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Abstract

This paper develops an optimal portfolio allocation model for an investor with quantile
preferences, i.e., who maximizes the ⌧-quantile of the portfolio return. Quantile preferences
allow to study heterogeneity in individuals’ portfolio choice and have a solid axiomatic
foundation. We derive conditions under which the optimal portfolio allocation problem has
an interior solution guaranteeing diversification and conditions under which the portfolio
allocation is characterized by two regions: full diversification for quantiles below the median
and no diversification for upper quantiles. These results are illustrated via simulation and
empirically with a portfolio of cash, a stock index and a bond index.
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1 Introduction

Portfolio selection is a fundamental topic in economics and finance and one of the leading

applications of decision theory under uncertainty. Modern portfolio theory derives its main

results on diversification and risk under the important paradigm of the expected utility (EU)

theory; see, for instance, Cochrane (2005) and Campbell (2018). Nevertheless, the EU has

been subjected to many criticisms. From a theoretical perspective, Rabin (2000) shows that

risk aversion with respect to low stakes gambles imply unrealistic behavior with respect to

large sums. Empirical evidence suggests that investors do not always act as risk averters (see,

e.g., Rabin and Thaler (2001) and Kahneman et al. (1982)). They behave di↵erently on gains

and losses, and they are more sensitive to losses than to gains (loss aversion).1 Investors may

also exhibit a preference for positive skewness of returns. In these cases the optimal portfolio

allocation may result in underdiversification compared to standard mean-variance e�cient

allocations; see Mitton and Vorkink (2007) and references therein. Experimental evidence also

shows that individuals do not allocate their resources as predicted by EU theory; see Simon

(1979), Tversky and Kahneman (1981), Payne et al. (1992) and Baltussen and Post (2011) as

seminal examples.

In this paper we depart from the EU framework and investigate the optimal portfolio al-

location of individuals concerned with maximizing a specific quantile of the distribution of

portfolio returns. This individual’s behavior is motivated from practical and scientific points

of view. Regarding the former, quantiles have been used in decision making in banking and

investment (in the form of Value at Risk and goal-reaching problems) and in mining, oil and

gas industries (in the form of “probabilities of exceeding” a certain level of production). On

the latter, there has been increasing theoretical, empirical and experimental interest in deci-

sion under uncertainty under quantile preferences (QP). This alternative preference has been

characterized in early work by Manski (1988), who studied properties of a quantile model for

individual’s behavior. More recently, QP have been formally axiomatized by Chambers (2009),

Rostek (2010), and de Castro and Galvao (2019b). Mendelson (1987) introduced the concept

of quantile-preserving spread, which is a notion of risk aversion for the quantile model that

establishes a parallelism with mean-preserving spreads in the standard EU framework. de Cas-

tro and Galvao (2019a) developed a dynamic model of rational behavior under uncertainty,

in which the agent maximizes a stream of the future quantile utilities. From an experimental

point of view, de Castro et al. (2020) found out that the behavior of between 30 and 50% of

the individuals in their experiment can be better described with quantile preferences rather

than expected utility.

Overall, QP have several attractive features.2 An individual’s decision is independent of

1Examples of risk orderings that reflect such findings are Friedman and Savage (1948), Savage (1954), Kah-
neman and Tversky (1979), Edwards (1996), Baucells and Heukamp (2006), among several others.

2Rostek (2010) discusses other advantages of the quantile preference, such as robustness, ability to deal with
categorical (instead of continuous) variables, and the flexibility of o↵ering a family of preferences indexed by
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the form of her utility function and thus an optimal choice is relatively easy to compute.3 The

measure of risk aversion is simple, intuitive, and determined by the quantile ⌧ 2 (0, 1). The

increasing interest on this recent approach to modeling individuals’ behavior under uncertainty

suggests that it is important to understand portfolio choice in this context, and this paper

fulfills this gap.

Our study of portfolio choice begins with the observation that the individuals’ risk attitude

under QP is captured by a single-dimensional parameter, the quantile ⌧ 2 (0, 1). The lower

the ⌧, the more averse to risk the ⌧-quantile-maximizer decision maker (⌧-DM) is. Next we

establish properties of the quantile model. First we focus on a simple portfolio given by a risk-

free and a risky asset. In contrast to the capital market line characterizing the mutual fund

separation theorem in a mean-variance setting (Tobin, 1958), the optimal portfolio allocation

under QP is to fully invest on the risk-free asset for quantile preferences given by ⌧ below

the magnitude of the risk-free rate, and on the risky asset, otherwise. The extension of the

portfolio to considering two risky assets and a risk-free asset provides similar insights indicating

an optimal binary response with respect to the risk-free asset. However, in this case, we find

that diversification between the two risky assets may also be an optimal outcome for middle

quantiles even if the allocation to the risk-free asset is null.

The optimal portfolio choice problem is then extended to consider a portfolio of two risky

assets. We formally show that a ⌧-DM always diversifies (invest in both assets) if the distribu-

tion functions of the assets in the portfolio have same lower end (worst-case scenario) and ⌧ is

su�ciently low. In contrast, if ⌧ is su�ciently high, we find that there is no diversification at

all: the ⌧-DM only invests on the riskier asset. We illustrate these rich heterogeneous behaviors

and theoretical insights with examples of two uniform random variables, a case in which we

are able to obtain an analytical solution of the portfolio selection problem. We then provide

further conditions under which the optimal portfolio decision has an interior solution with

diversification vis-à-vis no diversification. The intuition behind the obtained characterization

is that, in general, there will be diversification for investors concerned with low quantiles and

downside risk. These diversification insights are illustrated in numerical simulation exercises

that cover several canonical cases under di↵erent scenarios. For the particular case of two in-

dependent and identically distributed (iid) random variables, full diversification is optimal for

⌧ 6 ⌧0 but not for values of ⌧ > ⌧0. The optimal strategy in the upper part of the distribution

is investing fully in one risky asset. Therefore, the quantile model is flexible and allows for the

possibility of underdiversification in the sense that, in some scenarios, the optimal portfolio

choice may be no diversification.

The insights of the QP model for optimal portfolio allocation are applied to illustrate the

quantiles.
3Intuitively, the monotonicity of quantiles allows one to avoid modeling individuals’ utility function. This

is because the maximization problem is invariant to monotonic transformations of the distribution of portfolio
returns.
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similarities and di↵erences between the optimal portfolio choices of EU and QP individuals.

To do this, we consider a simple portfolio selection of stocks, bonds and cash, and compare the

optimal asset allocation of QP individuals with that of EU individuals with mean-variance and

power utility functions. We consider monthly data collected from three assets: the risk-free

one-month nominal yield on the U.S. Treasury bill rate, the S&P 500 and the G0Q0 Bond

Index, for the period January 1980 to December 2016. We compute the optimal portfolio

allocation for the full range of ⌧ 2 (0, 1). For low enough quantiles, the optimal strategy is to

invest fully in the risk-free asset, and for high enough quantiles, the optimal solution is fully

invest in S&P 500 index. There is a rich diversification pattern among the three assets for

middle quantile indexes. Overall, the results show portfolio diversification heterogeneity across

risk attitudes, with no diversification for very low and large quantiles. These empirical findings

contrast with the results obtained from two standard EU cases, the mean-variance and CRRA

utility cases that exhibit full diversification under risk aversion.

We remark that the initial reaction to the consideration of quantile preferences might be

of doubt, since quantile maximization is di↵erent from the familiar and well known EU model.

Quantile maximization implies, indeed, some choices that might seem unusual at first glance,

but can be considered reasonable after we overcome the influence of the EU over our intuition,

as we discuss in Section 1.1 below. More than that, as we also argue in that section, there

are situations where the maximization of a quantile seems very natural and by varying ⌧

they encompass the whole range of risk aversion attitudes encountered in EU. It is not our

contention, nevertheless, that quantile maximization is a decision method to be prescribed

in all cases and problems, but rather that it is a complement analysis to EU. As such, it is

important to document its properties and implications on relevant economic settings, such as

the portfolio selection problem that is the focus of this paper. Those properties could then be

tested in laboratories or confronted with data.

The remainder of the paper is laid out as follows. Section 1.1 has a brief review of the

literature on optimal portfolio decision under uncertainty. Section 2 discusses the risk attitudes

in QP models. Section 3 contains the main results of the paper. This section derives conditions

under which there is full or null diversification in the tails, and conditions that provide focal

optimal portfolios for risk averse and risk loving individuals. In addition, this section presents

a numerical simulation exercise that illustrates the theoretical insights of the paper. Section 4

presents a simple portfolio allocation exercise among stocks, bonds and a risk-free asset, and

Section 5 concludes. All mathematical derivations and proofs are collected in the Appendix.

1.1 Literature review

This paper relates to a number of streams of literature in portfolio selection and economic

theory. First, the paper relates to the extensive literature on optimal decision theory under

uncertainty and portfolio selection. Optimal portfolio decision based on the EU has been the
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basis of asset pricing equilibrium models such as the Sharpe-Lintner CAPM (Sharpe, 1964;

Lintner, 1965) and more recent alternatives based on factor models. In this context, the in-

vestor’s optimal portfolio decision relies heavily on the specification of the utility function for

modeling individuals’ preferences. Thus the theoretical optimal portfolio allocation of individ-

uals with constant absolute risk aversion and constant relative risk aversion preferences may be

very di↵erent although, in practice, it may be di�cult to di↵erentiate between both attitudes

towards risk from real data. A robust approach within the EU paradigm is stochastic domi-

nance. This theory allows one to rank risky alternatives without relying on specific forms of the

individuals’ utility function. Early work by Porter (1974) and Fishburn (1977) characterize the

optimal portfolio decisions of EU individuals using stochastic dominance criteria of di↵erent

orders. However, the equivalence between EU maximization and stochastic dominance is only

satisfied, under risk aversion, for well-behaved (increasing and concave) utility functions.

Second, this paper is related to a branch of the literature on models for portfolio selection

with alternative preferences to the EU. Many alternative preference measures to the EU have

been put forward in the portfolio choice literature. Most of these approaches replace the

utility function, which is essentially a distortion in wealth, by a distortion in the probability

distribution of wealth. This probability distortion function, as Yaari (1987) shows, represents

the risk preference in a di↵erent way. Similar approaches involving subjective probability

distributions include, most significantly, Kahneman and Tversky (1979)’s prospect theory.

Garlappi et al. (2007) develop a model for an investor with multiple priors and aversion to

ambiguity. We extend the last two literatures by replacing EU and its variations with QP.

Third, this paper is related to a few works on economic models using the quantile prefer-

ences. QP were first studied by Manski (1988) and subsequently axiomatized by Chambers

(2009), Rostek (2010) and de Castro and Galvao (2019b). The optimization of quantile mea-

sures as target variables in economic problems is not new. Recently, QP models have been

employed in modeling economic behavior in dynamic frameworks, see de Castro and Galvao

(2019a). The risk attitude under QP is based on the concept of quantile-preserving spreads in-

troduced in Mendelson (1987) and reformulated in Manski (1988) in terms of a single-crossing

criterion between distribution functions. Bhattacharya (2009) studies the problem of optimally

dividing individuals into peer groups to maximize a quantile of social gains from heterogeneous

peer e↵ects. In the asset pricing literature the use of QP has been hardly explored though.

Giovannetti (2013) presents a two-period standard economy with one risky and one risk-free

asset, where the agent has QP instead of the standard EU. Also, as mentioned previously,

de Castro et al. (2020) show experimental evidence on the use of quantile preferences.

Fourth, there is a small literature on optimal portfolio allocation using a quantile target

variable. Kulldor↵ (1993) and Föllmer and Leukert (1999) study the goal-reaching problem

where the target variable is a specific quantile, and He and Zhou (2011) propose a portfolio

choice model in continuous time, where the quantile function of the terminal cash flow is
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the decision variable. In a similar context, Brown and Sim (2009) provide a framework for

measuring the quality of risky positions with respect to their ability to achieve some aspiration

level, that can be interpreted with a quantile probability. In the mutual fund industry, quantiles

have been used as alternative performance measures, see, for example, Kempf and Ruenzi

(2007). We contribute to these two last lines of research by taking the QP together with the

quantile maximization to a portfolio selection model and deriving its properties.

We conclude this section by discussing a related literature that shares some of the insights

of QP theory but is di↵erent in scope. This discussion may serve as further general motiva-

tion for use of QP. Quantile measures have been used as risk measures in optimal portfolio

allocation. In particular, Value-at-Risk (VaR) and expected shortfall models are closely linked

to a low quantile selection, see Du�e and Pan (1997) and Jorion (2007) for a comprehen-

sive review of VaR models. In an optimal asset allocation context, the VaR quantiles act

as constraints in the asset allocation optimization exercise rather than as target variables to

be optimized. These mean-risk models discussed in Fishburn (1977) can be considered as an

extension of standard mean-variance formulations, see Markowitz (1952), rather than as QP

models for optimal portfolio allocation. The relevant literature includes Basak and Shapiro

(2001), Krokhmal et al. (2001), Campbell et al. (2001), Wu and Xiao (2002), Bassett et al.

(2004), Engle and Manganelli (2004) and Ibragimov and Walden (2007), among others, and

sheds an interesting light on the properties of VaR-optimal portfolios while acknowledging

considerable computational di�culties (Gaivoronski and Pflug, 2005; Rachev et al., 2007).

2 Quantile preferences and the risk attitude

The concept of risk is central in economic and financial analyses. This section briefly reviews

the definition of risk under quantile preferences (QP).

2.1 Preliminaries

We first introduce the notation and definition of QP. Given any random variable X : ⌦ ! R,
we denote by FX : R ! [0, 1] the cumulative distribution function (CDF) of X. Given ⌧ 2 (0, 1),

the ⌧-quantile of X is defined as

Q⌧[X] ⌘ inf {x 2 X : FX(x) > ⌧} .

A well-known and important property of quantiles, used below, is its invariance with respect to

monotonic transformations. More formally, if  : R ! R is continuous and strictly increasing,

then

Q⌧[ (X)] =  (Q⌧[X]) . (1)
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A preference ⌫ over random variables is a ⌧-quantile preference for some fixed ⌧ 2 (0, 1) if

X ⌫ Y () Q⌧[u(X)] > Q⌧[u(Y)], (2)

where u(·) is the utility function over the possible outcomes of the random variables X and Y.

Note that u(X) and u(Y) are also random variables.

It is important to notice that the QP defined by (2) are in fact independent of the utility

function. Indeed, for any continuous and strictly increasing u : R ! R, from (1),

X ⌫ Y () Q⌧[u(X)] > Q⌧[u(Y)] () u(Q⌧[X]) > u(Q⌧[Y]) () Q⌧[X] > Q⌧[Y]. (3)

This result shows that the utility function plays absolutely no role in defining the preference.

We can use (1) to make any transformation of u; therefore, we could transform a concave

utility function into a convex one without changing the preference. In particular, this implies

that the concavity of the utility function has absolutely no implication for the risk attitude

(nor any property) of QP.

Manski (1988) was the first to study QP as in (2). Chambers (2009) shows that these pref-

erences satisfy the properties of monotonicity, ordinal covariance, and continuity. In contrast,

Rostek (2010) axiomatized the QP in the context of Savage (1954)’s subjective framework.

Recently, de Castro and Galvao (2019b) provide an alternative axiomatization for the static

case using an uncertainty setting and finite state space.

