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1 Introduction

An important problem, frequently glossed over in most applications of Game
Theory is how to address the fact that any agent participates in different inter-
actions, each of which interpreted as a game. The outcomes in these interactions
impact on the payoffs of the agent, and thus create incentives for behaving dif-
ferently as when participating in a single game with other agents. The result
can be seen as a larger game, obtained by composing the particular games.

The goal of this contribution is to analyze the mathematical conditions for
the compositionality of games. In this initial version we will consider only
games in strategic form and how to compose them to obtain larger strategic
form games. In future versions we will tackle extensive form games, instead of
their strategic versions. Furthermore, we will analyze resource allocation games.
They will contribute to the extension of our results to general interactive sys-
tems, making them applicable as general models of social and economic systems.

We will show how to formalize the cases in which players participate in sev-
eral games, composing their behaviors in each of the individual games. A basic
category of games allows the definition of a symmetric monoidal structure which
captures the characterization of new games up from smaller ones (starting from
the individual players). A hypergraph category based on this structure includes
a fundamental component, namely a lax monoidal functor, defining an algebra
of equilibria that parallels the compositional features of the monoid of games.!

The presentation in this paper is self-contained, although we are aware that
most of the mathematical apparatus applied in this investigation is not familiar

*Thanks are due to David Spivak, Gianluca Caterina and Jonathan Gangle for discussions
and suggestions on this and related topics. The usual disclaimer applies.
LA closely related research, based on a different categorical treatment can be found in [2].



for most economists. We hope this will serve as a primer in the subject and
encourage further research on this and related topics. In turn, the elements of
Game Theory used in this article are quite basic, but we have chosen to adopt
the formal language used in [4].

2 Mathematical Preliminaries

There are various mathematical notions that are relevant for our treatment.
They provide a framework for the connection (“wiring up”) generic entities. The
first one is the concept of a cospan.

Consider a central objects G with input and output ports, X and Y respectively.
G is called the apez of the cospan, while X and Y are its feet. The cospan can

be written as: X 2> G £ Y. Suppose now that another cospan shares Y with

the previous one: Y a7, These cospans can be composed by connecting
the two apexes to yield a new one, with input X and output Z.

In this way, a cospan X EN G & Y can be seen as a morphism between X
and Y. In order to be such, the appex and the feet must be objects in a cat-
egory C. Furthermore, we need (as the identity morphism) to define a cospan

A li? A 1&* A for each object A. This is ensured by the very fact that C is a
category.

This definition of a cospan as a morphism allows us to define a category
Cospan, in which the objects are the same as in C, while the morphisms are
cospans among objects in C. We need to ensure that they can be composed.
This obtains if pushouts can be defined in the basis category C.

Since we also want compositions in parallel, besides a composition we need
to be able to define a monoidal operation + between cospans. For this is enough
to have both an initial object and pushouts between any pair of objects in C.

If these conditions are fulfilled, Cospan, is a monoidal symmetric category,
i.e. it has the following components:

e An initial object @, such that for each object A in C there exists a unique
morphism () 5 A

e The coproduct U in C, provides the definition of the functor (monoidal
product) + : Cospan, x Cospan, — Cospan,.

e For each pair of objects A and B, A 4+ B is isomorphic to B + A.

This is ensured if pushouts and an initial object exist in C. This is the case
if it is a category with finite colimits. One important case arises when C is



FinSet, whose objects are finite sets. We can restrict our attention further to
typed finite sets (TFS,). We define a set A of types and each object in TFS, is
(X, 7x) such that 7x : X — A. Each X can be interpreted a set of ports and 7x
indicates the type of each port. It is known that TFS, has also finite colimits [3].

We will use W, to denote Cospanypg,. Its objects are called interfaces.

The morphisms (cospans) X NN L2y are called wiring diagrams and the apex
N is the family of connections. We can thus connect three objects X, Xo and
X3 to obtain a new object Y as a cospan X; + X5 + X3 RNoly.

A Hypergraph category ([1]) is a monoidal symmetric category in which the
wiring diagrams constitute networks (that is, cables can be joined and can
bifurcate).> It can be described as (A, H) where A is a class of types and
H : W) — Set is a laz functor such that, given an operation ® in Set,
H(X)® HY) — H(X +Y) and, given the unit of object I, I — H (D).

The importance of the existence of a lax functor on W, is that in Set we can
represent behaviors associated to the structures represented as wiring diagrams.
This is particularly true in the case of Wjy.

