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1 Introduction

An important problem, frequently glossed over in most applications of Game
Theory is how to address the fact that any agent participates in di�erent inter-
actions, each of which interpreted as a game. The outcomes in these interactions
impact on the payo�s of the agent, and thus create incentives for behaving dif-
ferently as when participating in a single game with other agents. The result
can be seen as a larger game, obtained by composing the particular games.

The goal of this contribution is to analyze the mathematical conditions for
the compositionality of games. In this initial version we will consider only
games in strategic form and how to compose them to obtain larger strategic
form games. In future versions we will tackle extensive form games, instead of
their strategic versions. Furthermore, we will analyze resource allocation games.
They will contribute to the extension of our results to general interactive sys-
tems, making them applicable as general models of social and economic systems.

We will show how to formalize the cases in which players participate in sev-
eral games, composing their behaviors in each of the individual games. A basic
category of games allows the de�nition of a symmetric monoidal structure which
captures the characterization of new games up from smaller ones (starting from
the individual players). A hypergraph category based on this structure includes
a fundamental component, namely a lax monoidal functor, de�ning an algebra
of equilibria that parallels the compositional features of the monoid of games.1

The presentation in this paper is self-contained, although we are aware that
most of the mathematical apparatus applied in this investigation is not familiar

∗Thanks are due to David Spivak, Gianluca Caterina and Jonathan Gangle for discussions
and suggestions on this and related topics. The usual disclaimer applies.

1A closely related research, based on a di�erent categorical treatment can be found in [2].
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for most economists. We hope this will serve as a primer in the subject and
encourage further research on this and related topics. In turn, the elements of
Game Theory used in this article are quite basic, but we have chosen to adopt
the formal language used in [4].

2 Mathematical Preliminaries

There are various mathematical notions that are relevant for our treatment.
They provide a framework for the connection (�wiring up�) generic entities. The
�rst one is the concept of a cospan.

Consider a central objects G with input and output ports, X and Y respectively.
G is called the apex of the cospan, while X and Y are its feet. The cospan can

be written as: X
f→ G

g← Y . Suppose now that another cospan shares Y with

the previous one: Y
h→ G′

l← Z. These cospans can be composed by connecting
the two apexes to yield a new one, with input X and output Z.

In this way, a cospan X
f→ G

g← Y can be seen as a morphism between X
and Y . In order to be such, the appex and the feet must be objects in a cat-
egory C. Furthermore, we need (as the identity morphism) to de�ne a cospan

A
idA→ A

idA← A for each object A. This is ensured by the very fact that C is a
category.

This de�nition of a cospan as a morphism allows us to de�ne a category
CospanC in which the objects are the same as in C, while the morphisms are
cospans among objects in C. We need to ensure that they can be composed.
This obtains if pushouts can be de�ned in the basis category C.

Since we also want compositions in parallel, besides a composition we need
to be able to de�ne a monoidal operation + between cospans. For this is enough
to have both an initial object and pushouts between any pair of objects in C.

If these conditions are ful�lled, CospanC is a monoidal symmetric category,
i.e. it has the following components:

• An initial object ∅, such that for each object A in C there exists a unique

morphism ∅ !→ A.

• The coproduct t in C, provides the de�nition of the functor (monoidal
product) + : CospanC ×CospanC → CospanC .

• For each pair of objects A and B, A+B is isomorphic to B +A.

This is ensured if pushouts and an initial object exist in C. This is the case
if it is a category with �nite colimits. One important case arises when C is
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FinSet, whose objects are �nite sets. We can restrict our attention further to
typed �nite sets (TFSΛ). We de�ne a set Λ of types and each object in TFSΛ is
(X, τX) such that τX : X → Λ. Each X can be interpreted a set of ports and τX
indicates the type of each port. It is known thatTFSΛ has also �nite colimits [3].

We will use WΛ to denote CospanTFSΛ
. Its objects are called interfaces.

The morphisms (cospans) X
f1→ N

f2← Y are called wiring diagrams and the apex
N is the family of connections. We can thus connect three objects X1, X2 and

X3 to obtain a new object Y as a cospan X1 +X2 +X3
g1→ C

g2← Y .