2.2 Quantile-preserving spreads

The study of the risk attitude of quantile maximizing decision makers begins with the concept

of quantile-preserving spreads introduced by Mendelson (1987), who formalizes four other

conditions and shows that they are all equivalent. The concept is inspired by the familiar

mean-preserving spreads of Rothschild and Stiglitz (1970) and similarly captures the notion of

“added noise.” To wit, we can formalize “Y is equal to X plus noise” with either the statement

that “Y is a mean-preserving spread of X” or that “Y is a quantile-preserving spread of X,” in

sense that Y and X share the same quantile, but Y is more wide-spread. The choice of either

formalization is a subjective matter. However, while mean-preserving spreads help to study

the risk attitude in expected utility models, quantile-preserving spreads support the same task

for quantile preferences. This result was first observed by Manski (1988), although he used a

di↵erent terminology (minmax spreads). Its formal definition is as follows:

Definition 2.1 (Quantile-preserving spread). We say that Y is a ⌧-quantile-preserving spread

of X if for some q 2 R, Q⌧[Y] = Q⌧[X] = q and the following holds:

(i) t < q =) FY(t) > FX(t);

(ii) t > q =) FY(t) 6 FX(t).
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Y is a quantile-preserving spread of X if it is a ⌧̄-quantile-preserving spread of X for some

⌧̄ 2 (0, 1).

Figure 1 below illustrates the CDFs of random variables Y and X when Y is a ⌧̄-quantile-

preserving spread of X.4 Note that Definition 2.1 captures the notion that Y is riskier than X,

since Y puts weight in more extreme values than X. Manski (1988) uses a di↵erent terminology

for the same concept referring to the property of “single crossing from below”: FX crosses FY

from below when Y is a quantile-preserving spread of X.

0

1

FYFX
⌧̄

Q⌧̄[Y] = Q⌧̄[X] = q

⌧ 0

⌧

Q⌧[Y] Q⌧[X]

Figure 1: Y is a ⌧̄-quantile-preserving spread of X.

Notice that if Q⌧[Y] = q and X is equal to q with probability 1, then Y is a ⌧-quantile-

preserving spread of X. In other words, any risky asset Y with ⌧-quantile q is a quantile-

preserving spread of any risk-free asset X with value q.

Figure 1 suggests that the choice of a ⌧-quantile maximizer or ⌧-decision maker (⌧-DM)

depends on whether ⌧ is below or above the quantile ⌧̄ where the two CDFs cross. That is,

when ⌧ < ⌧̄ as in Figure 1, a ⌧-DM prefers the safer asset X: Q⌧[X] > Q⌧[Y]. On the other

hand, if ⌧ 0 > ⌧̄, a ⌧-DM prefers the riskier asset Y: Q⌧[X] 6 Q⌧[Y]. The following result

formalizes this intuition.

Proposition 2.2 (Manski). Let Y be a ⌧̄-quantile-preserving spread of X for ⌧̄ 2 (0, 1). Then:

(i) ⌧ 6 ⌧̄ =) Q⌧[X] > Q⌧[Y], that is, a ⌧-DM prefers the less risky asset X if ⌧ is low;

(ii) ⌧ > ⌧̄ =) Q⌧[X] 6 Q⌧[Y], that is, a ⌧-DM prefers the riskier asset Y if ⌧ is high.

It is useful to observe that the above implications are not equivalences: the opposite direc-

tion is false. Indeed, the definition of ⌧̄-quantile-preserving spreads does not preclude the case

where Q⌧[X] = Q⌧[Y] for ⌧ below or above ⌧̄. However, the above implications can obviously

be written in the reverse order, that is,

(i’) Q⌧[X] < Q⌧[Y] =) ⌧ > ⌧̄;

(ii’) Q⌧[X] > Q⌧[Y] =) ⌧ < ⌧̄.
4Mendelson (1987) suggests four other conditions and shows that they are all equivalent to the above defi-

nition.
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2.3 Risk attitudes are determined by the quantile

We now consider the problem of comparing the risk attitude of ⌧-DM with di↵erent ⌧. Ghi-

rardato and Marinacci (2002, Definition 4, p. 263) suggest the following definition:

Definition 2.3 (Ghirardato-Marinacci). A preference ⌫ 0 is more uncertainty averse than

preference ⌫ if for any q 2 R, and random variable X, q ⌫ X ) q ⌫ 0 X and q � X ) q � 0 X.

The intuition for Definition 2.3 is that if a DM with preference ⌫ would rather have the

certain outcome q 2 R than the risky prospect X, then the more uncertainty averse ⌫ 0 DM

prefers it as well. Ghirardato and Marinacci (2002)’s definition is a generalization of the

standard notion of risk aversion in the context of risk under expected utility. This notion

allows us to provide a suitable characterization for risk attitude for quantile preferences, as t

is possible to construct a similar characterization of risk attitude for quantile preferences, as

the following result establishes.5

Proposition 2.4. Consider quantile maximizing preferences ⌫⌧ and ⌫⌧ 0. The following state-

ments are equivalent:

(1) ⌧ > ⌧ 0;

(2) ⌫⌧ 0 is more uncertainty averse than ⌫⌧;

(3) If Y is a quantile-preserving spread of X and X �⌧ Y, then X ⌫⌧ 0 Y.6

(4) If Y is a quantile-preserving spread of X and Y �⌧ 0 X, then Y ⌫⌧ X.

Proposition 2.4 shows that ⌫⌧ is more risk averse than ⌫⌧ 0
if and only if ⌧ < ⌧ 0. This property

implies that an agent with quantile given by ⌧1 is more risk preferring than another agent with

quantile given by ⌧2 if ⌧1 > ⌧2, independently of the functional form of the utility function.

Thus, a decision maker that maximizes a lower quantile is more risk averse than one who

maximizes a higher quantile. In other words, the risk attitude can be related to the quantile

rather than to the concavity of the utility function. Moreover, Proposition 2.4 shows that

in the QP framework individuals’ risk attitude is related to the quantile rather than to the

concavity of the utility function.

3 Optimal portfolio choice problem

In this section we first study the case of a portfolio given by a risk-free and a risky asset.

This simple portfolio problem serves to establish the intuition about the optimal behavior of

5Elements of Proposition 2.4 can be found in Rostek (2010, Section 6.1) and Manski (1988, Section 5), but
not in the form presented here. In particular, they do not use the language of quantile-preserving spreads
introduced by Mendelson (1987) nor the notion of “more uncertainty averse than” used by Ghirardato and
Marinacci (2002).

6Notice that we are not specifying what is the quantile ⌧̄ for which Y is a ⌧̄-quantile-preserving spread of X.
The same observation is valid for the other item.
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individuals with quantile preferences and motivate the problem of interest, which is the study

of the optimal portfolio allocation between two or more risky assets. We focus on the analysis

of two risky assets. Prior to this, we set the foundations of the optimal portfolio allocation

problem.

3.1 Quantile portfolio selection under quantile preferences

We now formally describe the portfolio selection problem under quantile preferences (QP). The

portfolio manager has a budget b > 0 to invest in n assets for a given fixed period of time. She

will end up devoting ai 2 [0,b] to asset i, satisfying
Pn

i=1 ai = b. The initial price of asset i

is pi > 0, so that ai = piqi, where qi denotes the number of units of asset i that the portfolio

manager buys. After the investment period, asset i’s price will be p̃i > 0, which is random if

asset i is not a risk-free asset. Therefore, the net return on asset i after the investment period

is r̃i =
p̃i
pi

- 1, which is a random variable. Consider the following portfolio

Sw =
nX

i=1

wir̃i,

where w ⌘ (w1, ...,wn) 2 [0, 1]n, with
Pn

i=1wi = 1. The weights wi = ai
b > 0 denote the

fraction of wealth invested on asset i. Implicitly, we are assuming that the portfolio manager

does not short assets.7

To be consistent with the literature on optimal portfolio theory under EU preferences, we

assume that individuals are endowed with a utility function u(Sw), where u : R ! R, for
describing individual’s preferences on wealth. Then, for a given risk attitude ⌧ 2 (0, 1), the

portfolio choice problem under QP is

max
w2[0,1]n

Q⌧ [u (Sw)] , s.t.
nX

i=1

wi = 1. (4)

Importantly, we show that the choice of utility function is irrelevant under QP. This is

due to the invariance of this approach with respect to the utility function. Hence the quantile

optimization problem (4) using a given utility function is equivalent to maximizing the quantile

obtained directly from the distribution of the random variable.

Lemma 3.1. Let u(·) be a continuous and increasing utility function defined over the domain

of the random variable Sw for w ⌘ (w1, ...,wn) 2 [0, 1]n. The maximization argument w⇤

7In principle our model could encompass this possibility Our model can deal with short sale, but we leave
this to future work.
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solves (4) if and only if it solves the following:

max
w2[0,1]n

Q⌧ [Sw] , s.t.
nX

i=1

wi = 1. (5)

Equations (4) and (5) show an important result of QP theory relative to EU, which is

that the optimal choice of the portfolio under QP does not depend on any particular choice of

utility function. Therefore, for the remaining of the paper, we focus the main analyses on the

problem in (5). It is also worth noting that the above portfolio choice problem is also di↵erent,

and more general, than the goal-reaching problem proposed by Kulldor↵ (1993) in a quantile

setting. This author maximizes the cumulative probability of
Pn

i=1wir̃i subject to achieving

some target return r0. More formally, the objective function is max
(w1,...,wn)

P{
Pn

i=1wir̃i > r0}

subject to
Pn

i=1wi = 1.

The result in Lemma 3.1 is important in the context of portfolio allocation. Theoretically,

it implies that the quantile choice rule is able to separate beliefs from tastes. The relevance of

this separation criterion was put forward by Ghirardato et al. (2005) in the context of decision

theory under uncertainty. These authors o↵ered a result with this separation, but they did

not insist on a complete separation of tastes and beliefs, because such a separation would

rule out most of the choice rules commonly considered by decision theorists.8 In contrast,

as shown in Lemma 3.1, the quantile preferences deliver a complete separation of tastes and

beliefs. Empirically, this separation is very important as well. In particular, it allows portfolio

managers to make choices on a particular portfolio without the knowledge of any specified

utility function. For instance, a manager only needs to learn about the quantile ⌧ of an agent

to choose the portfolio weights from a given selection of returns r̃.

3.2 Optimal portfolio allocation when there is a risk-free asset

Manski (1988) derives the preferences of a QP maximizer between two outcomes X and Y

when one of the outcome measures is degenerate. In particular, this author finds a complete

separation in preferences between the degenerate and risky outcome. The deterministic choice

is the preferred strategy for low quantiles. In contrast, for high quantiles, the risky outcome

is the preferred strategy.

In what follows, we provide further formality to the example in Manski (1988) and frame it

in an optimal asset allocation context. We assume there is a riskless security that pays a rate

of return equal to Rf = r̄, and just one risky security that pays a stochastic rate of return equal

8For instance, if the preference is given by EU, the belief is captured by the probability while the tastes
by the utility function over outcomes or consequences (such as monetary payo↵s). Beliefs and tastes are not
completely separated, however, because if we take a monotonic transformation of the utility function, which
maintains the same tastes over consequences, we may end up with a di↵erent preference. That is, the pair
beliefs and tastes come together and are stable only under a�ne transformations of the utility function. In
other words, the EU preferences, as many other preferences, do not allow a separation of tastes and beliefs.
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to R with distribution function FR. The portfolio return is defined by the convex combination

Rp = wr̄+ (1-w)R = r̄+ (1-w)(R- r̄),

and the investor’s maximization problem (5) for a specific quantile ⌧ is argmaxwQ⌧[u(r̄+(1-

w)(R - r̄))]. Using the monotonicity of the quantile process, for a continuous and increasing

utility function, the investor’s problem simplifies to

argmax
w

(1-w)Q⌧[R] +wr̄.

Simple algebra shows that the individual portfolio choice w is then given by the following:

w⇤ =

8
><

>:

1 when Q⌧[R] < r̄

0 when Q⌧[R] > r̄

any w 2 [0, 1] when Q⌧[R] = r̄.

The intuition of this solution is simple. For small values of ⌧ the individual’s optimal portfolio

choice is w⇤ = 1 and corresponds to full investment on the risk-free asset. This is so because

r̄ > Q⌧[Rp] for any combination Rp characterized by 0 < w < 1. For larger values of ⌧, such

that Q⌧[R] > r̄, the optimal portfolio decision reverses and yields w⇤ = 0. For Q⌧[R] = r̄, the

QP maximizer is indi↵erent between the risk-free and the risky asset for any w 2 [0, 1] defining

the portfolio return.

In contrast to the capital market line characterizing the mutual fund separation theorem in

a mean-variance setting, Tobin (1958), the optimal portfolio allocation under QP specializes in

the risk-free asset for individuals with ⌧ below the magnitude of the risk-free rate and on the

risky asset, otherwise. In Appendix C.4, we extend the analysis of the risk-free asset by adding

a second risky asset to the portfolio. We obtain the same findings indicating an optimal binary

response to the risk-free asset. We notice that in this case, however, diversification between

the two risky assets may be optimal for middle quantiles even if the allocation to the risk-free

asset is null.

3.3 The case of two risky assets

This section considers the optimal portfolio allocation problem for an economy with two risky

assets and a decision maker endowed with QP.9 Consider two risky assets represented, respec-

tively, by the continuous random variables X and Y. Let the portfolio be defined as

Sw ⌘ wX+ (1-w)Y, (6)

9See, e.g., Damodaran (2010).
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with 0 6 w 6 1 a scalar portfolio weight. The portfolio selection problem in this context will

be:

max
w2[0,1]

Q⌧ [Sw] . (7)

Define the solution to this problem by w⇤(⌧) : (0, 1) ! [0, 1]. Whenever there is no confusion

we will use simply w⇤. We will also assume that X and Y have joint distribution function given

by a continuous probability density function (p.d.f.) f defined over intervals IX and IY . More

formally:

Assumption 1. X and Y have joint distribution function given by a continuous p.d.f. f :

IX ⇥ IY ! R, where IX = [x, x], IY = [y,y], -1 6 x < x 6 1, -1 6 y < y 6 1 and

0 < f(x,y) < 1 for all (x,y) 2 IX ⇥ IY.

It is important to emphasize that the above assumption does not exclude distributions with

support in the whole real line. In particular, X and Y can be normal variables, for instance. In

fact, almost all distributions studied in finance satisfy Assumption 1. It shall be understood

that if x = 1 or y = 1, the intervals are, respectively, [x,1) and [y,1). An analogous

observation holds when x = -1 or y = -1. We will maintain Assumption 1 in all results of

this section and will not repeat it.

In the remaining of the section we establish the existence of the optimal portfolio choice

under the QP theory as well as derive conditions that determine the existence of diversification.

Lemma 3.2. The optimization problem (7) has at least one solution.

Lemma 3.2 shows that the QP problem has at least one optimal vector, w⇤(⌧), that solves

the problem for a given quantile ⌧. Deriving an explicit expression for w⇤ is in general a

di�cult task, but in Appendix B, Proposition B.1, we deduce the expression of w⇤ for the case

in which X is uniform on (a,b) and Y is uniform on (0, 1). This explicit expression is used to

plot figures illustrating some of the results below, that we derive for general random variables

X and Y. We organize those results according to their message in the subsections below.

3.3.1 Diversification for low quantiles

Our first main result is that “in general” for ⌧ su�ciently small, diversification is optimal, that

is, there exists an interior solution w⇤ 2 (0, 1). As we will see in a moment, this requires some

assumptions. Perhaps the most important setting is the one described in the following:

Theorem 1. Assume that x,y > -1. If x = y and ⌧ 2 (0, 1) is su�ciently small, then

any optimal solution must be interior. More formally, there exists ⌧0 such that if ⌧ < ⌧0 then

w 2 {0, 1} does not solve (7) for that ⌧, or yet: if w⇤ solves (7), w⇤ 2 (0, 1).

13
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Figure 2: CDF of Sw = wX+(1-w)Y indexed by w 2 [0, 1] when X ⇠ U(0, 1) and Y ⇠ U(0, 1).

Intuitively, for a fixed small ⌧, the convex combination of the two assets is able to generate

a larger quantile. Notice that this result is surprisingly general : it requires no further assump-

tion on the distributions other than the restriction of the same lower bound. Although this

condition excludes normal distributions, it includes important distributions, as for example,

the lognormal. Nevertheless, Theorem 1 can be extended to symmetric normal distributions,

although we omit a formal statement for space considerations.