3 A Categorical Representation of Games

Let us consider a category G of games. Each object GG in the category corre-
sponds to a game G = ((Ig, Sa, Oq, pa), 7G), where

e (Ig,S¢,0¢, pg) is a game form:

— I is the class of players.

- Sg = HieIc S& is the strategy set of the game, where S& C S; is the
set of strategies that player i can deploy in game G, for each i € Ig.?

— Og is the class of outcomes of the game and pg : S¢ — Og is a
one-to-one function that associates each profile of strategies in the
game with one of its outcomes.

e ¢ = [licr 7 is a profile of payoff functions, where 7& : Og — R¥ is the
payoff function of player i in game G, for each i € I5.

A game is defined in terms of the interactions of players. Each player can be
seen as been described in terms of the strategies she can play and the payoffs she
can receive from the results of her action (jointly with those of the other players).

2Technically, each object is equipped with a special commutative Frobenius monoid. In the
instances to be considered here, this condition is automatically satisfied.

38; is the set of all the strategies that player i can play in the games in which she partici-
pates.



We can define a category G, where the objects are games. Given two games
G = <(Ig,Sg,Og,pG),7Tg> and G = <(IG’7SG’7OG”7PG’)77TG'>,

a morphism of games
G—G

is such that:
o Io Clgy.
e S¢ C 8Y for each i € Ig.
e There exist two functions:

— an inclusion pgg' : SO = Og¢ for SOg' C O
— a projection pgg' : Sq — Sg, ie. pgg’ (s§ .. s sy €
Hielc Sz‘G/ =5a.
These functions verify the following condition:

— Forevery s’ € Sgv, s = pgg' (s') € Sgissuch that pg(s) = pgg’ (pa:(s)).

Thus, if a morphism G — G’ exists, G can be conceived as a subgame form

of G'.

To complete the characterization of G notice that it is immediate that we
can define pushouts and an initial object in this category:

e Pushouts: Consider three objects G, G’ and G” and morphisms G EN G’
and G % G”. Then, take the coproduct of G’ and G”, denoted G’ + G,
obtained as the direct sums of the strategies sets and the outcomes of both
games. By identifying the subgame forms of G’ and G” corresponding to
G we obtain the pushout of

o L a &% o

e Initial object: Consider the empty game G?, where I o = () and conse-
quently Sgo = ) and Og = () (thus 7mge must be the empty function). It
is immediate to see that G® — G for every G in G.

Then we have
Proposition 1 G is a category with colimits.

Since G is a category with colimits we can define cospans in it. Consider
again three objects G, G’ and G” and two morphisms G 4G" & @' This is
called a cospan from G to G’. The interpretation of such a cospan is that G
and G’ are subgame forms of the same game (G”).



4 Games as Boxes

We can conceive each game G in G as a boz, G = (inG,outG), where in® and
out® are, respectively input and output ports. in® has type Og, i.e. the input
is an outcome of G. In turn, the out® port has type S¢, being each output a
profile in G.

Notice that each player ¢ can be conceived as a game (ini,outi)7 where in’
has type Ug.icr, Oc and out’ has type S;.

Up to this point, our definition of morphisms in G does not involve the
payoffs. They can be incorporated by redefining the games as modal boxes,
in which an additional component are the internal states of the game. More
precisely, given any G and the class of its internal states, X, we can identify
G as a triple (in®, out®, Ya), associated to two correspondences:

e payoff: ¢ : in® x B¢ — R*9, such that for the vector o € in® (the
vector of all possible inputs of G, each entry being an outcome of the
game) and state o, ¢ (0,0) = (15(0))oco.- That is, it yields the vector
of payoffs corresponding to all the outcomes of G.

e choice: ¢ : X — out®, such that for any state o, PL(0) = s € out”
(the class of all possible strategy profiles in S¢g) is a profile of strategies
that may be chosen at that state.

Particularly relevant for our analysis is the definition of the internal states
of each player i, ;. Consider a game G such that i € I, and a sequence of
morphisms in G

GV Gl— ... =Gt ar

where GY is a game in which i is the only player and G = G?. We identify
the state of player i when playing G as a sequence oy =(0},...,0'_;), where
oi € S, for k =0...,n — 1. Then, a distinguished object ol € %; is defined,
such that of, is one of its initial segments.*

Therefore, for each game G, 0% can be instantiated yielding the correspond-
ing state, and therefore the payoffs and the choices of player i in the game. The
state o¢ of the entire game just obtains as the profile of states of its players.

