ΦQ

k Xt

)
≈ log

(
S

∑
k=1

πQ
jkeFn

k +Bn′
k ΦQ

k µ̄j

)
+ (Xt − µ̄j)

′hn
j , (14)

where the M × 1 vector hn
j , which depends on the bond maturity n and current state

st = j, is given by

hn
j =

[
ΦQ′

1 Bn
1 ΦQ′

2 Bn
2 · · · ΦQ′

S Bn
S

]
︸ ︷︷ ︸

N×S


πQ

j1eFn
1 +Bn′

1 ΦQ
1 µ̄j

πQ
j2eFn

2 +Bn′
2 ΦQ

2 µ̄j

...

πQ
jSeFn

S +Bn′
S ΦQ

S µ̄j


︸ ︷︷ ︸

×

S×1

1

∑S
h=1 πQ

jheFn
h +Bn′

h ΦQ
h µ̄j

.

Using the approximation (14) and the short rate equation (4) into the pricing condition
(9), and matching coefficients yields a recursion for the parameters in equation (8):

An+1
j =− δ

j
0 − (hn

j )
′µ̄j + log

(
S

∑
k=1

πQ
jkeFn

k +Bn′
k ΦQ

k µ̄j

)
(15)

Bn+1
j =hn

j − δ
j
1, (16)

with initial conditions A0
j = 0 and B0

j = 0 for j = 1, 2, · · · , S.
In addition, for the model to correctly price the short term interest rate (4) we must

impose the restriction
S

∑
k=1

πQ
jk =

S

∑
k=1

πjke−Γjk = 1. (17)

This condition is equivalent to imposing that the risk-neutral probabilities of regime
shifts, which are given by πQ

jk = πjke−Γjk , add up to one for j = 1, . . . S.

3.2 Yields and risk premia

Let pn
t = log Pn

t (st, Xt) denote the log-price of an n−period zero coupon bond at time
t when current the state vector is (st, Xt) and yn

t = − 1
n pn

t the corresponding log-yield.
Given that bond prices satisfy equation (8), bond yields can be written as

yn
t = an

st
+ bn′

st
Xt (18)
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for all maturities n, where an
st

= −An
st

/n, bn
st

= −Bn
st

/n, and An
st

and Bn
st

satisfy the
recursions (15) and (16).

While there are many possible definitions of risk premia, in this paper we focus on
expected excess holding returns. In particular, the expected log holding return of buying
an n-period zero coupon bond at time t in state st = j and selling it as an (n − 1)-period
coupon bond at time t + 1 is given by

Et[pn−1
t+1 ]− pn

t =
S

∑
k=1

πjk

[
An−1

k + Bn−1′
k (µk + ΦkXt)

]
− (An

j − Bn′
j Xt).

The expected log-holding return in excess of the short rate rt at time t is thus given by

Et[pn−1
t+1 ]− pn

t − rt =
S

∑
k=1

πjk(An−1
k + Bn−1′

k µk)− An
j − δ

j
0 (19)

+

(
S

∑
k=1

πjkBn−1′
k Φk − Bn′

j − δ
j′
1

)
Xt.

3.3 A general equilibrium model

In this subsection, we provide a general equilibrium model of an endowment econ-
omy that generates a stochastic discount factor and discrete regime shifts like those
postulated in the arbitrage-free model of Section 3.1.

The state of the economy at time t is summarized by a vector zt = (st, Xt), where
st ∈ {1, 2, . . . , S} is a discrete Markov chain with transition probabilities given by equa-
tion (2) and Xt is a vector of continuous random variables that evolve according to the
process (3). We denote by zt = {z0, z1, . . . , zt} the partial history of shocks from time 0
up until time t, and by Zt the set of all possible partial histories up to time t. The prob-
ability distribution over partial histories zt conditional on the initial state z0 is denoted
by Ft(zt|z0) and can be derived from the stochastic processes (2) and (3).

The representative household has preferences over contingent sequences of consump-
tion Ct(zt) represented by an expected utility function of the form

U =
∞

∑
t=0

∫
zt∈Zt

e−δtηt(zt)
Ct(zt)1−γ − 1

1 − γ
dFt(zt|z0),

where δ > 0 is the subjective discount rate, γ > 0 is the coefficient of risk aversion, and
ηt(zt) is a preference shock whose evolution we describe below.

The stochastic discount factor is the intertemporal marginal rate of subtitution be-
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tween consumption at dates t + 1 and t,

Mc
t,t+1 = e−δ ηt+1(zt+1)

ηt(zt)

(
Ct+1(zt+1)

Ct(zt)

)−γ

. (20)

where, in equilibrium, Ct(zt) equals the exogenous endowment of consumption.
We look for conditions under which the stochastic discount factor of the general

equilibrium model coincides with that of the statistical arbitrage free model given by
equation (5). To that end, suppose that the evolution of the preference shock ηt(zt)

depends only on the discrete Markov chain process st and satisfies

log(ηt+1(zt+1)) = log(ηt(zt))− Γ(st, st+1), (21)

with initial condition η0(z0) = 1.
In addition, if we let ct(zt) = log Ct(zt), the stochastic discount factor (20) becomes

Mc
t,t+1 = e−δ−Γ(st,st+1)−γ[ct+1(zt+1)−ct(zt))].

For the general equilibrium model to map exactly into the statistical arbitrage-free
model discussed above, we need that the two stochastic discount factors coincide: Mt,t+1 =

Mc
t,t+1. This coincidence happens whenever log-consumption growth follows the stochas-

tic process

ct+1(zt+1)− ct(zt) =
1
γ

[
rt − δ +

1
2

Λst+1′
t Λst+1

t + Λst+1′
t ϵt+1

]
,

where rt and Λst+1
t are given by equations (4) and (6), respectively.

4 Model specification and estimation

In this section, we discuss the details of the estimation of the dynamic model of bond
pricing. We specify three observable factors constructed from bond yields. The factors
are the usual level, (the negative of the) slope, and curvature of the yield curve. The level
of the yield curve is defined as the 10-year yield, the slope is the ten-year yield minus
the three-month yield, and the curvature is twice the two-year yield minus the sum of
the ten-year and three-month yields. That is, the risk factors are

Xt =
[
y120

t , −(y120
t − y3

t ), 2y24
t − y120

t − y3
t

]′
.
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Bond yields yn
t other than those used to construct the factors are observed for the matu-

rities n ∈ N = {6, 12, 36, 60, 108} months.
In our baseline model, the risks associated with changes in regimes are priced, in that

transitioning between regimes (even remaining in the current one) have an associated
discount Γ(st, st+1) that affects bond prices, as shown in equation (5). As we show
below, allowing for priced regime-specific risks affect the estimated separation of the
regimes through the impact that changes in the stochastic discount factor have on bond
prices. To assess the contribution of each component of the model on bond prices and
risk premia, we also estimate a version of the model assuming that regime changes are
not priced (imposing Γ(st, st+1) = 0), and a single regime affine model.

We parameterize the model and evaluate the log-likelihood function in terms of the
parameters of the risk neutral and physical measures. Given a value for these param-
eters, we recover λ0, λ1, and Γ using that the risk neutral and physical measures are
related by the equations

λk
0 =Σ−1

k

(
µk − µQ

k

)
λk

1 =Σ−1
k

(
Φk − ΦQ

k

)
Γjk = log

(
πjk/πQ

jk

)
.