It is useful to illustrate Theorem 1 for the case of two standard uniform distributions,

X ⇠ U(0, 1) and Y ⇠ U(0, 1); see Example 3.3. Figure 2 shows the CDFs of the random variable

Sw for di↵erent w. One can see that for low ⌧ (in this case, ⌧ 6 0.5), the CDF curve most to

the right corresponds to w⇤(⌧) = 0.5. If ⌧ > 0.5, the optimal w⇤(⌧) is either 0 or 1, that is,

there is no diversification (both 0 and 1 are solutions because the two assets are identical in

this case).

Example 3.3. Consider X ⇠ U(0, 1) and Y ⇠ U(0, 1), independent. From Proposition B.1 in

Appendix B, in this case we have:

w⇤(⌧) =

�
0.5, if ⌧ 2

�
0, 12

⇤

1, if ⌧ 2
�
1
2 , 1

�
.

Notice that there can be diversification even when one of the distribution functions stochas-

tically dominates the other. See, for instance, Example 3.4 for the case of X ⇠ U(0, 2) and

Y ⇠ U(0, 1). In this case, even though U(0, 2) stochastically dominates U(0, 1), there is diver-

sification for ⌧ 6 1/4: the optimal w is interior, w⇤ = 0.5.
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Example 3.4. Consider X ⇠ U(0, 2) and Y ⇠ U(0, 1). From Proposition B.1 in Appendix B,

in this case we have:

w⇤(⌧) =

�
0.5, if ⌧ 2

�
0, 14

⇤

1, if ⌧ 2
�
1
4 , 1

�
.

This is an interesting result, because despite the fact that X first order stochastically dom-

inates Y, there exists a convex combination Sw that dominates both random variables X and

Y for low quantiles. Notice, however, that this feature is desirable, because the independence

of X and Y makes a convex combination of the two less risky than any of them.

3.3.2 No diversification with di↵erent lower ends of the distributions

Given the result in Theorem 1, a natural question is what would happen if the assumption

that x = y of the theorem does not hold, that is, if x 6= y. The näıve intuition may be

that for low quantiles diversification is always optimal. Theorem 1 shows that this occurs if

⌧ is su�ciently small and there is no obvious di↵erence in the lower limits given by x and y.

However, when the tail behavior of the assets in the portfolio is very di↵erent, the next result

shows that diversification is not optimal for low quantiles. More formally, Theorem 2 shows

that for x - y > M
2m , with m and M suitable constants, the quantile of X is larger than the

quantile of any convex combination of X and Y for low values of ⌧. A natural interpretation of

this result in a risk management context is to say that the VaR of X is larger than the VaR of

any diversified combination of the assets.10 The investor allocates all the portfolio weight in

the variable that dominates the other in the left tail of the distribution. This is the message

of the next result, where we denote X’s ⌧-quantile by x⌧.

Theorem 2. Assume that x > y > -1. Fix ⌧ 2 [0, 1]. Let M and m be such that m 6
f(x,y) 6 M for all (x,y) 2 [x, x⌧] ⇥ [y,y] [ [x, x] ⇥ [y, x⌧].11 If x - y > M

2m , w⇤ = 1 is the

unique solution to (7) for all ⌧ 2 (0, ⌧).12

Theorem 2 shows that the optimal choice is w⇤ = 1 for all ⌧ small, provided that the

di↵erence between the two distributions at the left end point is su�ciently large. Example 3.5

illustrates this result for the case of X ⇠ U(0.5, 1) and Y ⇠ U(0, 1). Since X and Y are uniform

and y = 0, we can take m = M and the assumption of Theorem 2 simplifies to x > 1
2 , which

is precisely the condition satisfied in this example (with x = 1
2).

Example 3.5. Consider X ⇠ U(0.5, 1) and Y ⇠ U(0, 1). Then, w⇤ = 1 for all ⌧ 2 (0, 1).

Notice that in this example, we have the choice w⇤ = 1 for all ⌧ 2 (0, 1), which is stronger

than the result stated in Theorem 2. We can in fact establish this stronger condition if the

10In the context of risk management, Theorem 2 provides theoretical support to the lack of subadditivity of
VaR measures in general settings, see Artzner et al. (1999).

11The inferior limit m may be taken over a limited region, not over the whole support. That is, we can
accommodate cases in which the support is infinite so that f(x,y) ! 0 when y ! 1.

12Of course, w⇤ = 0, when y > x > -1 and y- x > M
2m .
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bounds m and M hold for the entire interval. More precisely, we can fix ⌧ = 1 in Theorem 2

and conclude the following:

Corollary 3.6. Assume that x > y > -1. Let M and m be such that m 6 f(x,y) 6 M for

all (x,y) 2 [x, x]⇥ [y,y]. If x-y > M
2m , w⇤ = 1 is the unique solution to (7) for all ⌧ 2 (0, 1).

The latter result shows the absence of diversification, across ⌧ 2 (0, 1), for individuals with

quantile preferences under the conditions of the corollary. This result suggests that in many

cases the e↵orts of portfolio managers may be futile under QP theory. A major implication of

Corollary 3.6 is to show that, under QP, if there is no diversification in the lower left tail of

the distribution it is very likely that there is no diversification for higher quantiles.

Nevertheless, the behavior with di↵erent lower end points can be complex. For instance,

it may be the case that the optimal choice is w⇤ 2 {0, 1} for small ⌧, it becomes interior

for intermediate values of ⌧ and then becomes w⇤ 2 {0, 1} again for large ⌧’s. The following

example illustrates a case when the conditions in the corollary are not satisfied. In this case

we find the existence of diversification in the middle quantiles of the distribution despite the

fact that there is no diversification in the lower left tail.

Example 3.7. Consider (X, Y) a bivariate random vector. Let fX(x) = M be the marginal

density function of X if 0 < x 6 x 6 d, fX(x) = m if d < x 6 x < 1, and fX(x) = 0

otherwise. The support of X is [12 ,
3
2 ], i.e. x = 1

2 and x = 3
2 . Let Y ⇠ U(0, 1) such that

fY(y) = 1 for y 2 [y,y], with y = 0 and y = 1, and fY(y) = 0, otherwise. Then, the

following conditions of Corollary 3.6 are satisfied: (i) x > y > -1, (ii) M and m are such

that m 6 f(x,y) 6 M for all (x,y) 2 [x, x]⇥ [y,y]. However, for M = 4, m = 2
3 and d = 0.6,

we have x - y = 0.5 < 3 = M
2m , such that the remaining condition of the corollary is not

satisfied.

Figure 3 reports the CDFs for di↵erent combinations Sw indexed by w 2 [0, 1] for the density

functions in Example 3.7. For small and large values of ⌧ the optimal allocation is w⇤ = 1,

however, there is a middle interval of ⌧ for which diversification is optimal. This can be seen

by noting that some CDF for w 2 (0, 1) crosses from below that of w = 1 that corresponds to

X.

Another interesting case is posed by Theorem 2. One might think that the conclusion of

this theorem could hold more generally, whenever x > y and ⌧ is su�ciently small. This is

false, however: the di↵erence between x and y must be bounded away from zero to ensure

the conclusion. The following examples illustrate this observation from two applications of

Proposition B.1 in Appendix B.

Example 3.8. Consider X ⇠ U(0.25, 0.75) and Y ⇠ U(0, 1). We have w⇤ 2 (0, 1) for ⌧ 2
�
0, 12

�

and w⇤ = 0 for ⌧ 2
�
1
2 , 1

�
. See Figure 4. Its left panel plots the optimal allocation w⇤(⌧), while

its right panel plots the ⌧-quantiles of X, Y and the optimal portfolio Sw⇤(⌧).
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Figure 3: CDF of Sw = wX + (1 - w)Y indexed by w 2 [0, 1] when (X, Y) are defined in the
Example 3.7.

Example 3.9. Consider X ⇠ U(0.25, 1.25) and Y ⇠ U(0, 1). We have w⇤ 2 (0, 1) for ⌧ 2
(0, 0.25) and w⇤ = 1 for ⌧ > 0.25. See Figure 5. As in the previous case, the left panel plots

w⇤(⌧), while its right panel plots the ⌧-quantiles of X, Y and the optimal portfolio Sw⇤(⌧).

3.3.3 No diversification for large quantiles

The examples above suggest that for high ⌧, the optimal choice is w⇤ 2 {0, 1}. This is indeed

correct, as the following result establishes. It shows that the optimal portfolio choice for values

of ⌧ close to 1 is not interior.

Theorem 3. Assume that x = y < y = x < 1. Fix ⌧ 2 (0, 1). Let M and m be such that

m 6 f(x,y) 6 M for all (x,y) 2 [x⌧, x] ⇥ [y,y] [ [x, x] ⇥ [x⌧,y].13 If x⌧ - x > M(x-x)
2m , then

w⇤(⌧) 2 {0, 1} for all ⌧ 2 [⌧, 1).

Note that in this scenario we may have one or two solutions for ⌧ su�ciently close to 1. In

other words, there is no portfolio diversification in the upper tail of the distribution. These

findings are related to Ibragimov and Walden (2007). These authors find that for truncated

versions of heavy-tailed distributions with unbounded support diversification may increase

value at risk as long as the random variables are concentrated on a su�ciently large interval.

The results in this section generalize Ibragimov and Walden (2007) by considering a wider class

of distribution functions characterized by assumption 1. In particular, we derive the conditions

13The inferior limit m may be taken over a limited region, not over the whole support. That is, we can
accommodate cases in which the support is infinite so that f(x,y) ! 0 when y ! 1.
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w⇤(⌧) Q⌧[X], Q⌧[Y] and Q⌧[Sw⇤(⌧)]

Figure 4: Illustration of Example 3.8—Optimal w⇤ for X ⇠ U(0.25, 0.75) and Y ⇠ U(0, 1).

w⇤(⌧) Q⌧[X], Q⌧[Y] and Q⌧[Sw⇤(⌧)]

Figure 5: Illustration of Example 3.9—Optimal w⇤ for X ⇠ U(0.25, 1.25) and Y ⇠ U(0, 1).

under which diversification in the tails may or may not be an optimal outcome for individuals

endowed with QP.

In the following section we proceed to characterize the existence of interior solutions to the

QP optimal portfolio choice problem.

3.3.4 Characterization of the interior solution in QP optimal portfolio choice

The preceding section has presented conditions on the support of the random variables X and

Y that lead to either full diversification or null diversification. We have also extended the

results to the tails of the distributions by showing that for lower bound supports far apart

diversification is not an optimal outcome. In this section, we build upon these results and

provide a characterization of the interior solutions to the optimal portfolio choice problem

under QP theory. The section also establishes properties of the portfolio selection problem in
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a QP framework.

The proof of the results below will depend on some new definitions. First, let us denote

Pr (Sw 6 q) by h(w,q), that is,

h(w,q) ⌘
Z

IX

Z

IY\(-1,q-wx
1-w ]

f(x,y)dydx, (8)

if w 2 (0, 1), h(0,q) ⌘ FY(q) and h(1,q) ⌘ FX(q). Let us focus on the case w 2 (0, 1). From

Assumption 1, we know that as long as
��

x, q-wx
1-w

�
: x 2 R

 
\ IX⇥ IY contains more than one

point, the equation h(w,q) = ⌧ 2 (0, 1) implicitly defines the quantile q = qw,⌧ of Sw as a

function of w 2 (0, 1) and ⌧ 2 (0, 1), that is,

h(w,qw,⌧) = ⌧ =) q(w, ⌧) ⌘ Q⌧[Sw].

In what follows, we will omit ⌧ from q(w, ⌧) such that q(w, ⌧) ⌘ q(w).

Let us define IZ = Iw,q
Z = {x 2 R :

�
x, q-wx

1-w

�
2 IX ⇥ IY} and assume that w and q are

such that IZ = Iw,q
Z is a proper interval. Now, let us define a random variable Z = Zw,q that

is characterized by the following density function:

fZ(x) ⌘
f
�
x, q-wx

1-w

�
R
IZ

f
�
t, q-tw

1-w

�
dt

, (9)

for x 2 IZ. This density function is strictly positive on IZ and zero otherwise. In or-

der to understand what Z corresponds to, consider Figure 6. This figure plots the region
��

x, q-wx
1-w

�
: x 2 R

 
\ [0, 1]⇥ [0, 1] in a XY plane for the case of two standard uniform distribu-

tions. The left plot in Figure 6 describes the problem for small quantiles (⌧ 6 1
2) and w = 1

2 ,

and the right plot for large quantiles (⌧ > 1
2) and w = 1

2 . More generally, the random variable

Z can be interpreted as the projection of Y = q-wX
1-w onto X, and has support drawn in red

and density given by the values in the probability distribution function along the blue line.14

The definition of the random variable Z through the characterization of its density function

(9), allow us to state our first result in this section.

Proposition 3.10. Let X and Y be random variables satisfying assumption 1, and let Z = Zw,q

be a random variable characterized by the density function (9). Then, the function q(w) is

di↵erentiable at w 2 (0, 1) and

q 0(w) =
1

1-w
(E[Z]- q(w)) , for ⌧ 2 (0, 1), (10)

provided that one of the following cases hold: (1) IX = IY = R; (2) IX = IY = R+; (3)

14The two illustrations (a) and (b) correspond, respectively, to ⌧ 6 Pr
�⇥

X+Y
2 6 q

⇤�
and ⌧ > Pr

�⇥
X+Y
2 6 q

⇤�
.

In the first case (a), the line wX+ (1-w)Y = q is below the dashed blue line joining (1, 0) to (0, 1). In case (b)
⌧ > Pr

�⇥
X+Y
2 6 q

⇤�
, the line wX+ (1-w)Y = q is above the dashed blue line.
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�⇥
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⇤�

Figure 6: An illustration of Z for the case IX = IY = [0, 1].

IX = IY = [0, c], with c > 0 a constant defining a compact support.

This result allows one to derive the optimality condition characterizing the optimal portfolio

choice.

Corollary 3.11. Let w⇤ 2 (0, 1) be an interior solution to the maximization problem (7) for

a given ⌧ 2 (0, 1). Under the conditions of Proposition 3.10, the optimal w⇤ satisfies the

condition E[Zw⇤,q] = q(w⇤), with @
@wE[Zw⇤,q] < 0.

To understand the optimality condition in Corollary 3.11, we revisit Example 3.3 by con-

sidering again the particular case of two standard uniform random variables, X, Y ⇠ U(0, 1).

Example 3.12. Let X and Y be iid U(0, 1) random variables. In this case, if ⌧ 6 1
2 , we have

E[Z] = q
2w . Then, q(w) is increasing if

E[Z] > q () q

2w
> q () w <

1

2
.

The maximum is achieved at w⇤ = 1
2 given that E[Z] = q () q

2w⇤ = q () w⇤ = 1
2 .

To show that w⇤ is a maximum we also note that the function q(w) is strictly decreasing for

w > 1
2 and ⌧ 6 1

2 . This case is illustrated in Figure 6(a). On the other hand, if ⌧ > 1
2 , Figure

6(b) depicts Z. In this case, we can see that

E[Z] =
1

2

✓
q- 1+w

w
+ 1

◆
= 1-

1- q

2w
> q () 1- q

2w
< 1- q () w >

1

2
,
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which implies that the function q(w) is increasing for w > 1
2 and achieves the maximum at

w⇤ = 1, for all ⌧ > 1
2 .

In this example there is a separation in the optimal portfolio allocation between risk-

averse individuals and risk lovers. The optimal portfolio allocation of risk-averse individuals,

characterized by ⌧ 2 (0, 12 ], is full diversification given by w⇤ = 1
2 . Risk lovers, characterized

by ⌧ 2 (12 , 1), maximize the objective function (7) at w⇤ = 1. This important result separating

the optimal portfolio allocation into two regions broadly representing the risk preferences of

risk-averse and risk-loving individuals can be generalized to other density functions under the

following assumptions.