A simple example is 0%, yielding as payoff for i the product of the payoffs
she gets in the subgames of G™. This case will be elaborated a bit more in
Example 1, below.

4Thus, % has a forest structure.



5 An Operadic View of Games

We can define the category of cospans in G, denoted cospang which has a sym-
metric monoidal structure. Its objects are the same as those of G and a mor-

phism G MG isa cospan from G to G’, indicating that there exists a game of
which G and G’ are subgame forms. Thus, morphisms in cospang are actually
isomorphisms.

Given two morphisms in cospang, G J @ and G' % G there exists a
morphism G 9°f G" that obtains as a composition of the corresponding cospans.

The monoidal structure of cospang is given by:

e The unit is G, the initial object in G.

e The monoidal product of G and G/, is the coproduct G + G'.

We now present a diagram language for open games. We start by considering
the symmetric monoidal category Wg. By definition, we have that:

Wg = cospang

Each object, i.e. a game G, is seen as a (inG,outG,Zg>—labeled interface,
satisfying ¢ and ¢Z. On the other hand, morphisms G — C < G’, are called
(in, out, ¥3)-labeled wiring diagrams. The interpretation is that C' is the overar-
ching game that connects the subgames (not just the game forms) G and G'.

We write ¢ : G1,Ga,...,Gn — G to denote the wiring diagram ¢ : G| +
Go+ ...+ G, — G. We can, in turn see this as

Gi+Got..+G, Hola
which indicates that, being f and f isomorphisms,

Proposition 2 G is the minimal game that includes the direct sum of G1, ..., Gy
as a subgame.

6 Hypergraph Categories and Equilibria

We define a hypergraph category (G,Eq) with Eq : Wg — [], S;, such that, for
every object G in Wg, Eq(G) is a class of vectors in [[,.; S, the strategy set
of game G. We assume that Eq(G) is a class of equilibria of G, for some no-
tion of equilibrium (as for instance, dominant strategies equilibrium, admissible
strategies, or Nash equilibrium).

Example 1 Consider two games, G between players 1 and 2

5This a Battle of the Sexes game, where S; = So = {Bx, Bll}.



Player 2
Bx Bl
0,0

Bx
Bl | 0,0 | S

Player 1

and G’ between players 2 and 3.5

Player 3
C D
Player 2 2,2 | 0.3
3,0

In red we have highlighted Fq(G) = {(Bz,Bz),(Bll, Bll)} and Eq(G’) =
{(D,D)}, where Eq corresponds to Nash equilibrium.”

Let us represent now G + G'. We start by building its corresponding game
form. We obtain two tables, where the first one corresponds to player 3 choosing

C:

Player 2
Bx/C Bx/D BIl/C BIl/D
Player 1 Bx | o011 01,2 01,3 01,4
Bll | o021 022 02,3 02,4

and another corresponding to player 3 choosing D:

Player 2
Bx/C Bx/D BIl/C BIl/D
Player 1  Bx | o}, 0o 01 3 01 4
Bll 051 0/2,2 095 0’2,4

Here, for instance, (Bz, Bz/C, C), yielding the outcome o1 1, indicates that 1
and 2 go to Bozx and 2 and 3 Cooperate. On the other hand, (Bz, Bz/C, D), with
result 0'1’1 indicates that, again 1 and 2 go to Box, but while 2 keeps Cooperating,
3 Defects. The other entries can be interpreted likewise.

8A Prisoner’s Dilemma, where Sy = S3 = {C, D}.
"Notice that here player 2, participates in two games.



O

Suppose that the internal states of the players, ol 02 and o2 are such that
instantiated on G + G’ yield the following payoffs and choices:

If 3 chooses C:

Player 2
Bx/C Bx/D BIl/C BIl/D
Player 1 Bx | 2,1x2,2 | 2,1x3,0|0,0x2,2{0,0x3,0
Bll | 0,0x2,2|0,0x3,0]|1,2x2,2]1,2x3,0
while if 3 chooses D:
Player 2
Bx/C Bx/D BIl/C BIl/D
Plager 1 Bx | 2,1x0,3 - 0,0x0,3| 0,0x1,1
Bl | 0,0x0,3 | 0,0x1,1 | 1,2x0,3 | AN

In words, players 1 and 3 keep the payoffs they get in the subgames, while
2 takes the product of the payoffs in G and G'. In red, we have highlighted the
equilibria of G + G’, under this specification.