Next, we use the evidence documented in Section 2 to discipline our preferred
parametrization of the baseline model. As noted there, there are significant changes
in the mean of the level factor, consistent with the findings in Hamilton (1988). In ad-
dition, periods of low levels of the slope factor tend to coincide with periods of high
volatility. Accordingly, we impose that there are four different regimes derived from
the interaction of two possible values for the mean of the level factor and two possible
regimes for the slope factor charaterized, the first, by low mean and high volatility, and
the second, by high mean and low volatility. For parsimony, we assume that changes in
regimes of the level factor are independent from those of the slope factor. Therefore, we
parameterize the 4 × 4 Markov transition matrix as

Π = ΠL ⊗ ΠS,

where ⊗ denotes the Kronecker product, and ΠL and ΠS are 2 × 2 transition matrices
for the discrete changes in the level and slope factors, respectively, given by
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ΠL =

[
qL 1 − qL

1 − pL pL

]
and ΠS =

[
qS 1 − qS

1 − pS pS

]
.

We also assume that the transition matrix of the regimes under the risk-neutral measure
inherits the same properties, so that ΠQ = ΠQ

L ⊗ ΠQ
S , where ΠQ

L and ΠQ
S have the same

structure as ΠL and ΠS.
In addition, as shown in Table 1, we do not find evidence that the coefficients on the

lagged values of the factors Xt shift with changes in regimes. Therefore, we assume that
the coefficient matrix Φ in the process (3) for the risk factors is the same for all regimes.
Likewise, for parsimony, when estimating the model we also assume that the coefficient
matrix ΦQ under the risk-neutral measure is also state-independent but allow the risk-
neutral drift µQ

k to depend on the regime k = 1, 2, 3, 4.6 Dai, Singleton and Yang (2007)
use a similar assumption.

Let θst =
[
θL

st
, θS

st
, θC

st

]′ denote the vector of long-run means of Xt conditional on regime
st. We assume that θL

st
and θS

st
can take two possible values each, and that θC

st
= θC is

a constant. The parameters that we allow to change across regimes are, therefore, the
long-run mean of the level factor, θL

st
∈
{

θL
1 , θL

2
}

; and the long-run mean of the slope
factor, θS

st
∈
{

θS
1 , θS

2
}

, together with the conditional volatility matrix Σst ∈ {Σ1, Σ2}.7

More specifically, the parameters associated with the four regimes are as follows,

regime 1 =
{

θL
1 , θS

1 , Σ1, µQ
1 , Γ1j

}
regime 2 =

{
θL

1 , θS
2 , Σ2, µQ

2 , Γ2j

}
regime 3 =

{
θL

2 , θS
1 , Σ1, µQ

3 , Γ3j

}
regime 4 =

{
θL

2 , θS
2 , Σ2, µQ

4 , Γ4j

}
.

The assumption about the separation of regimes—namely, that there are only 4 free
parameters in the Markov transition matrix under, both, the physical and risk neutral
measures Π and ΠQ—implies that there are only 4 free parameters in the 4 × 4 matrix
of market prices of regime switch Γ since Γjk = log

(
πjk/πQ

jk

)
.

To identify the model we also impose the following assumptions. First, since the term
Bn′

k µQ
k that appears in equation (10) is a scalar for each k, we can only identify a single

parameter in µQ
k . We thus set µQ

k =
[
µQ,L

k , 0, 0
]′

for k = 1, 2, 3, 4. And second, we impose

6By a standard result, the volatility matrix Σk is the same in the physical and risk-neutral measures.
7To estimate the model, we find it convenient to parameterize the evolution of the risk factors Xt in

terms of the long-run mean θst instead of the intercept µst as in equation (3). The mapping between these
two parameters is µst = (I − Φ)θst .
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that the matrix ΦQ has the following structure

ΦQ =

1 0 0
0 ϕQ

1 ϕQ
2

0 0 ϕQ
1

 .

Hamilton and Wu (2012) show that these restrictions imply that the model is identified
with a well behaved likelihood function.

The previous assumptions imply that we estimate the model

yn
t = an

st
+ bn′Xt + νt for n ∈ N, (22)

Xt+1 = µst+1 + ΦXt + Σst+1ϵt+1, (23)

where yn
t ∈

{
y6

t , y12
t , y36

t , y60
t , y108

t
}

is the set of observed yields, Xt is the vector of ob-
served factors, νt ∈ ℜ5 is a normally distributed measurement error with mean zero and
5 × 5 diagonal covariance matrix H; µst ∈ ℜ3 is a vector of regime-specific drifts, Φ is
an 3 × 3 matrix, and ϵt+1 ∈ ℜ3 is normally distributed with mean zero and 3 × 3 covari-
ance matrix I3. Moreover, νt and ϵt+1 are independent of each other at all leads, lags,
and contemporaneously for all possible regimes st. In addition, the intercept and factor
loadings of the observation equation are given by an

st
= −An

st
/n, bn = −Bn/n, where An

st

and Bn satisfy the recursions (15) and (16).
Let Y t = {X1, X2, . . . , Xt, yn

1 , yn
2 , . . . yn

t for n ∈ N} denote the history of observed data
up until time t. Given data YT, we estimate the model by the method of maximum
likelihood and perform statistical inference using an algorithm and filter similar to that
described in Hamilton (1994, pp. 692-694). As a by-product of the filter, we compute the
filtered probability of the unobserved state st conditional on all the information up to
time t, Pr

(
st|Y t). The consistency and asymptotic normality of the maximum likelihood

estimator of the model with Markov switching are discussed in Francq and Roussignol
(1998), Krishnamurthy and Ryden (1998), and Douc, Moulines and Rydén (2004).

4.1 Estimation results

Table 3 shows estimation results for the baseline model with priced regime shifts.
The table shows the estimated parameters of the physical and risk neutral measures as
well as the implied matrix of market prices of regime shifts parameters Γ. Table 4 shows
the same results for the model with non-priced regime shifts, Γjk = 0, so that Π = ΠQ.8

8The results for the single-regime model are available upon request
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Table 3: Model with priced regime shifts

Coefficient matrix on lagged values:

Φ =



1.0020 0.0301 −0.0172
(0.0019) (0.0082) (0.0108)
−0.0162 0.8991 0.0863
(0.0051) (0.0118) (0.0157)
−0.0008 0.0140 0.9118
(0.0031) (0.0121) (0.0144)


ΦQ =



1 0 0

0 0.9349 0.1055
(0.0004) (0.0011)

0 0 0.9349
(0.0004)


Volatility matrices:

Σ1 =



0.0023 0 0
(0.0000)
−0.0015 0.0020 0
(0.0001) (0.0001)
0.0004 0.0002 0.0027
(0.0001) (0.0001) (0.0001)


Σ2 =



0.0036 0 0
(0.0001)
0.0023 0.0183 0
(0.0020) (0.0008)
−0.0011 −0.0026 0.0078
(0.0008) (0.0008) (0.0006)


Long-run mean parameters:

θL
1 = 0.1354 (0.0388) θL

2 = 0.0484 (0.0300)
θS

1 = −0.0220 (0.0056) θS
2 = −0.0136 (0.0096)

θC = −0.0044 (0.0020)

Probabilities of regime shift:
pL = 0.9561 (0.0164) pQ

L = 0.9725 (0.0094)
qL = 0.9565 (0.0168) qQ

L = 0.9924 (0.0102)
pS = 0.9740 (0.0090) pQ

S = 0.7971 (0.0301)
qS = 0.9649 (0.0125) qQ

S = 0.9587 (0.0227)

Parameters of the drift µQ
k under the risk neutral measure:

µQ,L
1 = 0.0001 (0.0000) µQ,L

2 = 0.0010 (0.0001)
µQ,L

3 = −0.0007 (0.0000) µQ,L
4 = 0.0016 (0.0001)

Log-likelihood: −31844.2634.