Assumption 2. The joint density function f(x,y) of the bivariate random variable (X, Y) is

C1 and satisfies that, for all fixed µ 2 R, f(µ+ ",µ- w
1-w") is unimodal on " 2 R, with mode

at " = 0.

Assumption 3. The joint density function f(x,y) of the bivariate random variable (X, Y) is

such that there exists some w⇤ 2 (0, 1) satisfying the condition

f

✓
µ+ ",µ-

w⇤

1-w⇤ "

◆
= f

✓
µ- ",µ+

w⇤

1-w⇤ "

◆
(11)

for all µ 2 R and " > 0.

Assumption 2 evaluated at the optimal w⇤ guarantees the unimodality of the density function

fZ defined in (9). Similarly, Assumption 3 guarantees its symmetry. Note that condition (11)

does not necessarily imply the symmetry of f(x,y) in the sense f(x,y) = f(y, x) unless w⇤ = 1
2 .

The following result constitutes one of the main results of this study, namely, we show the

existence of two regimes in the optimal portfolio allocation for individuals characterized by QP

and maximizing the objective function (7).

Proposition 3.13. Let f(x,y) be the joint density function of the pair (X, Y). Under assump-

tions 1 to 3, the solution to the maximization problem (7), for all ⌧ 2 (0, ⌧0], is w⇤ 2 (0, 1)

that satisfies expression (11). For ⌧ > ⌧0, the solution is w⇤ 2 {0, 1}. More specifically, w⇤ = 0

for ⌧ > ⌧0 if w⇤ > 1
2 in the interval (0, ⌧0], and w⇤ = 1 for ⌧ > ⌧0 if w⇤ 6 1

2 in the interval

⌧ 2 (0, ⌧0]. The threshold ⌧0 is defined by the condition ⌧ 6 P(Z 6 q) for ⌧ 2 (0, ⌧0], and

P(Z 6 q) < ⌧ for ⌧ 2 (⌧0, 1).

This result accommodates the iid case as a particular example.

Corollary 3.14. Let X and Y be two iid random variables with unimodal density function

fX(·) that satisfies assumption 1. The solution to the maximization problem (7) is w⇤ = 1
2 for

⌧ 2 (0, ⌧0], and w⇤ 2 {0, 1}, indistinctively, for ⌧ > ⌧0.
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Proposition 3.13 and Corollary 3.14 o↵er very interesting insights about portfolio allocation

and the importance of diversification. Under some general assumptions that accommodate,

among other examples, very popular families of density functions such as the Normal distribu-

tion and the Student-t distribution, diversification is optimal for individuals with preferences

characterized by risk aversion (low ⌧-quantiles). Individuals characterized by these preferences

choose the same portfolio, regardless their specific ⌧, that is given by an interior solution. For

iid random variables or for symmetric bivariate random variables the optimal allocation is full

diversification, interpreted as an equal contribution of each asset to the portfolio. In contrast,

individuals with preferences characterized by high values of ⌧, do not diversify at all. The

optimal investment strategy of these agents is full investment in the asset with more upside

potential, that in these cases corresponds to the asset with higher downside risk too. In this

case the specific value of ⌧ characterizing the individual’s quantile preference is not relevant

for determining the optimal portfolio allocation as long as this value is greater than the cut-o↵

point ⌧0. For symmetric distributions, ⌧0 = 0.5.

3.4 Numerical results

In this section we study optimal asset allocation under QP for portfolios given by the mix-

ture of two continuous random variables X and Y with payo↵ realizations defined as Sw =

wX+ (1-w)Y. We also compare the results with the optimal asset allocation obtained under

EU. Here, for simplicity and brevity, we concentrate on the simple case of two Gaussian in-

dependent and identically distributed random variables. Nevertheless, Appendix C presents a

more comprehensive examination across di↵erent scenarios of the problem allowing for depen-

dence and di↵erent configurations of the Gaussian and Chi-squared distributions.

In order to compute the optimal portfolio w⇤(⌧) : (0, 1) ! [0, 1] we are required to compute

the cumulative distribution function FSw and quantile function Q⌧[Sw], for which in many

cases we do not have an analytical expression to work with. We approximate the optimal

portfolio allocation w⇤ and quantile function through simulation. The following example aims

to illustrate the practical selection and diversification of portfolios, as well as the theoretical

findings of the previous sections.

3.4.1 Design

In this numerical study we seek to compute the optimal portfolio weights w⇤(⌧) for the QP

model in equation (5) for ⌧ 2 (0, 1). To simulate a portfolio, we draw n = 10, 000 realizations

of the random variables (X, Y), which are chosen from di↵erent distributions, say Gaussian and

Chi-squared. We investigate several alternative scenarios using independence and dependence

of the variables X and Y. In addition, we vary the mean and variance of the distribution

functions.

For each case below, we report two figures. The figures on the left panel plot the cumulative
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distribution functions generated by the portfolio value Sw, that is, we plot FSw for w 2
{0.1, . . . , 0.9}. These figures intuitively characterize the solutions because for any ⌧ we can draw

a horizontal line and find the optimal QP solution by searching for the largest CDF. Second,

figures on the right panel plot the graph of the portfolio selection {w⇤(⌧), ⌧} for di↵erent values

of ⌧.

3.4.2 Computation of portfolio

To implement the optimization, we use a simple grid search. Let Tj = {0 < ⌧1 < . . . < ⌧j < 1}

be a grid of values for the quantile index ⌧ with j values, and let ⇤l = {0 6 w1 < . . . < wl 6 1}

be a grid of values for w with l values. For each fixed ⌧ 2 Tj we solve the following portfolio

problem numerically

bw⇤
n(⌧) = arg max

{w2⇤m}

bQ⌧[Sw], (12)

where bQ⌧ is the sample counterpart of the quantile function Q⌧.

We consider Tj with grid spacing of 0.01 (#Tj = 99, with ⌧1 = 0.01 and ⌧99 = 0.99) and ⇤l

with grid spacing of 0.01 (#⇤j = 101, with w1 = 0 and ⌧101 = 1).

Consider a simulation exercise given by a very simple case where we consider a weighted

combination of two independent standard Gaussian random variables, X, Y ⇠ iid N(0, 1). It

is well known that Sw = wX + (1 - w)Y also follows a Gaussian distribution with Sw ⇠

N(0,w2 + (1 - w)2). In this scenario, under risk aversion and for very general forms of the

utility function, e.g. mean-variance, CRRA and CARA utility functions embedded in the

optimal portfolio decision, risk-averse EU individuals choose the investment portfolio that

minimizes the variance of the random variable Sw. In this setting this is given by w⇤ = 0.5.

The results for the QP model presented on the right panel of Figure 7 confirm these findings

for low quantiles of the distribution but show more heterogeneity in the optimal portfolio

decision for the upper quantiles. The findings of this simulation exercise provide empirical

evidence showing that the optimal QP choice depends on the quantile ⌧ 2 (0, 1). In particular,

for this specification of the random variables X and Y the optimal weight w⇤ is a function of ⌧

such that bw⇤
n(⌧) = 0.5 for ⌧ 6 0.5, and either bw⇤

n(⌧) = 0 or bw⇤
n(⌧) = 1 for ⌧ > 0.5. This result

is a consequence of the fact that the distributions of X and Y are identical and confirm the

predictions in Corollary 3.14 about a lack of diversification in the upper tail of the distribution

of portfolio returns. The left panel of the figure plots all combinations of distributions bFSw as

a function of w 2 [0, 1]. These distributions reveal a unique single-crossing point at ⌧0 = 0.5

for all w.

This simple exercise sheds light on portfolio selection under QP. As mentioned above, the

QP do not rely on any functional form of the utility function. In addition, QP models have

the advantage of allowing for heterogeneity through the quantiles because it o↵ers a family of

preferences indexed by ⌧, with the risk attitude under the QP being captured by the quantile.
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Figure 7: X, Y ⇠ N(0, 1). Left panel plots the CDF of Sw. Right panel plots QP portfolio selection.

The results in Figure 7 show that individuals with QP encompass both risk-averse and risk-

loving behavior. Those economic agents concerned with downside risk (low quantiles) diversify

by investing equally in each asset, whereas individuals with preferences driven by the upper

quantiles of the distribution of portfolio returns do not diversify at all. The critical point that

determines whether an individual diversifies or not is ⌧0 = 0.5.15

This neat separation between risk-aversion and risk-loving behaviors characterized by the

quantile ⌧0 is also observed, more generally, for distribution functions satisfying the conditions

of Proposition 3.13. The result in the proposition accommodates departures from the iid case,

otherwise, if the conditions of the proposition are not satisfied then the optimal asset allocation

under QP is ⌧-dependent and shifts smoothly from a risk-averse optimal allocation to a risk-

loving optimal allocation. Appendix C illustrates this case and collects several additional

results across di↵erent scenarios, including the analysis of portfolios with a risk-free asset. The

results provide strong support to the theoretical findings in this paper.

4 Empirical application to a portfolio of stocks, bonds and cash

This section provides an empirical application illustrating the methods developed in the paper.

We investigate the optimal portfolio choice of an investor with QP preferences that can allocate

wealth among three assets: a risk-free asset (one-month Treasury bill rate), a bond index

(G0Q0 Bond Index), and a stock index (S&P 500). We consider monthly data collected from

Bloomberg on the S&P 500 and G0Q0 Bond Index for the period January 1980 to December

2016. The G0Q0 Bond Index is a Bank of America and Merrill Lynch U.S. Treasury Index

that tracks the performance of U.S. dollar denominated sovereign debt publicly issued by the

U.S. government in its domestic market. The nominal yield on the U.S. one-month risk-free

15The simulation algorithm reflects this issue by selecting either w = 0 or w = 1 for ⌧0 = 0.5.
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Figure 8: Nonparametric kernel estimates of the unconditional densities of monthly log-returns on the

U.S. one-month Treasury bill, the G0Q0 bond index and the S&P 500 index. Monthly data are collected

from Bloomberg on the S&P 500 and G0Q0 Bond Index for the period January 1980 to December 2016.

The risk-free rate is obtained from Kenneth French website.

rate is obtained from Kenneth French website.

Prior to computing the portfolio weights, we report nonparametric kernel estimates of the

unconditional density functions of the returns on the three assets. The results are given in

Figure 8. Visual inspection of the densities shows that the three density functions are unimodal

and exhibit similar mean returns but very di↵erent standard deviations. A formal statistical

analysis rejects, however, the null hypothesis of equality of means for all pairwise combinations

of the U.S. Treasury bill, the G0Q0 index and the S&P 500 index, and the null hypothesis

of symmetry of the three density functions. More specifically, the mean return and standard

deviation for the U.S. one-month Treasury bill are 0.363 and 0.296, respectively; the mean

return and standard deviation for the G0Q0 bond index are 0.608 and 1.584, respectively, and

0.680 and 3.635 for the S&P 500 index. These summary statistics suggest that the equity

index has the highest expected return and variance, and is followed by the bond index with

regards to expected return and risk. In contrast, the U.S. Treasury bill has the lowest mean

and variance.

We compute the quantile preferences (QP) portfolio optimal weights by solving the maxi-

mization problem (5) numerically, as in equation (12). We divide the analysis in two. First, we

study the optimal portfolio allocation between the U.S. one-month Treasury bill and the G0Q0

index, and between the U.S. one-month Treasury bill and the S&P 500 index. Figure 9 clearly

confirms the predictions of previous sections. The optimal portfolio allocation of a QP investor
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Figure 9: Left panel reports the optimal portfolio allocation between the U.S. risk-free asset and G0Q0

bond index. Right panel reports the optimal portfolio allocation between the U.S. risk-free asset and

the S&P 500 index. Monthly data are collected from Bloomberg on the S&P 500 and G0Q0 Bond Index

for the period January 1980 to December 2016. The risk-free rate is obtained from Kenneth French

website.

can be divided into two regions indexed by ⌧ 2 (0, 1). For low values of ⌧, individuals are risk

averse and choose to minimize risk by allocating all the wealth on the risk-free asset. However,

for high values of ⌧, individuals become risk lovers and choose the riskiest strategy that brings

the highest upside potential. Interestingly, the results in Figure 9 highlight the role of the U.S.

one-month Treasury bill as a risk-free investment and are consistent with the insights discussed

in Section 3.2 on the mutual fund separation theorem for the QP case. For low quantiles, the

optimal choice is to fully invest on the risk-free asset, whereas for high quantiles, the optimal

choice is to invest fully on the risky alternative.

Second, we study the allocation problem where the investment universe comprises the three

assets. In this case we report the weights of all the three assets. The results are given in Figure

10 and provide similar insights about the optimal portfolio allocation exercise. We observe a

separation between the risk-free and riskiest asset for low and high quantiles. In particular,

for very low quantiles the optimal portfolio allocation is given by only investing in the risk-

free asset. In contrast, for values of ⌧ beyond the mode, the optimal asset allocation is given

by fully investing on the S&P 500 index. As ⌧ increases, we find that the optimal portfolio

allocation is given by a combination of the three assets, with a large share of investment on

the risk-free asset and a small share of investment distributed equally between the G0Q0 bond

index and the equity index. The allocation to the S&P 500 index with respect to the other

two assets increases as the tolerance of the individual towards risk grows.

We conclude the section by comparing these results with the optimal portfolio allocation of

a EU investor with preferences characterized by two di↵erent types of utility function: mean-
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Figure 10: The optimal portfolio allocation between the U.S. risk-free asset, G0Q0 bond index and the

S&P 500 index. Monthly data are collected from Bloomberg on the S&P 500 and G0Q0 Bond Index

for the period January 1980 to December 2016. The risk-free rate is obtained from Kenneth French

website.

variance and power utility functions. The mean-variance utility function is defined as

U(µ,C) = w 0µ-
↵

2
w 0Cw, (13)

with µ the vector of mean returns and C the covariance matrix of returns; the vector w denotes

the optimal portfolio weights. This is performed for di↵erent degrees of risk aversion ↵. The

left panel of Figure 11 presents the optimal portfolio allocations for values of ↵ between 0 and

0.5. In this range, the optimal portfolio allocation leads to a diversified portfolio that contains

non-zero combinations of the three assets. For values of ↵ close to zero, corresponding to risk

neutrality, the optimal portfolio allocation is mainly driven by investment in the S&P 500

index. However, as the tolerance to risk decreases, investment in the bond index and the US

Treasury bill gains importance. Investment in the risk-free asset is monotonically increasing

on ↵ and dominates the portfolio for values greater than 0.3. Comparison of both sets of

results suggests interesting similarities and di↵erences across types of individuals. Thus, there

is a mapping between the optimal portfolio choice of the QP investor with risk preferences

characterized by ⌧ in the interval (0.40, 0.60) and the optimal portfolio choice of the mean-

variance investor with values of ↵ in the range 0.05 to 0.45. The QP optimal allocation for

values of ⌧ close to zero is also similar to the mean-variance allocation for values of ↵ greater

than 0.5, signalling risk aversion. The main di↵erences are, however, for behaviors related to

risk-loving attitudes. Thus, for values of ⌧ greater than 0.5 we find that the allocation of the

QP individual is concentrated on the equity index. This result is only found for mean-variance
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Figure 11: Left panel reports the optimal portfolio allocation for a mean-variance investor with risk

preferences modeled by ↵ 2 [0, 0.5]. Right panel reports the optimal portfolio allocation for an investor

with a CRRA utility function with risk aversion coe�cient given by � 2 [10, 100]. Monthly data are

collected from Bloomberg on the S&P 500 and G0Q0 Bond Index for the period January 1980 to

December 2016. The risk-free rate is obtained from Kenneth French website.

investors for values of ↵ very close to zero that reflect no risk penalty in the utility function

(13).