Let us define an operation U such that given two equilibria s € Eq(G) and
s’ € Eq(G"), yields a new profile s/s’ € Eq(G)UEq(G’) verifying that for each
player i € I N Ig/, a new strategy obtains combining s; and s, while in on all
other cases the individual strategies are the same as in G and G’. Furthermore,



7G9C (5/s') = 7C(s) x 7C'(s) for i € Ig N 1B
In our example, since Eq(G + G') = {(Bx, Bx/D, D), (Bll, Bll/D, D)}, we
have that

Eq(G)UEq(G') = Eq(G + G).

This example illustrates the following claim:

Proposition 3 For any pair of games G and G, Eq(G)UEq(G') = Eq(G+G").

Proof: Trivial. If IcNIg =0, G+ G = GUG" with GNG' = ). Thus, each
equilibrium of G+ G’ is just the disjoint combination of equilibria in G and G’.

If, on the other hand, I N Ig # 0, given i € Ig N Ig:, her strategy set
in G+ G is S& x SE', where S& and S&' are her strategy sets in G and G,
respectively. Now suppose that SZG and siG/ are equilibrium strategies of i in the
individual games but that (s&, &

.87 ) does not belong to an equilibrium in G + G'.
Then, there exist an alternative combined strategy (35 EG,) such that on the new

1%
profile w; yields a higher payoff, but since this equilibrium can be decomposed in
two profiles, one in G and the other in G', the payoff of i is the product of the
payoffs over those two profiles. But then either §1G yields a higher payoff than
siG or §1-G/ yields a higher payoff than sZG/ (recall that they are all positive real
numbers). Thus, either siG or siG/ is not an equilibrium in the corresponding
game. Absurd. O

If we denote + the monoidal operation in Wy, if we take ® = U as monoidal
operation in [],S;, Proposition 3 indicates that there exist a trivial natural
1somorphism

Eq(G) ®Eq(G) — Eq(G+G)

Furthermore, taking the unit in [], S; to be the empty set, we have also that
) = Eq(G?), where G? is the initial object in G and thus in Wy.
We have that

Proposition 4 Eq is a lax monoidal functor.

Thus, the corresponding algebra allows to associate the composition of games
with the equilibria of the components.

8An alternative yielding also Proposition 3 obtains if, instead, we take W?OG/(S/S/) =
& (s) + 772-(;/(3,) forielgnNlig.



7 An Alternative Definition of the Lax Functor

Proposition 4 depends critically on the possibility of defining ® in terms of a
function f, defined as follows. Given a player i € I N 15/, a combined strategy
s;/s; is such that for s = (s;,s-;) € Eq(G) and s’ = (s},s"_;) € Eq(G’), satisfy-
ing m;(s/s') = f(x%(s),7% (') and with s/s' € Eq(G + G’'). As we saw above

if f is the arithmetic product or sum, Eq will be indeed a lax monoidal functor.

But this restricts the compositionality of games to just trivial cases. We are
interested in more general and non-obvious cases. In order to do that consider
an alternative characterization of the hypergraph category (G, Eq):

Eq: Wg — [[ i x Ugconje) Se
i
Furthermore, we need another definition of ®:

X : (H SiXUGeObj(g)EG) X (H SiXUGGObj(g)ZG) — HSiX OLg Ya
7 7 i Ge j(G)

such that given two games G and G’ with s € [] S; and og, and § €

[Licr,, Si and ogr we have:

i€l

(5’ UG) ® (5/5 OG/) = (§7 UG+G’) € H S; EG—i—G’
iEIG+G’

where 5 € Sg1¢ is a Nash equilibrium if and only if s and s’ are Nash equilibria
of G and G’ respectively.

® is well-defined. To see this, just recall that, by definition G + G’ obtains
in terms of the game forms of G and G’ (the strategy sets and the outcomes),
allowing different possible internal states and thus payoffs. The view of games
as boxes presented in Section 4 indicates that there exist sequences of internal
states of games, in parallel to sequences of morphisms between games, allowing
to define ogygs, and thus payoffs that make 5 a Nash equilibrium if s and s’
are also equilibria.

We can see that [, S; x UGEObj(Q) 3¢ with ®, defined as above can be
interpreted as a monoidal category, with morphisms defined in terms of those

of G, with ((,0) as its initial object. allows to define Eq in such a way that by
definition:

Proposition 5 FEq is a laz functor satisfying Eq(G + G') = Eq(G) ® Eq(G").

10
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