A Hypergraph category ([1]) is a monoidal symmetric category in which the
wiring diagrams constitute networks (that is, cables can be joined and can
bifurcate).2 It can be described as (Λ, H) where Λ is a class of types and
H : WΛ → Set is a lax functor such that, given an operation ⊗ in Set,
H(X)⊗H(Y )→ H(X + Y ) and, given the unit of object I, I → H(∅).

The importance of the existence of a lax functor onWΛ is that in Set we can
represent behaviors associated to the structures represented as wiring diagrams.
This is particularly true in the case of WΛ.

3 A Categorical Representation of Games

Let us consider a category G of games. Each object G in the category corre-
sponds to a game G = 〈(IG, SG,OG, ρG), πG〉, where

• (IG, SG,OG, ρG) is a game form:

� IG is the class of players.

� SG =
∏

i∈IG S
G
i is the strategy set of the game, where SG

i ⊆ Si is the

set of strategies that player i can deploy in game G, for each i ∈ IG.3

� OG is the class of outcomes of the game and ρG : SG → OG is a
one-to-one function that associates each pro�le of strategies in the
game with one of its outcomes.

• πG =
∏

i∈I π
G
i is a pro�le of payo� functions, where πG

i : OG → R+ is the
payo� function of player i in game G, for each i ∈ IG.

A game is de�ned in terms of the interactions of players. Each player can be
seen as been described in terms of the strategies she can play and the payo�s she
can receive from the results of her action (jointly with those of the other players).

2Technically, each object is equipped with a special commutative Frobenius monoid. In the
instances to be considered here, this condition is automatically satis�ed.

3Si is the set of all the strategies that player i can play in the games in which she partici-
pates.
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We can de�ne a category G, where the objects are games. Given two games

G = 〈(IG, SG,OG, ρG), πG〉 and G′ = 〈(IG′ , SG′ ,OG′ , ρG′), πG′〉,

a morphism of games
G→ G′

is such that:

• IG ⊆ IG′ .

• SG
i ⊆ SG′

i for each i ∈ IG.

• There exist two functions:

� an inclusion p
OG′
OG

: SOG′ ↪→ OG for SOG′ ⊆ OG′

� a projection p
SG′
SG

: SG′ → SG, i.e. p
SG′
SG

(sG
′

1 , . . . , sG
′

i , . . . , s|IG′ |) ∈∏
i∈IG S

G′

i = SG.

These functions verify the following condition:

� For every s′ ∈ SG′ , s = p
SG′
SG

(s′) ∈ SG is such that ρG(s) = p
OG′
OG

(ρG′(s′)).

Thus, if a morphism G→ G′ exists, G can be conceived as a subgame form
of G′.

To complete the characterization of G notice that it is immediate that we
can de�ne pushouts and an initial object in this category:

• Pushouts: Consider three objects G, G′ and G′′ and morphisms G
f→ G′

and G
g→ G′′. Then, take the coproduct of G′ and G′′, denoted G′ +G′′,

obtained as the direct sums of the strategies sets and the outcomes of both
games. By identifying the subgame forms of G′ and G′′ corresponding to
G we obtain the pushout of

G′
f← G

g→ G′′

• Initial object: Consider the empty game G∅, where IG∅ = ∅ and conse-
quently SG∅ = ∅ and OG = ∅ (thus πG∅ must be the empty function). It
is immediate to see that G∅ → G for every G in G.

Then we have

Proposition 1 G is a category with colimits.

Since G is a category with colimits we can de�ne cospans in it. Consider

again three objects G, G′ and G′′ and two morphisms G
f→ G′′

g← G′. This is
called a cospan from G to G′. The interpretation of such a cospan is that G
and G′ are subgame forms of the same game (G′′).
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4 Games as Boxes

We can conceive each game G in G as a box, G = (inG, outG), where inG and
outG are, respectively input and output ports. inG has type OG, i.e. the input
is an outcome of G. In turn, the outG port has type SG, being each output a
pro�le in G.