For completeness, the right panel of Figure 11 reports the optimal asset allocation problem

for a EU individual with a power utility function characterized by di↵erent degrees of relative

risk aversion. Interestingly, the results are very similar to those obtained for the mean-variance

case. In this example, risk-loving attitudes for EU individuals take place for values of � that

converge to zero.

5 Conclusion

This paper studies the optimal asset allocation problem for individuals with quantile prefer-

ences (QP). The proposed QP model has several attractive features: (i) the portfolio choice is

independent of the utility function and related to the risk attitude ⌧; (ii) the ability to cap-

ture heterogeneity by varying the quantiles; (iii) robustness; and (iv) it has a solid axiomatic

foundation.

We divide the portfolio allocation problem in two scenarios: with and without a risk-free

asset. In the former case, we find that an investor with quantiles preferences with risk aversion

characterized by a small ⌧ reacts to the presence of a risk-free asset by fully investing on it.

Otherwise, for higher values of ⌧ the optimal strategy is to fully invest on the risky portfolio.

This result is in stark contrast with the standard mutual fund separation theorem that shows

that the optimal combination between the risk-free asset and a risky portfolio is convex and

determined by the investor’s risk aversion profile. Under quantile preferences, we observe
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an all-or-nothing behavior, instead. For the case of two risky assets, we derive theoretically

conditions on the support of the random variables under which the optimal portfolio decision

has an interior solution. This result provides the setup under which diversification strategies

are optimal for investors endowed with quantile preferences. These insights are in clear contrast

to the EU paradigm that claims that diversification is always an optimal strategy under very

general forms of risk aversion.

The paper has also explored the optimality of diversification strategies in the tails of the

distribution of portfolio returns. In particular, we have derived conditions under which diver-

sification in the tails is outperformed by fully investing in one risky asset. Additionally, we

have characterized the optimal portfolio allocation under quantile preferences when an interior

solution exists. Under unimodality and a symmetry condition on the bivariate distribution

of the random lotteries, the individual’s optimal portfolio decision under quantile preferences

is characterized by two regions: for quantiles below the median full diversification is optimal,

for quantiles above the median diversification is dominated by fully investing on the asset

with highest upside potential. This strategy characterizes the optimal portfolio decision of

risk-loving individuals.
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Appendix

A Proofs

This appendix collects the proofs for the results in the main text. We will use two properties

of quantiles that are easy to verify. First, quantiles are non-decreasing, that is, ⌧ 6 ⌧̄ implies

Q⌧[X] 6 Q⌧̄[X]. Second, for any random variable X with CDF FX,

FX(t) > ⌧ () Q⌧[X] 6 t. (14)

For reader’s convenience, we provide below a detailed proof of Proposition 2.2, but the result

can also be found in Manski (1988, Proposition 3, p. 95).

Proof of Proposition 2.2:

Proof. Let Y be a ⌧̄-quantile-preserving spread of X and let q = Q⌧̄[Y] = Q⌧̄[X], so that

t < q =) FY(t) > FX(t); and (15)

t > q =) FY(t) 6 FX(t). (16)

To show (i), assume for a contradiction that ⌧ 6 ⌧̄ and t ⌘ Q⌧[X] < Q⌧[Y]. Since Q⌧[Y] > t,

by (14), FY(t) < ⌧. Since Q⌧[X] = t implies FX(t) > ⌧ again by (14), we conclude that

FY(t) < ⌧ 6 FX(t). (17)

Since quantiles are non-decreasing, we have t < Q⌧[Y] 6 Q⌧̄[Y] = q. But then (17) contradicts

(15). The contradiction establishes (i).

Similarly to show (ii) with a contradiction, assume that ⌧ > ⌧̄ and t ⌘ Q⌧[Y] < Q⌧[X].

Since Q⌧[X] > t, by (14), FX(t) < ⌧. Since Q⌧[Y] = t implies FY(t) > ⌧ again by (14), we

conclude that

FX(t) < ⌧ 6 FY(t). (18)

Since quantiles are non-decreasing, we have t > Q⌧[Y] > Q⌧̄[Y] = q. But then (18) contradicts

(16). The contradiction establishes (ii).

Proof of Proposition 2.4:

Proof. (1) ) (4) : Let ⌧ > ⌧ 0 and Y be a ⌧̄-quantile-preserving spread of X and Y �⌧ 0 X ,
Q⌧ 0 [Y] > Q⌧ 0 [X]. By Proposition 2.2(i), ⌧ 0 > ⌧̄, which implies ⌧ > ⌧̄. By Proposition 2.2(ii),

Q⌧[X] 6 Q⌧[Y] ) Y ⌫⌧ X.

30



(4) ) (3) : Assume that Y be a ⌧̄-quantile-preserving spread of X and X �⌧ Y. For a

contradiction, assume that ¬ (X ⌫⌧ 0 Y) , Y �⌧ 0 X. By (4), this implies that Y ⌫⌧ X, which

contradicts X �⌧ Y.

(3) ) (1) : For a contradiction, assume that ⌧ < ⌧ 0 and let Y be a ⌧̄-quantile-preserving

spread of X satisfying

Q⌧̂[X] = Q⌧̂[Y] ) ⌧̂ = ⌧̄, (19)

for some fixed ⌧̄ 2 (⌧, ⌧ 0), that is, the quantile functions of Y and X only coincide at ⌧̄.

Since ⌧ < ⌧̄, Proposition 2.2(i) implies that Q⌧[X] > Q⌧[Y], which must be Q⌧[X] > Q⌧[Y]

because of (19). By (3), we must have Q⌧ 0 [X] > Q⌧ 0 [Y]. Since ⌧ 0 > ⌧̄, by Proposition 2.2(ii),

Q⌧ 0 [X] 6 Q⌧ 0 [Y]. Therefore, Q⌧ 0 [X] = Q⌧ 0 [Y], which contradicts (19) since ⌧ 0 > ⌧̄.

(1) ) (2) : Let ⌧ > ⌧ 0. Since quantiles are monotonic, Q⌧[X] > Q⌧ 0 [X]. Therefore,

q ⌫⌧ X () q > Q⌧[X] =) q > Q⌧ 0 [X] () q ⌫⌧ 0 X; and

q �⌧ X () q > Q⌧[X] =) q > Q⌧ 0 [X] () q �⌧ 0 X.

(2) ) (1) : Assume that ⌫⌧ 0 is more uncertainty averse than ⌫⌧ and, for a contradiction,

that ⌧ < ⌧ 0. By monotonicity, Q⌧[X] 6 Q⌧ 0 [X] for any X. Let X be such that Q⌧[X] < Q⌧ 0 [X]

and q ⌘ Q⌧[X] ) q ⌫⌧ X. Since ⌫⌧ 0 is more uncertainty averse than ⌫⌧, this implies

q ⌫⌧ 0 X , q = Q⌧[X] > Q⌧ 0 [X], which contradicts Q⌧[X] < Q⌧ 0 [X].

Proof of Lemma 3.1:

Proof. The objective function of the primal problem in (4) is

max
w2[0,1]n

Q⌧ [u(Sw)] .

Noticing that u(·) is continuous and increasing, and that the quantile is invariant with respect

to monotone transformations, then the above maximization argument is given by

argmax
w

Q⌧ [u(Sw)] = argmax
w

u (Q⌧ [Sw])

= argmax
w

Q⌧ [Sw] .

Proof of Lemma 3.2:

Proof. It is su�cient to show that w 7! Q⌧ [wX+ (1-w)Y] = Q⌧[Sw] is continuous. But this

follows from Assumption 1, which implies that the CDF of Sw = wX + (1 - w)Y is strictly
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Figure 12: Illustration of the proof.

increasing, thus making its quantile continuous.

Proof of Theorem 1:

Proof. (1) By appealing to translations if necessary, we may assume without loss of generality

that x = y = 0, that is, if this is not the case, we may consider the random variables X 0 = X-x

and Y 0 = Y - y. We may also assume without loss of generality that x,y < 1, for if x = 1 or

y = 1, we may truncate the distribution at large x̂, ŷ so that Pr({(x,y) : x > x̂ or y > ŷ}) < ✏

for some small ✏ > 0. Thus, without loss of generality, we may assume that there exists

m,M 2 R+ such that 0 < m < f(x,y) < M < 1 for all (x,y) 2 [0, x]⇥ [0,y].

We will prove that we can choose ⌧ small enough so that w = 1 is dominated by w = 1
2 .

The argument that w = 0 is also dominated by w = 1
2 for su�ciently small ⌧ is analogous.

For this, we will assume that w = 1 is better than w = 1
2 and find a contradiction for ⌧ small

enough. Let x⌧ denote the ⌧-quantile of X and assume that q = q
�
1
2 , ⌧

�
6 x⌧. See Figure 12

where q < x⌧. From the definition, the probability under the red line X+Y
2 6 2 is ⌧, which is

the same of the probability of the vertical band from 0 to x⌧. Therefore, the blue area in the

graph (both light and dark blue together) have to be the same as the dark red that corresponds

to the small triangle from x⌧ to 2q in the horizontal axis and from 0 to 2q - x⌧. To better

follow the argument, let A1 correspond to the probability in the dark blue area and A2, the

probability of the light blue area. Let A3 correspond to the probability of the dark red area

and A4, the probability of the light red area. Therefore, as observed above, by definition,

A1 +A2 = A3. (20)
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We will show, however, that we can choose ⌧ su�ciently small so that

A1 > A3 +A4. (21)

Observe that (21) implies

A1 +A2 > A1 > A3 +A4 > A3,

which contradicts (20). In order to obtain (21), observe that

A1 =

Zx⌧

0

Zy

2x⌧

f(x,y)dy

�
dx

A3 +A4 =

Z2x⌧

x⌧

Zx⌧

0
f(x,y)dy

�
dx.

Since m < f(x,y) < M for (x,y) 2 [0, x]2, we have

A1 >

Zx⌧

0

Zy

2x⌧

mdy

�
dx = mx⌧ (y- 2x⌧)

A3 +A4 <

Z2x⌧

x⌧

Zx⌧

0
Mdy

�
dx = Mx2⌧.

Therefore, we obtain (21) if

mx⌧ (y- 2x⌧) > Mx2⌧

() x⌧ [my- (2m+M)x⌧] > 0

() x⌧ <
y�

M
m + 2

� .

Since y, M and m are given constants, the above inequality is satisfied if x⌧ is small enough,

that is, if ⌧ is su�ciently close to 0.

Proof of Theorem 2:

Proof. Note that by translating the distribution (along the 45� line) if necessary, we may

assume without loss of generality that y = 0.

Let us fix any ⌧ 2 (0, ⌧] and let x⌧,y⌧ denote the ⌧-quantiles of X and Y, respectively. Of

course, x⌧ > x. Figure 13 below will be useful to illustrate the reasoning in this proof.

Let M̄ be the average fX(x) density on the region x 2 [x, x⌧], that is, M̄ ⌘ ⌧
x⌧-x . Therefore,

m 6 M̄ 6 M and m 6 f(x,y) 6 M for all (x,y) 2 [x, x⌧] ⇥ [y,y]. We want to show that

q(w, ⌧) < x⌧ for all w 2 [0, 1). To show this, it is enough to show that for any q > x⌧ and
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X

Y

x⌧ q
w

x⌧-wx
1-w

x⌧
w

y = 0
y⌧

q-(1-w)y⌧

w

x

Figure 13: Illustration of the proof.

w 2 [0, 1), the probability under the line wx+ (1-w)y 6 q is larger than ⌧, that is,

h(w,q) =

Z x⌧
w

x

"Z x⌧-wx
1-w

0
f(x,y)dy

#

dx > ⌧.

For this, it is su�cient to show that the area in blue in Figure 13 is larger than ⌧ already for

q = x⌧, that is,

q > x⌧ =) h(w,q) > h(w, x⌧) =

Z x⌧
w

x

"Z x⌧-wx
1-w

0
f(x,y)dy

#

dx > ⌧. (22)

Since f(x,y) > m for all (x,y) 2 [x, x⌧]⇥ [y,y] [ [x, x]⇥ [y, x⌧], we have

h(w, x⌧) >
m

2

⇣x⌧
w

- x
⌘✓

x⌧ -wx

1-w

◆
=

m(x⌧ -wx)2

2w(1-w)
.

Thus, to establish (22), it is su�cient to show that

m(x⌧ -wx)2

2w(1-w)
> ⌧ () m(x⌧ -wx)2 > 2⌧w(1-w)

() m
⇥
(x⌧)

2 - 2wxx⌧ +w2x2
⇤
- 2⌧w+ 2w2⌧ > 0

() w2
�
2⌧+mx2

�
- 2w (mxx⌧ + ⌧) +mx2⌧ > 0.

Let us define the quadratic polynomial:

p(w) ⌘ w2
�
2⌧+mx2

�
- 2w (mxx⌧ + ⌧) +mx2⌧. (23)
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Notice that p(0) = mx2⌧ > 0 and for w = 1:

p(1) =
�
2⌧+mx2

�
- 2 (mxx⌧ + ⌧) +mx2⌧ = m

�
x2 - 2xx⌧ + x2⌧

�
= m(x⌧ - x)2 > 0.

Let wV denote the vertex of the quadratic p(w), which is given by

wV =
mx⌧x+ ⌧

2⌧+mx2
.

Note that wV is always positive.

We can conclude that the quadratic form p(w) in (23) is positive if p(wV) > 0. To verify

this, we can substitute wV in the quadratic form to obtain:

p(wV) =


mx⌧x+ ⌧

2⌧+mx2

�2 �
2⌧+mx2

�
- 2


mx⌧x+ ⌧

2⌧+mx2

�
(mxx⌧ + ⌧) +mx2⌧

=
- (mx⌧x+ ⌧)

2

2⌧+mx2
+mx2⌧ =

mx2⌧(2⌧+mx2)- (mx⌧x+ ⌧)
2

2⌧+mx2
,

which is positive as long as

2⌧mx2⌧ +m2x2⌧x
2 > (mx⌧x+ ⌧)

2 = m2x2⌧x
2 + 2⌧mx⌧x+ ⌧

2

() 2⌧mx⌧ (x⌧ - x) > ⌧2

() 2mx⌧ (x⌧ - x) > ⌧.

Since ⌧ = M̄(x⌧ - x), the above condition is equivalent to

2mx⌧ > M̄ () x⌧ >
M̄

2m
.

Since M̄ 6 M and x⌧ > x > M
2m , we have x⌧ > M̄

2m , thus proving the result.

Remark A.1. One can also conclude that p(w) > 0 for all w 2 [0, 1] if wV > 1. Unfortu-

nately, the condition for this is stronger than the one given in Theorem 2. Indeed, wV > 1

if

wv =
mx⌧x+ ⌧

2⌧+mx2
> 1,

which is equivalent to

mx⌧x+ ⌧ > 2⌧+mx2

() mx(x⌧ - x) > ⌧.
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X

Y
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x⌧-wx
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q
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w
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1-w

x = x⌧-(1-w)y
w

Figure 14: Illustration for the proof of Theorem 3: the case of ⌧ close to 1.

Since ⌧ = M̄(x⌧ - x), the above condition simplifies to

mx > M̄ () x > M̄

m
.

Since M̄ 6 M, if we have x > M
m then x > M̄

m . However, this assumption x > M
m is stronger

than the condition in Theorem 2.