Implied market prices of regime shifts and expected regime discount:

Γ =


0.1835 −0.1818 1.9417 1.5764
−2.0733 −0.0104 −0.3151 1.7477
0.6668 0.3015 0.1636 −0.2017
−1.5900 0.4729 −2.0932 −0.0303




∑j π1jΓ1j

∑j π2jΓ2j

∑j π3jΓ3j

∑j π4jΓ4j

 =


0.1461
0.0048
0.1825
0.0411
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Table 4: Model without priced regime shifts

Coefficient matrix on lagged values:

Φ =



0.9952 0.0238 −0.0120
(0.003) (0.007) (0.01)
−0.0280 0.9068 0.1212
(0.007) (0.012) (0.08)
0.0313 0.0579 0.8369
(0.007) (0.013) (0.018)


ΦQ =



1 0 0

0 0.9319 0.1062
(0.0005) (0.0016)

0 0 0.9319
(0.0005)


Volatility matrices:

Σ1 =



0.002 0 0
(0.0000)
−0.0015 0.0024 0
(0.0001) (0.0001)
0.0001 0.0007 0.0029
(0.0001) (0.0001) (0.0001)


Σ2 =



0.0036 0 0
(0.0001)
0.0010 0.0139 0
(0.0011) (0.0009)
−0.0002 0.0038 0.0074
(0.0006) (0.0007) (0.0005)


Long-run mean parameters:

θL
1 = 0.1102 (0.0204) θL

2 = 0.0482 (0.0113)
θS

1 = −0.0153 (0.0044) θS
2 = −0.0071 (0.0075)

θC = −0.0050 (0.0041)

Probabilities of regime switch:
pL = 0.9996 (0.0003)
qL = 0.9345 (0.0043)
qS = 0.9997 (0.0002)
pS = 0.9496 (0.0087)

Parameters of the drift µQ
k under the risk neutral measure:

µQ,L
1 = 0.0004 (0.0000) µQ,L

2 = 0.0009 (0.0001)
µQ,L

3 = −0.0002 (0.0000) µQ,L
4 = 0.0014 (0.0001)

Log-likelihood: −31539.8031.
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Figure 2 shows, in the top panel, the evolution of the level, slope, and curvature
of the yield curve and, in the middle and bottom panels, the separation of regimes
implied by the models. The blue line in the middle panel represents the estimated
smoothed probability of low slope and high volatility (regimes 2 or 4) while the blue
line in the bottom panel is the smoothed probability of high long-run mean (regimes 1 or
2). Likewise, the orange lines in the middle and bottom panels represent the equivalent
smoothed probabilities for the restricted model without priced regime shifts.

The combination of these two possibilities gives rise to the four different regimes:
regime 1 represents periods with high average interest rates, low slope, and low volatil-
ity; regime 2 are periods with high average interest rates, high slope, and high volatility;
regime 3 are periods with low average interest rates, low slope and low volatility; and
regime 4 are periods with low average interest rates, high slope, and high volatility.

The separation of the model with priced regime shifts associates most of the high-
volatility and low-slope regime with recessions, represented by the shaded gray areas
in the plot.9 Both models identify periods with high slope and high volatility (regimes
2 and 4). Moreover, the baseline model also identifies several periods over the entire
sample of high mean for the level factor (regimes 1 and 2). In contrast, the model with-
out priced regime shifts only associates periods of high interest rates with the Volcker
disinflation period between the late 1970s and early 1980s.

As the figure shows, allowing for priced regime shifts (Γjk ̸= 0) affects the estimated
separation of the regimes through the impact that changes in the stochastic discount
factor have on bond prices. To see this, the bottom part of Table 3 shows, in the left,
the impliced matrix of market prices of regime shifts, Γjk and, in the right, the expected
regime switching discount conditional on the current regime st. The table shows that pe-
riods of low slope and high volatility (regimes 1 and 3) have a higher expected discount
than periods with high slope and low volatility (regimes 2 and 4) independently of the
level of the yield curve. Therefore, on average, periods of low slope and high volatility of
the yield curve (regimes 1 and 3) have lower bond prices and, therefore, higher returns,
than periods with high slope and low volatility (regimes 2 and 4).

Since the model with non-priced regime shifts is a special case of the baseline model,
we can use a likelihood ratio test to assess which model is favored by the data. The
model without priced regime shifts has Γjk = 0 for all j, k, which implies that πQ

jk = πjk

for all j, k. This requirement imposes 4 restrictions into the baseline model. Hence,
the likelihood ratio test is distributed as a chi-square with 4 degrees of freedom. Since
the statistic value is 2(31844 − 31539) = 610, we strongly reject the null hypothesis of

9Shaded areas are NBER recessions dates.
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Figure 2: Factors and smoothed probabilities from the baseline pricing model
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Note: The upper panel displays the evolution of the empirical level, slope, and curvature of the
yield curve. The middle panel shows the smoothed probability of low slope and high volatility
regimes for the baseline model and for the model without priced regime shifts. The bottom
panel reports the probability of high long-run mean of the level factor for the baseline model
and for the model without priced regime shifts.
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non-priced regime shifts.

5 Risk premia

The measure of bond risk premia that we use is the expected one-month excess return
of borrowing at the three-month rate to buy an n-period bond and selling it in one
period, which we denote by

Et[xrn] = Et[pn−1
t+1 ]− pn

t − y3
t .

Here, xrn = pn−1
t+1 − pn

t − y3
t is the realized one-month holding return of an n−period

bond in excess of the 3−month interest rate.10 Thus, to estimate bond risk premia,
we need to compute the time-t expected bond price in period t + 1. Computing this
expectation depends critically on the properties of the model used to price the bonds.

We showed previously the empirical relevance of the three main components of our
baseline model: (a) the long-run mean of interest rates and the slope of the yield curve
are subject to occasional discrete shifts, (b) the volatility of the level, slope, and curvature
of the yield curve are also subject to discrete changes, and (c) these discrete changes
in regimes are priced risk factors that affect bond prices. We next analyze how these
components impact the evolution of bond risk premia. Since the estimated risk premia
depends on the properties of the model under consideration, our evidence in favor of
the model with priced regime shifts presumably translates into more reliable measure of
the implied bond risk premium.

Figure 3 shows the estimated evolution of the risk premium of a 1-year bond (top
panel) and of a 5-year bond (middle panel) for the baseline model, the single regime
model, and for the model without priced regime shifts. In addition, the bottom panel
of the figure displays the estimated smoothed probability of low slope and high volatil-
ity regimes from the baseline model together with shaded areas that represent NBER
recessions dates.

Estimated risk premia in the linear model and in the switching model without priced
regime shifts are similar across time and bonds. In fact, this similarity is more evident
when considering long maturity bonds. This observation reflects the fact that, when
computing the expected bond price several years into the future, the Markov regimes
average out and the results resemble those of the single regime model. In contrast, the

10We define the expected excess returns relative to the three-month rate instead of the one-month rate
because that is the shortest maturity bond that we have in our database.
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Figure 3: Factors and smoothed probabilities from the baseline pricing model
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Note: The upper panel displays the 1-month expected holding return of a 1-year bond in excess
of the return of a 3-month bond. The middle panel the 1-month expected return of holding
a 5-year bond in excess of that of a 3-month bond. The bottom panel displays the smoothed
probability of low slope and high volatility regimes for the baseline model.
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estimated risk premium in the baseline model with priced regime shifts is substantially
different, both quantitatively and qualitatively, from those of the other two models, a
difference that is more stricking for long-maturity bonds. In particular, we observe to
important differences between the models. The first is that the estimated risk premium
in the baseline economy is, on average, larger than that of the other models for long-
maturity bonds. The second observation is that the estimated risk premia in the linear
model and in the model without priced regime shifts are more volatile than that of the
baseline economy during recessions. While the estimated risk premium in the first two
models is subject to sudden and long swings, which seem to be particularly stricking
at the end of recessions, the measure of risk premia in the baseline model moves less
abruptly and in a tighter range. In effect, there are periods in which the risk premium
barely moves in the baseline economy. Finally, note that periods of high volatility and
low slope, which often coincide with recessions, are also periods in which the bond
holding risk premium is low and typically negative, meaning that recessions tend to be
periods in which holding short maturity bonds seems to be riskier than holding long
maturity bonds.