Notice that each player i can be conceived as a game (ini, outi), where ini

has type ∪G:i∈IGOG and outi has type Si.

Up to this point, our de�nition of morphisms in G does not involve the
payo�s. They can be incorporated by rede�ning the games as modal boxes,
in which an additional component are the internal states of the game. More
precisely, given any G and the class of its internal states, ΣG, we can identify
G as a triple 〈inG, outG,ΣG〉, associated to two correspondences:

• payo�: φ1
G : īn

G × ΣG → R+OG , such that for the vector o ∈ īn
G

(the
vector of all possible inputs of G, each entry being an outcome of the
game) and state σ, φ1

G(o, σ) = (πi
G(o))o∈OG

. That is, it yields the vector
of payo�s corresponding to all the outcomes of G.

• choice: φ2
G : ΣG → ¯out

G
, such that for any state σ, φ2

G(σ) = s ∈ ¯out
G

(the class of all possible strategy pro�les in SG) is a pro�le of strategies
that may be chosen at that state.

Particularly relevant for our analysis is the de�nition of the internal states
of each player i, Σi. Consider a game G such that i ∈ IG, and a sequence of
morphisms in G

G0
i → G1

i → . . . → Gn−1
i → Gn

i

where G0
i is a game in which i is the only player and G = Gn

i . We identify
the state of player i when playing G as a sequence σi

G =〈σi
0, . . . , σ

i
n−1〉, where

σi
k ∈ ΣGk

i
, for k = 0 . . . , n− 1. Then, a distinguished object σi

∗ ∈ Σi is de�ned,

such that σi
G is one of its initial segments.4

Therefore, for each game G, σi
∗ can be instantiated yielding the correspond-

ing state, and therefore the payo�s and the choices of player i in the game. The
state σG of the entire game just obtains as the pro�le of states of its players.

A simple example is σi
Gn yielding as payo� for i the product of the payo�s

she gets in the subgames of Gn. This case will be elaborated a bit more in
Example 1, below.

4Thus, σi
∗ has a forest structure.
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5 An Operadic View of Games

We can de�ne the category of cospans in G, denoted cospanG which has a sym-
metric monoidal structure. Its objects are the same as those of G and a mor-

phism G
h→ G

′
is a cospan from G to G′, indicating that there exists a game of

which G and G′ are subgame forms. Thus, morphisms in cospanG are actually
isomorphisms.

Given two morphisms in cospanG , G
f→ G′ and G′

g→ G′′ there exists a

morphism G
g◦f→ G′′ that obtains as a composition of the corresponding cospans.

The monoidal structure of cospanG is given by:

• The unit is G∅, the initial object in G.

• The monoidal product of G and G′, is the coproduct G+G′.

We now present a diagram language for open games. We start by considering
the symmetric monoidal category WG . By de�nition, we have that:

WG = cospanG

Each object, i.e. a game G, is seen as a 〈inG, outG,ΣG〉-labeled interface,
satisfying φ1

G and φ2
G. On the other hand, morphisms G→ C ← G′, are called

〈in, out,Σ〉-labeled wiring diagrams. The interpretation is that C is the overar-
ching game that connects the subgames (not just the game forms) G and G′.

We write ψ : G1, G2, . . . , Gn → Ḡ to denote the wiring diagram φ : G1 +
G2 + . . .+Gn → Ḡ. We can, in turn see this as

G1 +G2 + . . .+Gn
f→ C

f̄← Ḡ

which indicates that, being f and f̄ isomorphisms,

Proposition 2 Ḡ is the minimal game that includes the direct sum of G1, . . . , Gn

as a subgame.

6 Hypergraph Categories and Equilibria

We de�ne a hypergraph category 〈G,Eq〉 with Eq : WG →
∏

i Si, such that, for
every object G in WG , Eq(G) is a class of vectors in

∏
i∈I S

G
i , the strategy set

of game G. We assume that Eq(G) is a class of equilibria of G, for some no-
tion of equilibrium (as for instance, dominant strategies equilibrium, admissible
strategies, or Nash equilibrium).