Proof of Theorem 3:

Proof. Fix ⌧ > ⌧ and assume that x = y and x = y. We want to show that w⇤(⌧) = 1

for su�ciently high ⌧, which is equivalent to show that q(w, ⌧) < x⌧ for all w 2 (0, 1) and

⌧ > ⌧. To show this, it is enough to show that for any q > x⌧ the probability under the line

wx+ (1-w)y 6 q is larger than ⌧, that is,

q > x⌧ =) h(w,q) > h(w, x⌧) =

Z

A(w,x⌧)
f(x,y)dydx > ⌧,

where A(w,q) ⌘ {(x,y) 2 [x, x]⇥ [x, x] : wx+ (1-w)y 6 q}. This is equivalent to show that

1- h(w, x⌧) =

Z

Ac(w,x⌧)
f(x,y)dydx 6 1- ⌧.
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For estimating this integral, we have to consider three intervals for w: (0,w), [w,w] and (w, 1),

where w and w correspond to the lines that pass by (x, x) and (x, x) respectively, that is,

w x+ (1-w) x = x⌧ () w =
x- x⌧
x- x

;

w x+ (1-w) x = x⌧ () w =
x⌧ - x

x- x
.

Note that w = 1-w < w for large ⌧.

Figure 14 shows the set A(w, x⌧) in blue, for w 2 [w,w]. Thus, if w 2 [w,w],

1- h(w, x⌧) =

Zx
x⌧-(1-w)x

w

"Zx
x⌧-wx
1-w

f(x,y)dy

#

dx.

For w 2 (0,w),

1- h(w, x⌧) =

Z

Ac(w,x⌧)
f(x,y)dydx =

Zx

x

"Zx
x⌧-wx
1-w

f(x,y)dy

#

dx,

and, for w 2 (w, 1),

1- h(w, x⌧) =

Z

Ac(w,x⌧)
f(x,y)dydx =

Zx

x

"Zx
x⌧-(1-w)y

w

f(x,y)dx

#

dy.

We will consider each of the above cases.

Case 1: w 2 [w,w].

Since m 6 f(x,y) 6 M for all (x,y) 2 [x⌧, x]⇥ [x, x], we have

1- h(w, x⌧) 6
M

2


x-

x⌧ - (1-w)x

w

�✓
x-

x⌧ -wx

1-w

◆
.

Using x = x, the left hand side becomes M(x-x⌧)
2

2w(1-w) . Thus, it is enough to prove that

M (x- x⌧)
2

2w(1-w)
6 1- ⌧ () w(1-w) > M (x- x⌧)

2

2(1- ⌧)
.

Since w 2 [w,w], we have

w(1-w) > min{w(1-w),w(1-w)} = ww =
x⌧ - x

x- x
· x- x⌧
x- x

.
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Thus, it is su�cient to show that:

(x⌧ - x)(x- x⌧)

(x- x)2
> M (x- x⌧)

2

2(1- ⌧)

() 2(1- ⌧)(x⌧ - x) > M(x- x)2 (x- x⌧) . (24)

We now define m̄ = (x-x⌧)(x-x)
1-⌧ so that 1 - ⌧ = m̄(x - x⌧)(x - x) = m̄(x - x⌧)(x - x).

Since

1- ⌧ =

Zx

x⌧

Zx

x
f(x,y)dy

�
dx > m(x- x⌧)(x- x),

we have m̄ > m =) M
m̄ 6 M

m . Therefore, the assumption gives

x⌧ - x > x⌧ - x > M(x- x)

2m
> M(x- x)

2m̄
,

as we wanted to show.

Case 2: w 2 (0,w).

Since m 6 f(x,y) 6 M for all (x,y) 2 [x⌧, x]⇥ [x, x], we have

1- h(w, x⌧) 6
M

2
(x- x)

✓
x-

x⌧ -wx

1-w

◆
=

M (x- x) (x- x⌧)

2(1-w)
.

Thus, it is enough to prove

M (x- x) (x- x⌧)

2(1-w)
6 1- ⌧ () 1-w > M (x- x) (x- x⌧)

2(1- ⌧)
.

Since w 2 (0,w), we have 1-w > 1-w = x⌧-x
x-x . Thus, it is su�cient to show that:

2(1- ⌧)(x⌧ - x) > M(x- x)2 (x- x⌧) .

This is exactly condition (24) above, which we have shown to be implied by the assumption.

Case 3: w 2 (w, 1).

Since m 6 f(x,y) 6 M for all (x,y) 2 [x⌧, x]⇥ [x, x], we have

1- h(w, x⌧) 6
M

2
(x- x)


x-

x⌧ - (1-w)x

w

�
=

M (x- x) (x- x⌧)

2w
.

Thus, it is enough to prove

M (x- x) (x- x⌧)

2w
6 1- ⌧ () 2(1- ⌧)w > M (x- x) (x- x⌧) .
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Since w 2 (w, 1), w > w = x⌧-x
x-x , it is su�cient to show again condition (24) above, which we

have shown to be implied by the assumption of Theorem 3.

Proof of Proposition 3.10:

Proof. Assume first that q(w) is di↵erentiable at w 2 (0, 1). Taking the total derivative with

respect to w on the equation h(w,q) = ⌧, we obtain

@wh(w,q) + @qh(w,q) · q 0(w) = 0 =) q 0(w) = -
@wh(w,q)

@qh(w,q)
. (25)

From (8), it is clear that h is di↵erentiable and that @qh(w,q) > 0. Therefore, by the Implicit

Function Theorem, q is di↵erentiable and given by (25). Now, we will calculate @wh(w,q)

and @qh(w,q). Define the function y(w,q) ⌘ q-wx
1-w . Then,

@qy(w,q) =
1

1-w
, and

@wy(w,q) =
(-x)(1-w)- (q-wx)(-1)

(1-w)2
=

q- x

(1-w)2
.

Support on R
Here we consider first the case in which IX = IY = R. The other two cases are similar and

considered below.16 It is clear from (8) and Assumption 1 that h is C1 and:

@wh(w,q) =

Z1

-1
f

✓
x,

q-wx

1-w

◆
q- x

(1-w)2

�
dx (26)

and

@qh(w,q) =

Z1

-1
f

✓
x,

q-wx

1-w

◆
1

1-w
dx. (27)

From this,

@wh(w,q) =
q

(1-w)2

Z1

-1
f

✓
x,

q-wx

1-w

◆
dx-

1

(1-w)2

Z1

-1
xf

✓
x,

q-wx

1-w

◆
dx

=
q

1-w
@qh(w,q)-

1

(1-w)
E[Z] · @qh(w,q)

=
1

1-w
· (q- E[Z]) · @qh(w,q).

Therefore,

q 0(w) = -
@wh(w,q)

@qh(w,q)
=

1

1-w
(E[Z]- q) ,

as we wanted to show.
16When IX or IY are not R, then we have to consider limits that make the derivatives more complex.
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Support on [0,1)

Now, we consider the case IX = IY = R+ = [0,1). In this case, we have

h(w,q) =

Z q
w

0

Z q-wx
1-w

0
f(x,y)dydx. (28)

Let us define:

g(w,q, x) ⌘
Z q-wx

1-w

0
f(x,y)dy,

for x < q
w and g

�
w,q, q

w

�
= 0 so that g is continuous and di↵erentiable. Also,

h(w,q) =

Z q
w

0
g(w,q, x)dx.

Then,

@wh(w,q) = g
⇣
w,q,

q

w

⌘✓
-q

w2

◆
+

Z q
w

0
@wg(w,q, x)dx

=
1

(1-w)2

Z q
w

0
(q- x) f

✓
x,

q-wx

1-w

◆
dx,

and

@qh(w,q) = g
⇣
w,q,

q

w

⌘✓
1

w

◆
+

Z q
w

0
@qg(w,q, x)dx

=
1

1-w

Z q
x

0
f

✓
x,

q-wx

1-w

◆
dx.

From this, we observe that the same expressions remain valid:

@wh(w,q) =
q

(1-w)2

Z q
w

0
f

✓
x,

q-wx

1-w

◆
dx-

1

(1-w)2

Z q
w

0
xf

✓
x,

q-wx

1-w

◆
dx

=
1

1-w
· (q- E[Z]) · @qh(w,q)

and

q 0(w) = -
@wh(w,q)

@qh(w,q)
=

1

1-w
(E[Z]- q) , (29)

as before.

Support on [0, c]

We now consider the case IX = IY = [0, c]. There are two subcases to consider, as show in

Figure 15.

Case (a)
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X

Y

c

c

q-(1-w)c
w

q
w

q-(1-w)c
w

(a) ⌧ 6 Pr
�⇥

X+Y
2 6 q

⇤�
X

Y

c

c

q-(1-w)c
w

q-(1-w)c
w

(b) ⌧ > Pr
�⇥

X+Y
2 6 q

⇤�

Figure 15: An illustration of Z for the case IX = IY = [0, c]. The blue area has probability ⌧.

In this case,

h(w,q) =

Z q-(1-w)c
w

0

Zc

0
f(x,y)dydx+

Z q
w

q-(1-w)c
w

Z q-wx
1-w

0
f(x,y)dydx.

Let

g(↵,�, x) ⌘
Z�

↵
f(x,y)dy.

Therefore,

h(w,q) =

Z q-(1-w)c
w

0
g(0, c, x)dx+

Z q
w

q-(1-w)c
w

g(0,
q-wx

1-w
, x)dx.

Thus,

@wh(w,q) = g

✓
0, c,

q- (1-w)c

w

◆
@w


q- (1-w)c

1-w

�

+

Z q-(1-w)c
w

0
@w [g(0, c, x)]dx

+ g
⇣
0, 0,

q

w

⌘✓
-q

w2

◆
- g

✓
0, c,

q- (1-w)c

w

◆
@w


q- (1-w)c

1-w

�

+

Z q
w

q-(1-w)c
w

@w


g(0,

q-wx

1-w
, x)

�
dx.
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Since g(0, 0, ·) = 0 and @wg(0, c, x) = 0, and g
⇣
0, c, q-(1-w)c

w

⌘
@w

h
q-(1-w)c

1-w

i
appear with

+ and - signs, we have

@wh(w,q) =

Z q
w

q-(1-w)c
w

@w


g(0,

q-wx

1-w
, x)

�
dx

=

Z q
w

q-(1-w)c
w

f

✓
x,

q-wx

1-w

◆
@w


q-wx

1-w

�
dx

=
q- x

(1-w)2

Z q
w

q-(1-w)c
w

f

✓
x,

q-wx

1-w

◆
dx.

We have:

@qh(w,q) = g

✓
0, c,

q- (1-w)c

w

◆
@q


q- (1-w)c

1-w

�

+

Z q-(1-w)c
w

0
@q [g(0, c, x)]dx

+ g
⇣
0, 0,

q

w

⌘✓
1

w

◆
- g

✓
0, c,

q- (1-w)c

w

◆
@q


q- (1-w)c

1-w

�

+

Z q
w

q-(1-w)c
w

@q


g(0,

q-wx

1-w
, x)

�
dx.

Anagously to the previous case,

@qh(w,q) =

Z q
w

q-(1-w)c
w

@q


g(0,

q-wx

1-w
, x)

�
dx

=

Z q
w

q-(1-w)c
w

f

✓
x,

q-wx

1-w

◆
@q


q-wx

1-w

�
dx

=
1

(1-w)2

Z q
w

q-(1-w)c
w

(q- x)f

✓
x,

q-wx

1-w

◆
dx.

Note that in this case,

fZ(z) =
f
�
z, q-wz

1-w

�

R q
w
q-(1-w)c

w

f
�
x, q-wx

1-w

�
dx

,

so that

E[Z] =

R q
w
q-(1-w)c

w

xf
�
x, q-wx

1-w

�
dx

R q
w
q-(1-w)c

w

f
�
x, q-wx

1-w

�
dx

.
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From this, we observe that the same expressions remain valid:

@wh(w,q) =
q

(1-w)2

Z q
w

q-(1-w)c
w

f

✓
x,

q-wx

1-w

◆
dx-

1

(1-w)2

Z q
w

q-(1-w)c
w

xf

✓
x,

q-wx

1-w

◆
dx

=
q

1-w
@qh(w,q)-

1

(1-w)
E[Z] · @qh(w,q)

=
1

1-w
· (q- E[Z])@qh(w,q),

and

q 0(w) = -
@wh(w,q)

@qh(w,q)
=

1

1-w
(E[Z]- q) ,

as before.

Case (b)

In this case,

h(w,q) =

Z q-(1-w)c
w

0

Zc

0
f(x,y)dydx+

Zc
q-(1-w)c

w

Z q-wx
1-w

0
f(x,y)dydx,

and

h(w,q) =

Z q-(1-w)c
w

0
g(0, c, x)dx+

Zc
q-(1-w)c

w

g(0,
q-wx

1-w
, x)dx.

Thus,

@wh(w,q) = g

✓
0, c,

q- (1-w)c

w

◆
@w


q- (1-w)c

1-w

�

+

Z q-(1-w)c
w

0
@w [g(0, c, x)]dx

- g

✓
0, c,

q- (1-w)c

w

◆
@w


q- (1-w)c

1-w

�

+

Zc
q-(1-w)c

w

@w


g(0,

q-wx

1-w
, x)

�
dx.
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Since @wg(0, c, x) = 0, and g
⇣
0, c, q-(1-w)c

w

⌘
@w

h
q-(1-w)c

1-w

i
appear with + and - signs,

@wh(w,q) =

Zc
q-(1-w)c

w

@w


g(0,

q-wx

1-w
, x)

�
dx

=

Zc
q-(1-w)c

w

f

✓
x,

q-wx

1-w

◆
@w


q-wx

1-w

�
dx

=
q- x

(1-w)2

Zc
q-(1-w)c

w

f

✓
x,

q-wx

1-w

◆
dx.

Also,

@qh(w,q) = g

✓
0, c,

q- (1-w)c

w

◆
@q


q- (1-w)c

1-w

�

+

Z q-(1-w)c
w

0
@q [g(0, c, x)]dx

- g

✓
0, c,

q- (1-w)c

w

◆
@q


q- (1-w)c

1-w

�

+

Zc
q-(1-w)c

w

@q


g(0,

q-wx

1-w
, x)

�
dx.

Therefore,

@qh(w,q) =

Zc
q-(1-w)c

w

@q


g(0,

q-wx

1-w
, x)

�
dx

=

Zc
q-(1-w)c

w

f

✓
x,

q-wx

1-w

◆
@q


q-wx

1-w

�
dx

=
1

(1-w)2

Zc
q-(1-w)c

w

(q- x)f

✓
x,

q-wx

1-w

◆
dx.

Note that in this case,

fZ(z) =
f
�
z, q-wz

1-w

�
Rc

q-(1-w)c
w

f
�
x, q-wx

1-w

�
dx

,

so that

E[Z] =

Rc
q-(1-w)c

w
xf

�
x, q-wx

1-w

�
dx

Rc
q-(1-w)c

w
f
�
x, q-wx

1-w

�
dx

.
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From this, we observe that the same expressions remain valid:

@wh(w,q) =
q

(1-w)2

Zc
q-(1-w)c

w

f

✓
x,

q-wx

1-w

◆
dx-

1

(1-w)2

Zc
q-(1-w)c

w

xf

✓
x,

q-wx

1-w

◆
dx

=
q

1-w
@qh(w,q)-

1

(1-w)
E[Z] · @qh(w,q)

=
1

1-w
· (q- E[Z])@qh(w,q)

and

q 0(w) = -
@wh(w,q)

@qh(w,q)
=

1

1-w
(E[Z]- q) ,

as before.

Proof of Corollary 3.11:

Proof. The proof of this result is immediate from imposing q 0(w⇤) = 0 in Proposition 3.10,

and noting that q 00(w) = @
@wE[Zw,q], with q 00(·) the second derivative with respect to w. To

show this, we take the first derivative of q 0(w) in (10). Then,

q 00(w) =

�
@
@wE[Z]- q 0(w)

�
(1-w) + E[Z]- q(w)

(1-w)2
. (30)

Then, noting that E[Z] = q(w⇤) and q 0(w⇤) = 0, we have

q 00(w) =
1

(1-w)2
@

@w
E[Z]. (31)

Proof of Proposition 3.13:

Proof. The proof of this result is shown in three di↵erent stages. First, we note from Corollary

3.11 that the first order condition characterizing an extremum of the optimization problem (7)

is E[Z] = q(w⇤), with w⇤ 2 (0, 1). Now, given that the density function fZ(z) is evaluated over

the line y = q(w⇤)-w⇤x
1-w⇤ , it is not di�cult to see that the projection of this line on the y-axis is

y⇤ = E[Z] for x⇤ = E[Z]. This result implies that for di↵erent quantile values q(w⇤) ⌘ q(w⇤, ⌧)

indexed by ⌧ 2 (0, 1), the mean value of the random variable Z characterized by the density

function fZ(z) in (9) is in the 45% degree line such that (x⇤,y⇤) = (E[Z],E[Z]).