To isolate the contribution of the different components of the stochastic discount fac-
tor (5) to the expected risk premium, we construct a counterfactual pricing model in
which we set to zero the price of regime switching risk (by setting Γst,st+1 = 0, ∀st, st+1)
but keep the other estimated parameters of the baseline model. We fix the other param-
eters of the baseline economy to compute the partial effect of the market price of regime
shifts on bond risk premia.11 We denote by Et[xrn

t+1,t|Γ = 0] the expected excess return of
an n−period bond in the counterfactual economy that does not price regime shifts. We
interpret this expected excess return as capturing the contribution of the Xt risk factors
on bond risk premia ignoring the contribution of the priced regime switching risks.

Figure 4 shows the spread between the risk premia of holding a ten-year bond and
the risk premia of holding a six-month bond for the baseline economy and for the coun-
terfactual economy without priced regime shifts, along with the slope of the yield curve.
We draw two insights from this figure. First, movements of the spread in expected hold-
ing returns are much more prominent for the baseline model than for the counterfactual
economy. In a risk-neutral world, the spread is zero. In the counterfactual economy only
the risk factors Xt are priced while in the baseline economy we consider all the priced
risks. And second, the slope mimics the evolution of the spread of the risk premia for

11Had we used the estimated model with Γij = 0, we would be confounding the impact of the market
price of regime shifts with the fact that all the other estimated parameters, such as those that determine
the evolution of the stochastic process for Xt, and the separation of the regimes, would be different from
those of the baseline economy.
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the baseline model, which reinforces the insight that holding short-term bonds is riskier
in recession when, the yield curve is inverted.

Figure 4: Slope factor and spread of expected returns of a 10-year and a 6-month bond
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Note: The figure shows 10 times the slope of the yield curve (in blue) and the spread between
the expected 1-month return of holding a 10-year bond in excess of the return of a 6-month
bond both for the baseline model (in blue) and for the counterfactual economy with non-priced
regime shifts (in orange).

To further analyze the difference in risk premia during volatile or calm times, we
show in Figure 5 the term structure of the estimated bond holding risk premia on four
different dates. The left panels show the term structure evaluated at dates of high volatil-
ity while the right panels show two periods of low volatility. In the baseline model,
during volatile times, the premium is mostly negative or close to zero, an observation
that does not hold in the linear model. In contrast, in periods of low volatility the pre-
mium tend to increase with the bond maturity while the shape of the curve using the
counterfactual economy or the linear model is quite different.

5.1 Time varying risk premia and the macroeconomy

In this section, we investigate the relation between bond risk premia and macroeco-
nomic fundamentals. Traditional term structure models usually do not take a stance on
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Figure 5: Cross section of bond holding risk premia

0 20 40 60 80 100 120

Maturity (months)

-10

-5

0

5

R
is

k 
pr

em
iu

m

0 20 40 60 80 100 120

Maturity (months)

-5

0

5

10

15
R

is
k 

pr
em

iu
m

0 20 40 60 80 100 120

Maturity (months)

-5

0

5

10

R
is

k 
pr

em
iu

m

0 20 40 60 80 100 120

Maturity (months)

-3

-2

-1

0

1

2

3

R
is

k 
pr

em
iu

m

Baseline model
Counterfactual non-priced shifts
Linear

Note: The figure shows the term structure of bond-holding risk premia as a function of the bond
maturity for selected dates. The different lines represent the cross section of risk premia for the
baseline economy (in blue), for the counterfactual economy without priced shifts (orange) and
for the linear model (green).

the relationship between bond yields and macroeconomic variables (but see, for exam-
ple, Ang and Piazzesi (2003) and Diebold, Rudebusch and Aruoba (2006) which include
macro variables as risk factors). Yet, the ultimate goal of the literature is to relate yields
and risk premia to macroeconomic fundamentals. As Duffee (2011) put it: “the Holy
Grail of the term structure liturature is a testable, intuitive model linking yields to fundamental
macroeconomic forces.”

We find that measures of bond risk premia derived from the baseline model with
priced regime shifts are highly correlated with inflation and with an indicator of eco-
nomic activity, such as the cyclical component of industrial production or unemploy-
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ment.12 Predictive regressions for expected excess bond returns derived from the base-
line model on these macroeconomic variables yield highly significant coefficients with
R2 as high as 0.30 for longer maturity bonds. In contrast, the same regressions for the
single regime model and for the regime switching model without priced regime shifts
yield much lower R2s and less significant coefficients.

Table 5 show the results of the predictive regressions for expected one month excess
bond holding returns on inflation and the cyclical component of industrial production.13

Each column show the regression results for bonds of different maturities, measured
in months. Inflation is the year-on-year log-difference in the consumer price index.14

As for the cyclical component of industrial production, we subtract from each series
its trend component following the procedure suggested by Hamilton (2018).15 The table
show results for the linear single-regime model, for the model with regime switching but
in which regime shifts are non-priced, and for the baseline model with priced regime
shifts. For the single regime model, the link between expected excess returns and the
macroeconomic variables is tenuous, a well-known finding in the literature (Duffee, 2011,
2013). In all cases, macro variables explain at most 10% of the variation of expected
excess returns across maturities and the only significant predictor for excess returns is
industrial production for long-maturity bonds. In the model with regime switching but
non-priced regime shifts none of the macroeconomic variables are statistically significant
although the R2 are somewhat larger than in the linear model. In contrast, the baseline
model with priced regime shift show highly significant coefficients, especially for bonds
of medium to long maturities. Increases in both, industrial production and inflation are
negatively correlated with expected excess holding returns, with R2s as high as 0.31 for
one-month holding returns. Thus, expected excess returns tend to be countercyclical,
decreasing when both, inflation and industrial production are above trend.

12Andreou et al. (2017) show that industrial production is strongly correlated with overall business
cycle conditions.

13In Appendix B we show the results of using the unemployment rate as the measure of economic
activity.