Example 1 Consider two games, G between players 1 and 2:5

5This a Battle of the Sexes game, where S1 = S2 = {Bx,Bll}.
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Player 2

Bx Bll

Player 1
Bx 1, 1 0, 0

Bll 0, 0 1, 2

and G′ between players 2 and 3:6

Player 3

C D

Player 2
C 2, 2 0, 3

D 3, 0 1, 1

In red we have highlighted Eq(G) = {(Bx,Bx), (Bll, Bll)} and Eq(G′) =
{(D,D)}, where Eq corresponds to Nash equilibrium.7

Let us represent now G + G′. We start by building its corresponding game
form. We obtain two tables, where the �rst one corresponds to player 3 choosing
C:

Player 2

Bx/C Bx/D Bll/C Bll/D

Player 1 Bx o1,1 o1,2 o1,3 o1,4

Bll o2,1 o2,2 o2,3 o2,4

and another corresponding to player 3 choosing D:

Player 2

Bx/C Bx/D Bll/C Bll/D

Player 1 Bx o′1,1 o′1,2 o′1,3 o′1,4
Bll o′2,1 o′2,2 o′2,3 o′2,4

Here, for instance, 〈Bx,Bx/C,C〉, yielding the outcome o1,1, indicates that 1
and 2 go to Box and 2 and 3 Cooperate. On the other hand, 〈Bx,Bx/C,D〉, with
result o′1,1 indicates that, again 1 and 2 go to Box, but while 2 keeps Cooperating,
3 Defects. The other entries can be interpreted likewise.

6A Prisoner's Dilemma, where S2 = S3 = {C,D}.
7Notice that here player 2, participates in two games.
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BoS

PD

1 1

2 2

3 3

4 4

G′

OBOS

OPD

OG′

Suppose that the internal states of the players, σ1
∗, σ

2
∗ and σ3

∗ are such that
instantiated on G+G′ yield the following payo�s and choices:

If 3 chooses C:

Player 2

Bx/C Bx/D Bll/C Bll/D

Player 1 Bx 2, 1× 2, 2 2, 1× 3, 0 0, 0× 2, 2 0, 0× 3, 0

Bll 0, 0× 2, 2 0, 0× 3, 0 1, 2× 2, 2 1, 2× 3, 0

while if 3 chooses D:

Player 2

Bx/C Bx/D Bll/C Bll/D

Player 1 Bx 2, 1× 0, 3 2, 1× 1, 1 0, 0× 0, 3 0, 0× 1, 1

Bll 0, 0× 0, 3 0, 0× 1, 1 1, 2× 0, 3 1, 2× 1, 1

In words, players 1 and 3 keep the payo�s they get in the subgames, while
2 takes the product of the payo�s in G and G′. In red, we have highlighted the
equilibria of G+G′, under this speci�cation.

Let us de�ne an operation ∪̂ such that given two equilibria s ∈ Eq(G) and
s′ ∈ Eq(G′), yields a new pro�le s/s′ ∈ Eq(G)∪̂Eq(G′) verifying that for each
player i ∈ IG ∩ IG′ , a new strategy obtains combining si and s

′
i, while in on all

other cases the individual strategies are the same as in G and G′. Furthermore,
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πG∪̂G′

i (s/s′) = πG
i (s)× πG′

i (s
′
) for i ∈ IG ∩ IG′ .8

In our example, since Eq(G + G′) = {(Bx, Bx/D, D), (Bll, Bll/D, D)}, we
have that

Eq(G)∪̂Eq(G′) = Eq(G+G′).

This example illustrates the following claim:

Proposition 3 For any pair of games G and G′, Eq(G)∪̂Eq(G′) = Eq(G+G′).

Proof: Trivial. If IG ∩ IG′ = ∅, G+G′ = G ∪G′ with G ∩G′ = ∅. Thus, each
equilibrium of G+G′ is just the disjoint combination of equilibria in G and G′.