Second, we prove that condition (11) evaluated at w⇤ guarantees the symmetry around

E[Z] of the density function fZ for x 2 IZ = Iw
⇤,q

Z = {x 2 R :
⇣
x, q-w⇤x

1-w⇤

⌘
2 IX ⇥ IY}. More

formally, condition (11) implies fZ(E[Z] + ") = fZ(E[Z]- ") for all " > 0. This is so by noting
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that fZ(E[Z] + ") =
f(E[Z]+",E[Z]- w⇤

1-w⇤ ")
R
IZ

f
⇣
t,E[Z]-tw⇤

1-w⇤
⌘
dt

and fZ(E[Z]- ") =
f(E[Z]-",E[Z]+ w⇤

1-w⇤ ")
R
IZ

f
⇣
t,E[Z]-tw⇤

1-w⇤
⌘
dt

.

Now, we show that under assumption 2, the density function fZ is unimodal. To show this,

we note that fZ(z) =
f
⇣
x,E[Z]-w⇤x

1-w⇤
⌘

R
IZ

f
⇣
t,E[Z]-tw⇤

1-w⇤
⌘
dt

, such that under the change of variable x = E[Z] + ",

we obtain fZ(z) =
f(E[Z]+",E[Z]- w⇤

1-w⇤ ")
R
IZ

f
⇣
t,E[Z]-tw⇤

1-w⇤
⌘
dt

. Assumption 2 evaluated at µ = E[Z] implies that the

numerator of this expression increases with " up to " = 0 and then decreases. This condition

is su�cient to show that fZ(z) is unimodal with mode at E[Z].

These findings (unimodality and symmetry of fZ(·)) apply to every ⌧ 2 (0, 1) and imply

that the point (x⇤,y⇤) = (E[Z],E[Z]) divides the line q(w⇤)-w⇤x
1-w⇤ in two equal segments for all

quantile values q(w⇤) ⌘ q(w⇤, ⌧) indexed by ⌧ 2 (0, 1). This property also implies that E[Z]

is the median of the distribution of Z with support the projection of the line on the x-axis.

In this scenario no other combination ew, with ew 6= w⇤, and such that q(ew, ⌧) and q(w⇤, ⌧)

defines two di↵erent lines for the same ⌧ 2 (0, 1), yields a line y = q( ew)- ewx
1- ew that intersects

y = x at (x⇤,y⇤) = (E[Z],E[Z]). Let (ex,ex) denote such intersection, and let ⌧0 2 (0, 1) be

defined by the condition ⌧ 6 P(Z 6 q) for ⌧ 6 ⌧0, and P(Z 6 q) < ⌧ for ⌧ 2 (⌧0, 1]. Then, the

condition ⌧ 6 P(Z 6 q), for all ⌧ 2 (0, ⌧0], implies that the projection of the crossing point

(ex,ex) on the x-axis, given by ex, is smaller than the corresponding projection for w⇤, that is

x⇤ = E[Z]. Then, for all ew 2 (0, 1) with ew 6= w⇤, it follows that ex < E[Z], that is equivalent

to the condition q(ew) < q(w⇤) since q(ew) = ewx + (1 - ew)y. Then, for x = y = ex, we have

q(ew) = ex and for x = y = E[Z], we have q(w⇤) = E[Z]. Hence, the quantity w⇤ maximizes the

quantile function for all ⌧ 2 (0, ⌧0].

It remains to see that the condition q(w⇤) = E[Z] characterizes a minimum of the opti-

mization problem (7) for ⌧ > ⌧0. In this scenario, the solution to the optimization problem

(7) is also in the 45o degree line, however, for ⌧ 2 (⌧0, 1], it follows that P(Z 6 q) < ⌧ (see

Figure 6(b)). Then, for any ew = w⇤ ± ", with " > 0, the projection of the crossing point (ex,ex)
on the x-axis is larger than the projection of the crossing point (E[Z],E[Z]) associated to w⇤.

Thus, for any ew = w⇤± " with " > 0, it follows that ex > E[Z] and, using the above arguments,

q(ew) > q(w⇤) for all ew 6= w⇤, with w⇤, ew 2 (0, 1).

The continuity of q(w) with respect tow implies that the solution to (7) is a corner solution.

For w⇤ = 1
2 in the region ⌧ 2 (0, ⌧0], the solution for ⌧ > ⌧0 is indistinctively zero or one due

to the symmetry of condition (11). Otherwise, if w⇤ 6= 1
2 in the region ⌧ 2 (0, ⌧0], the solution

to the maximization problem for ⌧ > ⌧0 is given by the random variable with largest upside

potential. More formally, it will be one if FX(z) < FY(z) uniformly over z, for z su�ciently

large. In contrast, the solution will be zero for ⌧ > ⌧0 if FX(z) > FY(z) uniformly over z, for z

su�ciently large. This property is determined by whether w⇤ < 1
2 in condition (11) or not.
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Proof of Corollary 3.14:

Proof. To prove the result in the corollary, it is su�cient to show that the iid assumption

implies assumptions 2 and 3 with w⇤ = 1
2 . Then, applying Proposition 3.13 the result follows.

To prove assumption 2, we note that under the iid condition, for any µ 2 R, it holds that
f(µ + ",µ - ") = fX(µ + ")fX(µ - "). Now, taking the first derivative with respect to ", we

obtain
@f(µ+ ",µ- ")

@"
=
@fX(µ+ ")

@"
fX(µ- ")-

@fX(µ- ")

@"
fX(µ+ "). (32)

Let mX denote the mode of the random variable X. For µ = mX, the unimodality of fX(·)
implies that @fX(µ+")

@" > 0 for " < 0, @fX(µ+")
@" = 0 at " = 0 and @fX(µ+")

@" < 0 for " > 0. Under

these conditions, expression (32) yields @f(µ+",µ-")
@" > 0 for " < 0; @f(µ+",µ-")

@" = 0 at " = 0

and @f(µ+",µ-")
@" < 0 for " > 0, as stated in assumption 2.

The proof is a bit more complex for µ 6= mX. In this case, for µ < mX there exists an

interval |"| < mX - µ that needs to be carefully evaluated. More specifically, for values of "

inside the interval, we note that expression (32) is positive if " < 0 and negative if " > 0. This

follows from noting that for " < 0 and µ-mX < ", the following condition is satisfied:

@fX(µ+ ")/@"

@fX(µ- ")/@"
>

fX(µ+ ")

fX(µ- ")
. (33)

To show this condition it is su�cient to show that @fX(µ+")
@" > @fX(µ-")

@" given that fX(µ+") <

fX(µ - ") for " < 0. This condition is, however, fulfilled for x 2 (-1,mX) if the density

function fX is unimodal. Similarly, for " > 0 and " < mX - µ, the following condition is

satisfied:
@fX(µ+ ")/@"

@fX(µ- ")/@"
<

fX(µ+ ")

fX(µ- ")
. (34)

This condition can be shown using the above arguments and noting that " > 0.

For values of " outside the interval (0,mx - µ) the above proof follows straightforwardly.

For µ > mX, there exists an interval |"| < µ - mX that needs to be carefully evaluated.

Nevertheless, the proof in this case follows as in the previous case. Also, for values of " outside

the interval the above proof follows similarly.

To verify Assumption 3, it is su�cient to show that for w⇤ = 1
2 and " > 0, equation (11)

becomes

f(µ+ ",µ- ") = f(µ- ",µ+ "), (35)

for all µ 2 R, with f(·, ·) the joint density function of the random variables X and Y. This

condition is, however, satisfied by construction under the iid assumption. This is so because

f(µ+ ",µ- ") = fX(µ+ ")fX(µ- ") = f(µ- ",µ+ "), (36)
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for all µ 2 R.

B Mixture of Two Uniform Random Variables

This section describes the portfolio allocation exercise for di↵erent mixtures of two uniform

random variables.

Without loss of generality, let X ⇠ U(a,b) with b > a, and Y ⇠ U(0, 1), two independent

uniform random variables. We wish to derive the optimal portfolio allocation for Sw(⌧) =

w(⌧)X + (1 - w(⌧))Y, for ⌧ 2 (0, 1). We first calculate the quantile function of the random

variable Sw(⌧), and second, we state the formal proposition with the optimal combination

defined by w⇤(⌧) and the corresponding proof.

We have for each uniform

fwX(z) =

�
1

w(b-a) , if z 2 [wa,wb]

0, otherwise,

f(1-w)Y(z) =

�
1

(1-w) , if z 2 [0, 1-w]

0, otherwise,

The density function for the sum is given by

fS(z) =

Z
fwX(z- ⇠)f(1-w)Y(⇠)d⇠.

Now we need to examine the limits for integration. The integrand above will be zero unless

z - ⇠ 2 [wa,wb] and ⇠ 2 [0, 1 - w]. This leads to the following restrictions that need to be

satisfied �
z-wb 6 ⇠ 6 z-wa

0 6 ⇠ 6 1-w.

Therefore, we can define the integration limits as following:

inferior limit : max{z-wb, 0}

superor limit : min{1-w, z-wa}.

Note that the limits of integration depend on w. Now we consider the four possible cases.

Case I.

inferior limit : max{z-wb, 0} = z-wb () z > wb

superor limit : min{1-w, z-wa} = 1-w () z > wa+ (1-w).
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In this case we have that

fS(z) =
1

w(b- a)

1

(1-w)

Z (1-w)

z-wb
1dx

=
1

w(b- a)

1

(1-w)
((1-w) +wb- z).

Case II.

inferior limit : max{z-wb, 0} = z-wb () z > wb

superor limit : min{(1-w), z-wa} = z-wa () z < wa+ (1-w).

In this case we have that

fS(z) =
1

w(b- a)

1

(1-w)

Zz-wa

z-wb
1dx

=
1

w(b- a)

1

(1-w)
w(b- a).

Case III.

inferior limit : max{z-wb, 0} = 0 () z < wb

superor limit : min{(1-w), z-wa} = z-wa () z < wa+ (1-w).

In this case we have that

fS(z) =
1

w(b- a)

1

(1-w)

Zz-wa

0
1dx

=
1

w(b- a)

1

(1-w)
(z-wa).

Case IV.

inferior limit : max{z-wb, 0} = 0 () z < wb

superor limit : min{(1-w), z-wa} = (1-w) () z > wa+ (1-w).

In this case we have that

fS(z) =
1

w(b- a)

1

(1-w)

Z (1-w)

0
1dx

=
1

w(b- a)

1

(1-w)
(1-w).

There are two di↵erent scenarios given by 0 < b-a 6 1-w
w and b-a > 1-w

w that lead to two
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di↵erent orderings in the limits of integration. Thus, for b- a > 1-w
w , we obtain

fS(z) =

8
>>>>>>><

>>>>>>>:

0, z < wa
z-wa

w(b-a)(1-w) , wa 6 z < wa+ (1-w)
1

w(b-a) wa+ (1-w) 6 z < wb
(1-w)+wb-z
w(b-a)(1-w) wb 6 z < wb+ (1-w)

0 z > wb+ (1-w).

The cumulative distribution function can be written as

FS(z) =

8
>>>>>>><

>>>>>>>:

0, z < wa
(z-wa)2

2w(b-a)(1-w) , wa 6 z < wa+ (1-w)
1-w

2w(b-a) +
z-wa-(1-w)

w(b-a) , wa+ (1-w) 6 z < wb

1- 1
2(b-a)

⇣
b- z-(1-w)

w

⌘ �
1- z-wb

1-w

�
, wb 6 z < wb+ (1-w)

1, z > wb+ (1-w).

Operating with the expression in the wb 6 z < wb + (1 - w) bracket, we obtain ⌧ = 1 -
1

2(b-a)

⇣
b- z-(1-w)

w

⌘ �
1- z-wb

1-w

�
. Then, 2(1- ⌧)(b- a) =

⇣
b- z-(1-w)

w

⌘ �
1- z-wb

1-w

�
. We

define x = z-(1-w)
w such that the previous expression reads as 2(1-⌧)(b-a) = (b- x) w

1-w(b-

x) and 2(1-⌧)(b-a)1-w
w = (b- x)2. Then, x = b±

q
2(1- ⌧)(b- a)1-w

w . Furthermore, the

constraint wb 6 z < wb + (1 -w) implies that x < b. Then, x = b -
q
2(1- ⌧)(b- a)1-w

w .

Now, changing the variable x for z we obtain z = wb+ (1-w)-
p
2(1- ⌧)(b- a)w(1-w).

Then, the quantile function can be written as

q(⌧;w) =

8
><

>:

wa+
p
2⌧w(1-w)(b- a), 0 6 ⌧ < ⌧1

wa+ ⌧w(b- a) + 1-w
2 , ⌧1 6 ⌧ < ⌧2

wb+ (1-w)-
p
2(1- ⌧)w(1-w)(b- a) ⌧ > ⌧2,

(37)

with ⌧1 = FS(wa+(1-w)) and ⌧2 = FS(wb). Note that in the previous definition we explicitly

include w.

Similarly, for 0 < b- a 6 1-w
w , the density function is

fS(z) =

8
>>>>>>><

>>>>>>>:

0, z < wa
z-wa

w(b-a)(1-w) , wa 6 z < wb
1

(1-w) , wb 6 z < wa+ (1-w)
(1-w)+wb-z
w(b-a)(1-w) , wa+ (1-w) 6 z < wb+ (1-w)

0, z > wb+ (1-w).

50



The corresponding cumulative distribution function is

FS(z) =

8
>>>>>>><

>>>>>>>:

0, z < wa
(z-wa)2

2w(b-a)(1-w) , wa 6 z < wb
w

1-w
b-a
2 + z-wb

1-w , wb 6 z < wa+ (1-w)

1- 1
2(b-a)

⇣
b- z-(1-w)

w

⌘ �
1- z-wb

1-w

�
, wa+ (1-w) 6 z < wb+ (1-w)

1, z > wb+ (1-w).

Using the same expressions as before, we obtain the following quantile function:

q(⌧;w) =

8
><

>:

wa+
p
2⌧w(1-w)(b- a), 0 6 ⌧ < e⌧1

wb+ (1-w)⌧-wb-a
2 , e⌧2 6 ⌧ < e⌧2

wb+ (1-w)-
p
2(1- ⌧)w(1-w)(b- a) ⌧ > e⌧2,

(38)

with e⌧1 = FS(wb) and e⌧2 = FS(wa+ (1-w)).

Proposition B.1. Suppose we have two independent uniform random variables X ⇠ U(a,b)

with b > a and Y ⇠ U(0, 1), and let Sw(⌧) = w(⌧)X + (1 - w(⌧))Y with w(⌧) a function

w : [0, 1] ! [0, 1]. Then, the optimal combination for portfolio QP maximization w⇤(⌧) is the

following.