14Using the deflator for personal consumption expenditures gives similar results.
15The trend component is defined by a regression of the variable at date t on its four most recent values.
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Table 5: Expected excess log-holding returns and macroeconomic fundamentals

6 12 24 36 48 60 72 84 96 108 120

Single regime

Industrial production -0.012∗ -0.024 -0.046 -0.070 -0.095∗ -0.121∗ -0.149∗∗ -0.177∗∗ -0.205∗∗ -0.233∗∗ -0.261∗∗∗

(0.006) (0.015) (0.031) (0.044) (0.055) (0.063) (0.071) (0.078) (0.085) (0.092) (0.099)
Inflation 0.033∗ 0.024 -0.051 -0.132 -0.200 -0.255 -0.302 -0.343 -0.383 -0.421 -0.458

(0.019) (0.043) (0.093) (0.136) (0.171) (0.202) (0.229) (0.255) (0.280) (0.305) (0.330)
R2 0.103 0.043 0.030 0.044 0.055 0.064 0.070 0.076 0.080 0.083 0.086

RS No Priced Risk

Industrial production -0.007 -0.019 -0.048 -0.077 -0.105 -0.131 -0.157 -0.183 -0.209 -0.236 -0.264
(0.006) (0.015) (0.038) (0.058) (0.075) (0.087) (0.098) (0.108) (0.117) (0.127) (0.137)

Inflation 0.056 0.015 -0.194 -0.408 -0.576 -0.705 -0.810 -0.903 -0.992 -1.083 -1.179
(0.017) (0.041) (0.104) (0.163) (0.212) (0.251) (0.286) (0.319) (0.351) (0.384) (0.419)

R2 0.213 0.032 0.099 0.161 0.187 0.198 0.202 0.204 0.205 0.206 0.208

RS with Priced Risk

Industrial production 0.000 -0.011 -0.048 -0.095∗∗ -0.144∗∗ -0.193∗∗∗ -0.238∗∗∗ -0.280∗∗∗ -0.317∗∗∗ -0.351∗∗∗ -0.381∗∗∗

(0.006) (0.014) (0.030) (0.045) (0.059) (0.073) (0.086) (0.099) (0.111) (0.123) (0.134)
Inflation 0.022 -0.014 -0.156∗∗ -0.348∗∗∗ -0.562∗∗∗ -0.784∗∗∗ -1.008∗∗∗ -1.230∗∗∗ -1.447∗∗∗ -1.658∗∗∗ -1.864∗∗∗

(0.015) (0.036) (0.080) (0.124) (0.166) (0.208) (0.248) (0.288) (0.326) (0.363) (0.399)
R2 0.043 0.010 0.089 0.157 0.204 0.237 0.261 0.279 0.294 0.305 0.315

Notes: This table reports linear regressions of the expected log-holding return in excess of the 3-month rate at different maturities for
the single regime model (upper panel), the model with regime switching but non-priced regime shifts (middle panel), and the baseline
model with priced regime shifts (bottom panel). For each regressor we report in parenthesis HAC standard errors following the bootstrap
procedure proposed by Bauer and Hamilton (2017). ∗∗∗/∗∗/∗ denote significant at the 1/5/10% level.
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To investigate the source of the variation in expected excess returns, we next analyze
the relationship between the macroeconomic variables and key objects in the model that
determine bond risk premia, such as the expected market price of regime shifts, given
by Et[Γst,st+1 ], and the expected market price of the Xt risk factors, captured by Et[Λ

st+1
t ].

In both cases, the expectations are conditional on the information available up until time
t, which we compute using the estimated filtered probability distributions obtained as
a by-product of the filtering step used to evaluate the likelihood function. In particular,
given the estimates of the model, data up until time t, Y t, and the filtered probability of
the unobserved state st, Pr

(
st|Y t), we compute

Et[Γst,st+1 ] =∑
st

Pr
(
st|Y t) ∑

st+1

πstst+1Γst,st+1 ,

Et[Λ
st+1
t ] =∑

st

Pr
(
st|Y t) ∑

st+1

πstst+1

(
λ

st+1
0 + λ

st+1
1 Xt

)
.

To avoid clutter, in what follows we use the previous expressions but always noting that
the parameters (πij, Γij and so on) are all evaluated at their estimated values.

We analyze first the expected market price of regime shift Et[Γst,st+1 ]. Table 6 show
regression results of the expected price of regime shift on the cyclical component of in-
dustrial production and inflation, in the first column, and on the cyclical component of
unemployment and inflation, in the second column. In both regressions, the macroeco-
nomic variables are highly significant and explain a large fraction, of the order of 30%,
of the variability in the expected price of regime shifts over time.

Table 6: Expected price of regime switch and macro fundamentals

EtΓ(st, st+1) EtΓ(st, st+1)

Ind. Prod. 0.081∗∗∗ Unemp. -0.023∗∗∗

(0.017) (0.005)
Inflation -0.094∗∗∗ Inflation -0.084∗∗

(0.030) (0.034)
R2 0.298 R2 0.304

Notes: This table reports linear regressions of EtΓ(st, st+1) and macroeconomic funda-
mentals. For each regressor we report (in parenthesis) HAC standard errors. ∗∗∗/∗∗/∗

denote significant at 1/5/10% level.

In Figure 6 we show the estimated evolution of Et[Γst,st+1 ] (solid line) together with
the fitted values of the regression of the expected market price of regime shifts on the
cyclical component of industrial production and inflation (dashed line) and the fitted
value using as correlates the cyclical component of unemployment and inflation. The
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expected market price of regime shifts is strongly procyclical and a linear combination
of the two macroeconomic fundamentals can explain almost a third of its variation.
In addition, the series EtΓ(st, st+1) tend to have its lowest values in the recessions or
immediately after.

Figure 6: Expected price of regime shifts and macro fundamentals
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Notes: EtΓ(st, st+1) (continuous line) and fit associated with macroeconomic funda-
mentals, industrial production and inflation (broken line) and unemployment and in-
flation (dotted line). Shadow areas are NBER recessions.

These results show that the expected discounting due to possible changes in regimes
are highly correlated with macroeconomic fundamentals. These regressions suggest that
investors apply a higher discount due to switching risk when the economy is booming
(as captured by the cyclical component of industrial production or unemployment) and
a lower discount when inflation is higher. One possible explanation for this result is that,
in periods when the return to real projects is low, the expected return of holding a bond
is also low, which is reflected in a low value of the regime-specific risk. Those periods
are, in turn, associated with high volatility and a low slope of the yield curve.

To isolate the contribution of the different components of the stochastic discount
factor (5) to the expected risk premium, we not only consider the counterfactual pric-
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ing model Et[xrn
t+1,t|Γ = 0] defined above but also the difference in expected excess

returns between the baseline economy and the counterfactual economy, Et[xrn
t+1,t] −

Et[xrn
t+1,t|Γ = 0], as the contribution of discounting the priced regime switching risk on

bond risk premia.
In the top panel of Table 7 we show the results of a regression of Et[xrn

t+1,t|Γ = 0]
for different maturities n on the macroeconomic fundamentals. We find that, for all the
maturities that we consider, the macroeconomic variables are strongly correlated with
the expected excess returns: higher inflation and a lower cyclical component of industrial
production are both associated with a lower risk premium when setting Γij = 0. Contrast
these results with those in the middle panel of Table 5, which show no statistically
significant coefficient on any regression. Since the results in the top panel of Table 7
only sets Γij = 0 but keeps all the other parameters at their baseline values, we interpret
the lack of statistically significance of the coefficients in the middle panel of Table 5
as reflecting the importance of including pricing regime shifts in the model. Once we
include an explicit discounting for regime shift risks, we obtain that the variability in
expected excess returns due to fluctuations in the risk factors Xt are highly correlated
with macroeconomic fundamentals.