If, on the other hand, IG ∩ IG′ 6= ∅, given i ∈ IG ∩ IG′ , her strategy set
in G + G′ is SG

i × SG′

i , where SG
i and SG′

i are her strategy sets in G and G′,

respectively. Now suppose that sGi and sG
′

i are equilibrium strategies of i in the

individual games but that (sGi , s
G′

i ) does not belong to an equilibrium in G+G′.

Then, there exist an alternative combined strategy (ŝGi , ŝ
G′

i ) such that on the new
pro�le πi yields a higher payo�, but since this equilibrium can be decomposed in
two pro�les, one in G and the other in G′, the payo� of i is the product of the
payo�s over those two pro�les. But then either ŝGi yields a higher payo� than

sGi or ŝG
′

i yields a higher payo� than sG
′

i (recall that they are all positive real

numbers). Thus, either sGi or sG
′

i is not an equilibrium in the corresponding
game. Absurd. �

If we denote + the monoidal operation in WG , if we take ⊗ = ∪̂ as monoidal
operation in

∏
i Si, Proposition 3 indicates that there exist a trivial natural

isomorphism

Eq(G)⊗ Eq(G
′
) → Eq(G+G

′
)

Furthermore, taking the unit in
∏

i Si to be the empty set, we have also that
∅ = Eq(G∅), where G∅ is the initial object in G and thus in WG .

We have that

Proposition 4 Eq is a lax monoidal functor.

Thus, the corresponding algebra allows to associate the composition of games
with the equilibria of the components.

8An alternative yielding also Proposition 3 obtains if, instead, we take πG∪̂G′
i (s/s′) =

πG
i (s) + πG′

i (s
′
) for i ∈ IG ∩ IG′ .

9



7 An Alternative De�nition of the Lax Functor

Proposition 4 depends critically on the possibility of de�ning ⊗ in terms of a
function f , de�ned as follows. Given a player i ∈ IG ∩ IG′ , a combined strategy
si/s

′
i is such that for s = (si, s−i) ∈ Eq(G) and s′ = (s′i, s

′
−i) ∈ Eq(G′), satisfy-

ing πi(s/s
′) = f(πG

i (s), πG′

i (s′)) and with s/s′ ∈ Eq(G+G′). As we saw above
if f is the arithmetic product or sum, Eq will be indeed a lax monoidal functor.

But this restricts the compositionality of games to just trivial cases. We are
interested in more general and non-obvious cases. In order to do that consider
an alternative characterization of the hypergraph category 〈G,Eq〉:

Eq : WG →
∏
i

Si × ∪G∈Obj(G)ΣG

Furthermore, we need another de�nition of ⊗:

⊗ : (
∏
i

Si×∪G∈Obj(G)ΣG) × (
∏
i

Si×∪G∈Obj(G)ΣG) →
∏
i

Si×
⋃

G∈Obj(G)

ΣG

such that given two games G and G′ with s ∈
∏

i∈IG Si and σG, and s′ ∈∏
i∈IG′ Si and σG′ we have:

(s, σG)⊗ (s′, σG′) = (s̄, σG+G′) ∈
∏

i∈IG+G′

Si × ΣG+G′

where s̄ ∈ SG+G′ is a Nash equilibrium if and only if s and s′ are Nash equilibria
of G and G′ respectively.

⊗ is well-de�ned. To see this, just recall that, by de�nition G+G′ obtains
in terms of the game forms of G and G′ (the strategy sets and the outcomes),
allowing di�erent possible internal states and thus payo�s. The view of games
as boxes presented in Section 4 indicates that there exist sequences of internal
states of games, in parallel to sequences of morphisms between games, allowing
to de�ne σG+G′ , and thus payo�s that make s̄ a Nash equilibrium if s and s′

are also equilibria.

We can see that
∏

i Si ×
⋃

G∈Obj(G) ΣG with ⊗, de�ned as above can be

interpreted as a monoidal category, with morphisms de�ned in terms of those
of G, with (∅, ∅) as its initial object. allows to de�ne Eq in such a way that by
de�nition:

Proposition 5 Eq is a lax functor satisfying Eq(G+G′) = Eq(G)⊗Eq(G′).
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