If a > 1 then w⇤(⌧) = 1, 8⌧.
If b < 0 then w⇤(⌧) = 0, 8⌧.
Otherwise, define

w⇤(⌧) =

8
><

>:

w̃⇤(⌧), max {q(⌧; w̃⇤(⌧)), ⌧, ⌧(b- a)} = q(⌧, w̃⇤(⌧))

0, max {q(⌧; w̃⇤(⌧)), ⌧, ⌧(b- a)} = ⌧

1, max {q(⌧; w̃⇤(⌧)), ⌧, ⌧(b- a)} = ⌧(b- a),

where w̃⇤(⌧) is defined in the following way. For b- a > 1-w̃⇤(⌧)
w̃⇤(⌧) , with ⌧ 2 [0, 1], w̃⇤(⌧) is

w̃⇤(⌧) =

8
>>><

>>>:

1
2 + 1

2

r
1- 1

1+ a2
2⌧(b-a)

, 0 6 ⌧ < ⌧1
1

1+b-a , ⌧1 6 ⌧ < min(max(
1
2-a
b-a , ⌧1), ⌧2)

1, ⌧ > min(max(
1
2-a
b-a , ⌧1), ⌧2),

with ⌧1 = FS(w̃⇤(⌧)a+ (1- w̃⇤(⌧))) and ⌧2 = FS(w̃⇤(⌧)b).
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For 0 < b- a 6 1-w̃⇤(⌧)
w̃⇤(⌧) , with ⌧ 2 [0, 1], w̃⇤(⌧) is

w̃⇤(⌧) =

8
>>><

>>>:

1
2 - 1

2

r
1- 1

1+ a2
2⌧(b-a)

, 0 6 ⌧ < e⌧1

1
1+b-a , e⌧1 6 ⌧ < min(max(a+b

2 , e⌧1), e⌧2)
0, ⌧ > min(max(a+b

2 , e⌧1), e⌧2),

with e⌧1 = FS(w̃⇤(⌧)b) and e⌧2 = FS(w̃⇤(⌧)a+ (1- w̃⇤(⌧))).

Proof. Using the quantile processes derived above, we can obtain the optimal w̃⇤(⌧) for di↵erent

regions inside ⌧ 2 [0, 1]. To do this, we maximize the quantile functions q(⌧) in (37) and (38)

with respect to w.

For b-a > 1-w
w , the quantile function is (37) and the first regime corresponds to 0 < ⌧ < ⌧1,

with ⌧1 = FS(wa+ 1-w). Then, the optimal w satisfies that

a+ ⌧(1- 2w)

s
b- a

2⌧w(1-w)
= 0.

This equation is equivalent to a = 2w-1p
2w(1-w)

p
⌧(b- a). Taking squares in both sides, we

obtain 2a2w(1-w) = ⌧(1- 4w+ 4w2)(b- a). After some further algebra, we obtain

(4⌧(b- a) + 2a2)w2 - (4⌧(b- a) + 2a2)w+ ⌧(b- a) = 0,

that is equivalent to w2-w+y = 0, with y = ⌧(b-a)
4⌧(b-a)+2a2 . Then, the solution to this problem

for 0 < ⌧ < ⌧1 is w⇤(⌧) = 1
2 ± 1

2

r
1- 1

1+ a2
2⌧(b-a)

. Furthermore, the condition b - a > 1-w
w

implies that w > 1
1+b-a . Then, for each ⌧ in [0, ⌧1), we have w⇤(⌧) = 1

2 + 1
2

r
1- 1

1+ a2
2⌧(b-a)

.

For the second term, we note that for a given ⌧ with ⌧1 6 ⌧ < ⌧2, it follows that q 0(w) =

a + ⌧(b - a) - 1
2 . This function is strictly increasing for

1
2-a
b-a < ⌧ such that w⇤(⌧) = 1 in

this region; and q 0(w) is strictly decreasing for
1
2-a
b-a > ⌧ such that w⇤(⌧) = 1

1+b-a given the

constraint w̃⇤(⌧) > 1
1+b-a entailed by the condition b- a > 1-w̃⇤(⌧)

w̃⇤(⌧) .

For the third term given by ⌧ > ⌧2, the relevant quantile function is q(⌧;w) = wb +

(1 - w) -
p
2(1- ⌧)w(1-w)(b- a) and the first derivative with respect to w is q 0(w) =

b - 1 -
q

(1-⌧)(b-a)
2w(1-w) (1 - 2w). This function is strictly positive implying that w⇤(⌧) = 1 in
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this case. Then,

w̃⇤(⌧) =

8
>>>>>><

>>>>>>:

1
2 + 1

2

r
1- 1

1+ a2
2⌧(b-a)

, 0 6 ⌧ < ⌧1
1

1+b-a , ⌧1 6 ⌧ < min(max(
1
2-a
b-a , ⌧1), ⌧2)

1, min(max(
1
2-a
b-a , ⌧1), ⌧2) 6 ⌧ < ⌧2

1, ⌧ > ⌧2,

with ⌧1 = FS(w̃⇤(⌧)a+ (1- w̃⇤(⌧))) and ⌧2 = FS(w̃⇤(⌧)b).

Similarly, for b - a 6 1-w
w , the quantile function is (38) and the first regime corresponds

to 0 < ⌧ < e⌧1 with e⌧1 = FS(wb). The first order conditions of q(⌧;w) obtained from (38) yield

the same condition as before: w⇤(⌧) = 1
2±

1
2

r
1- 1

1+ a2
2⌧(b-a)

. The condition w 6 1
1+b-a for 0 6

⌧ < e⌧1 implies that the optimal weight function in this regime is w⇤(⌧) = 1
2 -

1
2

r
1- 1

1+ a2
2⌧(b-a)

.

For the second term, we note that for a given ⌧ with e⌧1 6 ⌧ < e⌧2, it follows that q 0(w) =
a+b
2 - ⌧. This function is strictly increasing for a+b

2 > ⌧ such that w⇤(⌧) = 1
1+b-a given the

constraint w⇤(⌧) 6 1
1+b-a ; q

0(w) is strictly decreasing for a+b
2 < ⌧ such that w⇤(⌧) = 0.

For the third term given by ⌧ > e⌧2, the relevant quantile function is q(⌧;w) = wb +

(1 - w) -
p
2(1- ⌧)w(1-w)(b- a) and the first derivative with respect to w is q 0(w) =

b - 1 -
q

(1-⌧)(b-a)
2w(1-w) (1 - 2w). This function is strictly negative implying that w⇤(⌧) = 0 in

this case. Then,

w̃⇤(⌧) =

8
>>>>><

>>>>>:

1
2 - 1

2

r
1- 1

1+ a2
2⌧(b-a)

, 0 6 ⌧ < e⌧1

1
1+b-a , e⌧1 6 ⌧ < min(max(a+b

2 , e⌧1), e⌧2)
0, min(max(a+b

2 , e⌧1), e⌧2) 6 ⌧ < e⌧2
0, ⌧ > e⌧2,

with e⌧1 = FS(w̃⇤(⌧)b) and e⌧2 = FS(w̃⇤(⌧)a+ (1- w̃⇤(⌧))).

C Numerical simulation study

This Appendix presents additional results on the optimal asset allocation under quantile pref-

erences (QP) for a portfolio Sw = wX + (1 - w)Y given by the mixture of two continuous

random variables X and Y, which are chosen from di↵erent distribution functions. For illustra-

tive purposes, we consider pairs of Gaussian and Chi-squared random variables, under mutual

independence and also with dependence. These results are also compared with the optimal

asset allocation obtained under EU. Numerical computation of the portfolios are as described

in Section 3.4.
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C.1 Independent and identically distributed random variables

Two Chi-Squared independent and identically distributed random variables

To illustrate the optimal portfolio allocation problem for asymmetric distributions, we inves-

tigate the case of two independent and identically distributed standard Chi-squared distri-

butions, X and Y. Under risk aversion, the iid assumption is su�cient to guarantee that

the optimal portfolio choice of a EU individual will be a fully diversified portfolio given by

w⇤ = 0.5. For QP, the same result holds true for values of ⌧ identified with risk aversion.

The left panel of Figure 16 shows that the family of distribution functions FSw satisfies the

single-crossing condition, see Figure 1 illustrating this condition. The right panel of Figure

16 shows the optimal portfolio allocation is divided into two regions: a first region given by

bw⇤
n(⌧) = 0.5, for ⌧ 6 ⌧0 ⇡ 0.80, and a second region given by bw⇤

n(⌧) = {0, 1}, for ⌧ > ⌧0. The

shift in the cut-o↵ point ⌧0 compared to ⌧0 = 0.5 is due to the asymmetry of the Chi-squared

distribution.
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Figure 16: X, Y ⇠ �21. Left box plots the CDF of Sw. Right box plots QP portfolio selection.

C.2 Independently distributed random variables

Two Gaussian independent random variables with di↵erent variances

We extend the Gaussian case discussed above and consider the case of independent random

variables X and Y with di↵erent variances. Let X ⇠ N(0, 1) and Y ⇠ N(0, 2), independent of

each other. In this case Y is a mean-preserving spread of the random variable X. This observa-

tion implies that X second order stochastically dominates Y and, using Fishburn (1977), X is

preferred to Y for EU individuals endowed with an increasing and concave utility function. We

can extend this result to derive the optimal portfolio allocation of a EU risk averse individual.

In this case, the combination Sw⇤ with w⇤ = 2/3 has zero mean and minimizes the variance of

the family of random variables Sw. This combination second order stochastically dominates
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any other convex combination including X and Y. Then, using Fishburn (1977), Sw⇤ is the

optimal strategy for EU individuals endowed with an increasing and concave utility function.

For individuals endowed with QP, we note that condition (11) is satisfied for w⇤ = 2/3.

Then, Proposition 3.13 implies that the optimal combination of a QP individual is w⇤ = 2
3 for

⌧ 6 ⌧0, with ⌧0 = 1
2 . This result is illustrated in the numerical exercise on the right panel of

Figure 17. Diversification takes place for ⌧ 6 1
2 and no diversfication is the optimal result for

⌧ > 1
2 .
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Figure 17: X ⇠ N(0, 1) and Y ⇠ N(0, 2). Left panel plots the CDF of Sw. Right panel plots QP

portfolio selection.

Two Gaussian independent random variables with di↵erent means

Consider now the case of two independent Gaussian random variables with di↵erent means.

Let X ⇠ N(1, 1) and Y ⇠ N(1.5, 1), independent of each other. In this case the random variable

Y first order stochastically dominates the random variable X. In this scenario the optimal

portfolio decision of an EU individual has to be calculated for each utility function separately

because it depends on how the individual faces the trade-o↵ between risk and return.

The results for the QP case are provided in Figure 18. The results show the presence of an

interior solution for ⌧ 6 ⌧0, with ⌧0 around 0.30, and a corner solution bw⇤
n(⌧) = 0 for ⌧ > 0.30.

The solution in the right tail of the distribution is rationalized by the first order stochastic

dominance of Y over any other convex combination of X and Y for ⌧ su�ciently large.

C.3 Dependent random variables

We study now the case of two dependent random variables. We di↵erentiate between symmetric

and asymmetric random variables.

55



�
��

��
��

��
�

WD
X

�� �� � � � �
SRUWIROLR�YDOXH

Z �
Z �
Z ��
Z ��
Z ��
Z ��
Z ��
Z ��
Z ��
Z ��
Z �� �

��
��

��
��

��
��

��
��

��
�

Z
�IR
U�4

8

� �� �� �� �� ���
WDX

Figure 18: X ⇠ N(1, 1) and Y ⇠ N(1.5, 1). Left box plots the CDF of Sw. Right box plots QP portfolio

selection.
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Figure 19: (X, Y) ⇠ N(0,⌃) with ⌃ = [1 0.5; 0.5 1]. Left box plots CDF of Sw. Right box plots QP

portfolio selection.

Two Gaussian dependent random variables with same mean

In this exercise, we consider a bivariate Normal random variable (X, Y) with covariance matrix

⌃ = [1 ⇢; ⇢ 1], where ⇢ = 0.5 is the correlation parameter. This scenario is rationalized by

Proposition 3.13. More specifically, condition (11) is satisfied for bw⇤
n(⌧) = 0.5, such that an

interior solution is obtained for ⌧ 6 ⌧0 = 0.5. This result is observed in Figure 19. For values

of ⌧ greater than 0.5 the optimal solution is, indistinctively, bw⇤
n(⌧) = {0, 1}.

Chi-squared dependent random variables

We complete the case of dependent assets with asymmetric distribution functions. Suppose

that X ⇠ �21 + 1 and Y ⇠ �22 + X - 2 two dependent assets with expected value equal to two

in both cases. For QP individuals, the optimal portfolio allocation has an interior solution for

56



�
��

��
��

��
�

WD
X

� � �� �� ��
SRUWIROLR�YDOXH

Z �
Z �
Z ��
Z ��
Z ��
Z ��
Z ��
Z ��
Z ��
Z ��
Z �� �

��
��

��
��

��
��

��
��

��
�

Z
�IR
U�4

8

� �� �� �� �� ���
WDX

Figure 20: X ⇠ �21+ 1 and Y ⇠ �22+X- 2. Left box plots the CDF of Sw. Right box plots QP portfolio

selection.

⌧ 6 ⌧0, with ⌧0 = 0.60. The presence of an interior solution for small values of ⌧ is rationalized

by Theorem 1. However, in contrast to previous examples, assumptions 3 is not satisfied

implying that the optimal portfolio allocation varies over ⌧ and there is no separation between

risk aversion and risk loving behavior. Figure 20 reports the optimal portfolio allocation in

this case.

C.4 Optimal portfolio allocation when there is a risk-free asset

Building upon previous insights of the QP theory in Section 3.2, we can extend the mutual

fund separation theorem to the case of one risk free asset with returns r̄ and two risky assets

R1, R2 with distribution functions FR1 , FR2 , respectively, and such that FR1 crosses FR2 from

below at point x12. This assumption implies that R2 is riskier than R1. The portfolio return

is defined by the convex combination Rp = w0r̄+w1R1 +w2R2, with w0 +w1 +w2 = 1. The

investor’s optimization problem is

arg max
{w0,w1,w2}

Q⌧[w0r̄+w1R1 +w2R2]. (39)

In this case the individual’s optimal portfolio choice is given by the risk-free rate when

Q⌧[Rp(w)] < r̄, for any combination of weights w = {w0,w1,w2} that is di↵erent from

w⇤ = {w⇤
0 = 1,w⇤

1 = w⇤
2 = 0}. For higher quantiles, the solution to the maximization problem

(39) is, in principle, quantile-specific. We illustrate this scenario by simulating the returns on

three assets with returns r̄, R1 ⇠ N(µ1, 1) and R2 ⇠ N(µ2, 1). The solution for 0 6 ⌧ 6 1 is

obtained by simulating n = 10, 000 realizations of the random variables.

The left panel of Figure 21 reports the case r̄ = 0.5, µ1 = µ2 = 0. The right panel considers

the case r̄ = 0.25, µ1 = µ2 = 0. As discussed above, for Q⌧[Rp(w)] < r̄, the optimal allocation
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Figure 21: Rp = w0r̄+w1R1 +w2R2, with r̄ constant, R1 ⇠ N(µ1, 1) and R2 ⇠ N(µ2, 1). Left box plots

r̄ = 0.5, µ1 = µ2 = 0. Right box plots r̄ = 0.25, µ1 = µ2 = 0.

to the portfolio is given by investing on the risk-free asset. For the parameterization r̄ = 0.5,

µ1 = µ2 = 0 - left panel - the value of ⌧ that yields the condition Q⌧[Rp(w⇤)] = r̄ is ⌧0 ⇡ 0.7.

For values of ⌧ > 0.7, the optimal allocation to the risk-free asset is zero, and the QP individual

is indi↵erent between assets 1 and 2. The right panel characterized by a smaller risk-free return

(r̄ = 0.25) presents a similar outcome. In this scenario the value of ⌧ that satisfies the condition

Q⌧[Rp(w⇤)] = r̄ is ⌧0 ⇡ 0.6. For higher quantiles, the optimal portfolio allocation is the same

as for the left panel and entails a zero allocation to the risk-free rate.17

17The case of two risky assets with di↵erent means is available from the authors upon request.
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