The bottom panel of Table 7, which shows that the component of expected excess
returns that are partialed out from the market price of switching risk, show that the
component Et[xrn

t+1,t]− Et[xrn
t+1,t|Γ = 0] remain strongly related to inflation, particularly

so for long maturity bonds, in which case macroeconomic fundamentals explain almost
25% of its variation. This result suggests that the discounting due to switching risk
is mostly reflecting the impact that inflation has on the price of long maturity bonds
besides that captured by fluctuations in the traditional level, slope, and curvature factors,
as summarized by the results in the top panel of Table 7.
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Table 7: Price of regime switch and macro fundamentals

6 12 24 36 48 60 72 84 96 108 120
Et[rxh

t+1,t|Γ(st, st+1) = 0]

Industrial production -0.006∗∗∗ -0.020∗∗∗ -0.054∗∗∗ -0.090∗∗∗ -0.126∗∗∗ -0.161∗∗∗ -0.192∗∗∗ -0.219∗∗∗ -0.240∗∗∗ -0.256∗∗∗ -0.266∗∗∗

(0.002) (0.005) (0.013) (0.022) (0.033) (0.043) (0.053) (0.062) (0.070) (0.076) (0.081)
Inflation -0.020∗∗∗ -0.048∗∗∗ -0.110∗∗∗ -0.197∗∗∗ -0.304∗∗∗ -0.422∗∗∗ -0.540∗∗∗ -0.649∗∗∗ -0.746∗∗∗ -0.827∗∗∗ -0.894∗∗∗

(0.004) (0.010) (0.026) (0.045) (0.066) (0.088) (0.109) (0.128) (0.145) (0.158) (0.168)
R2 0.262 0.235 0.224 0.228 0.235 0.242 0.247 0.252 0.256 0.260 0.264

Etrxh
t+1,t − Et[rxh

t+1,t|Γ(st, st+1) = 0]

Industrial production 0.006 0.009 0.006 -0.005 -0.018 -0.032 -0.046 -0.061 -0.077 -0.095 -0.115
(0.006) (0.012) (0.024) (0.033) (0.040) (0.046) (0.052) (0.058) (0.064) (0.071) (0.078)

Inflation 0.043∗∗∗ 0.035 -0.047 -0.151 -0.258∗ -0.363∗∗ -0.469∗∗∗ -0.581∗∗∗ -0.701∗∗∗ -0.831∗∗∗ -0.970∗∗∗

(0.014) (0.033) (0.071) (0.104) (0.133) (0.158) (0.182) (0.206) (0.230) (0.255) (0.281)
R2 0.161 0.029 0.013 0.055 0.095 0.128 0.156 0.181 0.204 0.225 0.244

Notes: This table reports linear regressions of the a decomposition of expected log-holding return in excess of the short rate at different
maturities. For each regressor we report (in parenthesis) HAC standard errors following the boostrap procedure proposed by Bauer and
Hamilton (2017). ∗∗∗/∗∗/∗ denote significant at the 1/5/10% level. ∗∗∗/∗∗/∗ denote significant at 1/5/10% level.
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We now turn to the analysis of fluctuations in the variable Λst+1
t of the stochastic

discount factor (5). In the standard affine model of bond prices, the risk premium is a
function of the state variables driving fluctuations in Λt, which is an affine function of
the Xt factors (as in equation (6)) independent of the regime variable st+1. In contrast,
in our baseline model changes in regime also affect the way that innovations to the risk
factors Xt discount bond prices. In what follows we analyze to what extent the expected
market price of Xt risk, Et

[
Λst+1

t
]
, is related to the macroeconomic fundamentals. In

particular, Λst+1
t is a time-varying 3 × 1 vector that capture how innovations to the level,

slope, and curvature factors ϵt+1 =
(
ϵL

t+1 ϵS
t+1 ϵC

t+1
)′ in equation (3) affect the stochastic

discount factor (5) through the term

−Λst+1′
t ϵt+1 = −

[
Λst+1

L,t Λst+1
S,t Λst+1

C,t

] ϵL
t+1

ϵS
t+1

ϵC
t+1

 .

In the left panel of Table 8 we show regression results of the expected market prices
of risk Et[Λ

st+1
j,t ] for j ∈ {L, S, C} on the cyclical component of industrial production

and inflation.16 The expected market prices of shocks to the level and slope factors are
negatively correlated to inflation, whereas the expected market price of the curvature
factor is positively related to the business cycle, displaying a marked procyclicality. Yet,
these macroeconomic factors only account for a limited fraction of their variability as
evidenced by the R2s of the regressions, contrasting with the results in Table 5 and
Table 7, pointing to macroeconomic factors as key drivers of expected excess returns.

Table 8: State dependent factors risk and macro fundamentals

EtΛ
st+1
L,t EtΛ

st+1
S,t EtΛ

st+1
C,t Λ̄L,t Λ̄S,t Λ̄C,t EtΛ

st+1
L,t − Λ̄L,t EtΛ

st+1
S,t − Λ̄S,t EtΛ

st+1
C,t − Λ̄C,t

Ind. Prod. -0.196 -0.112 0.285∗∗∗ -0.906∗∗ 0.494 0.172∗∗∗ 0.710∗∗∗ -0.607 0.113
(0.353) (0.541) (0.095) (0.375) (0.375) (0.039) (0.165) (0.380) (0.098)

Inflation -2.555∗∗∗ -2.405∗ 0.190 -4.907∗∗∗ 3.354∗∗∗ 0.133 2.352∗∗∗ -5.759∗∗∗ 0.058
(0.710) (1.348) (0.246) (0.854) (1.119) (0.110) (0.621) (0.769) (0.283)

R2 0.115 0.053 0.084 0.320 0.157 0.133 0.264 0.474 0.018

Notes: This table reports linear regressions of EtΛj,t, Λ̄j,t and EtΛ
st+1
j,t − Λ̄j,t where j = Level, Slope

and Curvature. For each regressor we report (in parenthesis) HAC standard errors following the
boostrap procedure proposed by Bauer and Hamilton (2017). ∗∗∗/∗∗/∗ denote significant at the
1/5/10% level. ∗∗∗/∗∗/∗ denote significant at 1/5/10% level.

To interpret these results, we decompose the variation in Et[Λ
st+1
j,t ] in two components.

A first component that represents an average time-varying market price of factor risk that

16Appendix B contain similar regressions using the cyclical component of unemployment instead.
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is computed by averaging the estimated parameters λ
st+1
0 and λ

st+1
1 in equation (6) using

the steady-state probabilities of the Markov chain (2).17 We interpret this component,
which we denote by Λ̄j,t, as isolating the impact of variations in Xt on Et[Λ

st+1
j,t ]. The

second component is given by Et[Λ
st+1
j,t ]− Λ̄j,t, which represents the impact that changes

in the Markov regimes has on the expected market prices of risk Et[Λ
st+1
j,t ] over time. The

results of the decomposition are shown in the middle and right panels of Table 8.18

The results of these regressions show that decomposing Et[Λ
st+1
j,t ] into these two com-

ponents is critical to uncover the link of the expected market prices of risk to the macroe-
conomic fundamentals. For instance, the macro variables explain roughly 10% of the
variation in the expected market price of the level factor, Et[Λ

st+1
L,t ], which is mainly as-

sociated with the contribution of inflation. Yet, this result masks a much stronger link
between Λ̄L,t and Et[Λ

st+1
L,t ]− Λ̄L,t and the macroeconomic variables, which account for

more than 30% and 25% of their variation, respectively. The macroeconomic variables
tend to have an opposite effect on each component that partially offsets each other and
weakens, or even eliminates, the link between the macro variables and the total variation
in the expected market price of the level factor risk Et[Λ

st+1
L,t ]. We find that an increase

in the cyclical component of industrial production reduces the sensitivity of the average
market price of level risk, Λ̄L,t, but increase the sensitivity due to possible changes in
regimes, represented by Et[Λ

st+1
L,t ]− Λ̄L,t. A similar result is found for an increase in in-

flation. As for the market price of the slope factor, there is no estatistical evidence that
industrial production changes the sensitivity to slope shocks, but inflation does, again,
with effects of opposite signs on Λ̄S,t and Et[Λ

st+1
S,t ]− Λ̄S,t. Finally, the increase in the sen-

sitivity to innovations in the curvature factor on Et[Λ
st+1
C,t ] seems to come, for the most

part, from its impact on the average component Λ̄C,t.

6 Concluding remarks

Interest rates are subject to occasional changes over time: periods of high interest
rates and inverted yield curves are inherently different from other periods. Aware of the
possibility of sudden changes in the environment, investors will seek compensation for
the risks associated with those changes. We develop an arbitrage-free model of the term
structure of interest rates with priced regime shifts and find strong evidence that regime
shifts are an essential determinant of bond excess returns.

17That is, Λ̄t = ∑4
s=1 π̄s(λs

0 + λs
1Xt), where π̄s is the steady-state probability of regime s ∈ {1, 2, 3, 4}.

18Since Et[Λ
st+1
j,t ] = Λ̄j,t + (Et[Λ

st+1
j,t ]− Λ̄j,t), adding the coefficients in the middle and right panels of

the table gives the coefficients of the regression in the left panel.
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When estimating the arbitrage-free model, we allow for separate regimes character-
izing the yield curve’s level and slope factors. In our model, regimes in the level factor
align well with the monetary policy tightening cycles, whereas the slope factor regime
roughly identifies contractions in economic activity. As a result, the regime we uncover
reflects the combined properties of the level and slope factors, which cannot be recovered
by a linear combination of the yield curve factors. Therefore, the priced regime depends
on the state of the business cycle and the monetary policy regime.

We decompose risk premia and investigate its sources of variation. We found that a
measure of market price of regime-switching risk tracks the macroeconomic conditions.
It has its lowest values in recessions and is strongly related to the macroeconomic funda-
mentals. We also found that the same macro variables are also related to the market price
of risk of the traditional risk factors once we allow for priced regime shifts. The strong
relationship between bond risk premia and macroeconomic fundamentals is inherently
related to the nonlinearity arising from the price of regime switching. Allowing for a
component of the risk premium that reflects the risk in shifting regimes increases the
overall volatility of bond risk premia and uncovers the relationship to macroeconomic
fundamentals. Expected excess returns in our model are countercyclical, decreasing
when inflation and industrial production are above trend. Combining two macro indi-
cators explains almost a third of the variation in one-month expected excess returns.

As Ludvigson and Ng (2009) point out, while business cycle variations are critical to
explain excess bond returns, traditional factor models are unable to capture this relation.
An essential aspect of our findings is that the business cycle variation in expected excess
bond returns is revealed in the yield curve once correctly accounting for and pricing
regime shifts. Our baseline model shows that the information in bond yields is enough
to uncover countercyclical, business cycle variation in bond risk premia.
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Appendix A Details of the model

This appendix fills in the details of the model presented in Section 3 and provides
the proof of the approximate log-linear solution for bond prices.

As noted in the text, the pricing equation for zero-coupon bonds can be written as

Pn+1
t,j = e−rt

S

∑
k=1

πjke−Γjk− 1
2 Λk′

t Λk
t E
[
e−Λk′

t ϵt+1 Pn
t+1,k|st = j, st+1 = k, Xt

]
. (A.1)

Using the log-linear guess for the bond price Pn
t,j = eAn

j +Bn′
j Xt we can write the expectation

on the right hand side of the previous expression as

Et

[
e−Λk′

t εt+1 Pn
t+1,k|st = j, st+1 = k

]
= Et

[
e−Λ′

tεt+1eAn
k+Bn′

k Xt+1 |st = j, st+1 = k
]

= eAn
k+Bn′

k (µk−Σkλk
0)+

1
2 Λ′

tΛt+
1
2 Bn′

k ΣkΣ′
kBn

k +Bn′
k (Φk−Σkλk

1)Xt .

Replacing this expression into equation (A.1) and defining

Fn
k ≡ An

k + Bn′
k µQ

k +
1
2

Bn′
k ΣkΣ′

kBn
k ,

µQ
k ≡ µk − Σkλk

0,

ΦQ
k ≡ Φk − Σkλk

1,

πQ
jk ≡ πjke−Γjk ,

we can write the pricing equation as

Pn+1
t,j = e−rt

S

∑
k=1

πQ
jkeFn

k +Bn′
k ΦQ

k Xt .

Using the guess (8) implies

eAn+1
j +Bn+1′

j Xt = e−rt
S

∑
k=1

πQ
jkeFn

k +Bn′
k ΦQ

k Xt ,

and taking logs on both sides of the equation gives

An+1
j + Bn+1′

j Xt = −rt + log

(
S

∑
k=1

πQ
jkeFn

k +Bn′
k ΦQ

k Xt

)
. (A.2)

To find the approximate solution, we perform a first order Taylor approximation to
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the last term on the right hand side of the previous equation. To that end, let

f n
j (Xt) ≡ log

(
S

∑
k=1

πQ
jkeFn

k +Bn′
k ΦQ

k Xt

)
. (A.3)

This expression depends on the bond maturity n, the current regime st = j, and the risk
factors Xt. We perform a first order Taylor approximation of f n

j (Xt) around the (state-
dependent) long-run mean of the risk factors Xt = µ̄j ≡ (I − Φj)

−1µj given the current
state st = j:

f n
j (Xt) ≈ f n

j (µ̄j) + (Xt − µ̄j)
′∇ f n

j (µ̄j).

We need to compute the vector of derivatives ∇ f n
j (Xt) and evaluate it at Xt = µ̄j.

The Taylor approximation is

f n
j (Xt) ≈ log

(
S

∑
k=1

πQ
jkeFn

k +Bn′
k ΦQ

k Xt

)
+ (Xt − µ̄j)

′hn
j , (A.4)

where

hn
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1 Bn
1 ΦQ′
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We now prove the previous claim.

Proof of the Taylor approximation.
Let I be a natural number, x = (x1, x2, ..., xI)

′ ∈ ℜI and βk = (βk1, βk2, ..., βkI)
′ ∈ ℜI

for k = 1, . . . , S. Consider a function h : ℜI → ℜ given by

h (x) ≡ log

(
S

∑
k=1

αkeβ′
kx

)
.

The partial derivative of h(x) with respect to xi is

∂h (x)
∂xi
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for l = 1, 2, ..., S, we can write the partial derivative as

∂h (x)
∂xi

=
[

η1 η2 · · · ηS
]


β1i
β2i
...

βSi


= β̃′

iη

Therefore, the gradient of h(x) is given by

∇h (x) =


β̃′

1
β̃′

2
...

β̃′
I

 η,

or

∇h (x) =


β11 β21 · · · βS1
β12 β22 · · · βS2

... . . . ...
β1I β2I · · · βSI

 η

= Bη.

where
B =

[
β1 β2 · · · βS

]
.

We now put these expressions in terms of the notation of the bond pricing model.
The function h(x) is replaced by

f n
j (Xt) = log

(
S

∑
k=1

πjkeFn
jk+Bn′

k Φ∗
jkXt

)

for j = 1, . . . , S. The mapping between the model’s notation and that of the Taylor
approximation above is

αj,k = πQ
jkeFn

k ,

β′
k = Bn′

k ΦQ
k ,

x = Xt.

Note that we are also indexing the parameter αj,k by the current state j = 1, . . . , S. Then,

ηjk,t =
πQ

jkeFn
k +Bn′

k ΦQ
k Xt

∑S
h=1 πQ

jheFn
h +Bn′

h ΦQ
h Xt
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so that
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Also,
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Then,
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.

After all this algebra, we conclude that

∇ f n
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.

Evaluating this expression at the point Xt = µ̄j and letting ∇ f n
j (µ̄j) ≡ hn

j , we have

hn
j =

[
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This concludes the proof of the Taylor approximation formula.□

Now, plugging the short-rate equation (4) and the Taylor approximation (A.4) into
the pricing equation (A.2) yields

An+1
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Matching coefficients, we have that the parameters An+1
j and Bn+1

j satisfy the recursions

An+1
j =− δ

j
0 −

(
hn

j

)′
µ̄j + log

(
S

∑
k=1

πjkeFn
jk+Bn′

k Φ∗
jkµ̄j

)
(A.5)

Bn+1
j =hn

j − δ
j
1,

for j = 1, . . . , S. The recursion starts with A0
j = 0 and B0

j = 0 for all j = 1, . . . , S.
Note that, in this case, F0

jk = −Γjk, which implies

log

(
S

∑
k=1

πjkeF0
jk+Bn′

0 Φ∗
jkµ̄j

)
= log

(
S

∑
k=1

πjke−Γjk

)
.

For the model to price correctly the short rate, we must have log
(

∑S
k=1 πjke−Γjk

)
= 0,

which imposes the restriction
S

∑
k=1

πjke−Γjk = 1. (A.6)

This restriction, of course, is that the risk-neutral probabilities of the Markov chain,
defined as

πQ
jk ≡ πjke−Γjk ,

add up to 1 for all j = 1, . . . , S. In addition, h0
j = 0. Hence, starting the recursion with

A0
j = 0 and B0

j = 0 and imposing the restriction (A.6) implies that, for n = 0, we have

A1
j = 0 and B1

j = δ
j
1, which is consistent with the short-rate equation (4) for all j.

Appendix B Additional Results

Tables 9-11 replicate the analysis in Section 5.1 using the rate of unemployment as
the business cycle indicator in the place of industrial production.
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Table 9: Expected excess log-holding return and macroeconomic fundamentals

6 12 24 36 48 60 72 84 96 108 120

1 Regime

Unemp. 0.005∗∗ 0.009∗∗ 0.016∗∗ 0.024∗∗ 0.033∗∗ 0.043∗∗ 0.053∗∗∗ 0.064∗∗∗ 0.075∗∗∗ 0.086∗∗∗ 0.097∗∗∗

(0.002) (0.004) (0.009) (0.013) (0.015) (0.018) (0.020) (0.022) (0.024) (0.026) (0.029)
Inflation 0.029 0.018 -0.061 -0.147 -0.220 -0.282 -0.336 -0.386 -0.433 -0.479 -0.525

(0.020) (0.046) (0.097) (0.141) (0.178) (0.210) (0.239) (0.266) (0.293) (0.319) (0.346)
R2 0.140 0.066 0.044 0.057 0.072 0.085 0.097 0.107 0.116 0.124 0.130

RS with Priced Risk

Unemp. 0.000 0.003 0.016 0.031∗∗ 0.048∗∗ 0.064∗∗∗ 0.079∗∗∗ 0.093∗∗∗ 0.106∗∗∗ 0.118∗∗∗ 0.129∗∗∗

(0.002) (0.005) (0.010) (0.015) (0.019) (0.024) (0.028) (0.032) (0.036) (0.039) (0.043)
Inflation 0.023 -0.015 -0.165∗ -0.365∗∗∗ -0.588∗∗∗ -0.820∗∗∗ -1.053∗∗∗ -1.284∗∗∗ -1.509∗∗∗ -1.727∗∗∗ -1.940∗∗∗

(0.016) (0.039) (0.086) (0.132) (0.177) (0.221) (0.263) (0.304) (0.344) (0.383) (0.420)
R2 0.043 0.011 0.099 0.173 0.225 0.260 0.286 0.305 0.320 0.332 0.342

Notes: This table reports linear regressions of the expected log-holding return in excess of the short rate at different
maturities for a single regime model (1 Regime, upper panel) and the baseline model with regime switching and priced
regime risk (RS with Priced Risk, lower panel). For each regressor we report (in parenthesis) HAC standard errors.
∗∗∗/∗∗/∗ denote significant at 1/5/10% level.
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Table 10: Price of regime switch and macro fundamentals

6 12 24 36 48 60 72 84 96 108 120
Et[rxh

t+1,t|Γ(st, st+1) = 0]

Unemp. 0.002∗∗∗ 0.006∗∗∗ 0.016∗∗∗ 0.027∗∗∗ 0.038∗∗∗ 0.048∗∗∗ 0.057∗∗∗ 0.065∗∗∗ 0.072∗∗∗ 0.076 0.079∗∗∗

(0.001) (0.002) (0.004) (0.007) (0.010) (0.013) (0.016) (0.019) (0.021) (0.023) (0.024)
Inflation -0.021∗∗∗ -0.051∗∗∗ -0.117∗∗∗ -0.208∗∗∗ -0.321∗∗∗ -0.443∗∗∗ -0.565∗∗∗ -0.678∗∗∗ -0.777∗∗∗ -0.860∗∗∗ -0.928∗∗∗

(0.004) (0.011) (0.027) (0.047) (0.069) (0.092) (0.114) (0.133) (0.150) (0.164) (0.175)
R2 0.272 0.248 0.239 0.242 0.248 0.254 0.259 0.263 0.267 0.270 0.273

Etrxh
t+1,t − Et[rxh

t+1,t|Γ(st, st+1) = 0]

Unemp. -0.002 -0.003 -0.001 0.004 0.010 0.016 0.022 0.028∗ 0.035∗ 0.042∗∗ 0.050∗∗

(0.002) (0.004) (0.007) (0.010) (0.012) (0.013) (0.015) (0.016) (0.018) (0.020) (0.022)
Inflation 0.044∗∗∗ 0.036 -0.048 -0.157 -0.268∗∗ -0.378∗∗ -0.489∗∗∗ -0.606∗∗∗ -0.731∗∗∗ -0.867∗∗∗ -1.012∗∗∗

(0.015) (0.034) (0.073) (0.107) (0.137) (0.163) (0.187) (0.211) (0.235) (0.261) (0.287)
R2 0.166 0.030 0.012 0.057 0.101 0.138 0.170 0.198 0.223 0.247 0.268

Notes: This table reports linear regressions of the a decomposition of expected log-holding return in excess of the
short rate at different maturities. For each regressor we report (in parenthesis) HAC standard errors. ∗∗∗/∗∗/∗ denote
significant at 1/5/10% level.
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Table 11: State dependents factors risk and macro fundamentals

EtΛ
st+1
1,t EtΛ

st+1
2,t EtΛ

st+1
3,t Λ̄1,t EtΛ̄2,t Λ̄3,t EtΛ

st+1
1,t − Λ̄1,t EtΛ

st+1
2,t − Λ̄2,t EtΛ

st+1
3,t − Λ̄3,t

Unemp. -0.009 0.078 -0.092∗∗∗ 0.257∗∗ -0.143 -0.055∗∗∗ -0.266∗∗∗ 0.222∗ -0.038
(0.092) (0.193) (0.033) (0.108) (0.115) (0.012) (0.048) (0.120) (0.028)

Inflation -2.466∗∗∗ -2.496∗ 0.240 -5.004∗∗∗ 3.412∗∗∗ 0.161 2.538∗∗∗ -5.908∗∗∗ 0.079
(0.689) (1.465) (0.275) (0.869) (1.155) (0.110) (0.644) (0.792) (0.294)

R2 0.112 0.056 0.108 0.320 0.157 0.166 0.336 0.492 0.025

Notes: This table reports linear regressions of EtΛj,t, Λ̄j,t and EtΛ
st+1
j,t − Λ̄j,t where j = Level, Slope

and Curvature. For each regressor we report (in parenthesis) HAC standard errors following the
bootstrap procedure proposed by Bauer and Hamilton (2017). ∗∗∗/∗∗/∗ denote significant at the
1/5/10% level. ∗∗∗/∗∗/∗ denote significant at 1/5/10% level.
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