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MARRIAGE MARKET WITH INDIFFERENCES: A
LINEAR PROGRAMMING APPROACH*

Noelia Juárez** Pablo Neme** Jorge Oviedo**

30 de julio de 2020

Resumen

We study stable ans strongly stable matchings in the marriage market with indifference
in their preferences. We characterize the stable matchings as integer extreme points of a
convex polytope. We give an alternative proof for the integrity of the strongly stable
matching polytope. Also, we compute men-optimal (women-optimal)stable and strongly
stable matchings using linear programming. When preferences are strict we find the men-
optimal (women-optimal) stable matching.
tenxtbfKeywords: Matching markets, The marriage market with indifferences, Optimal
Stable matchings, Linear programming

1. Introduction
The marriage market describes a matching problem in which agents are divided into two

disjoint subsets: the set of men and the set of women. The objective of this market is to assign
a woman to a man, allowing the possibility for men and/or women to stay single. In this paper,
we allow agents to be indifferent among agents on the other side of the market.

Many results for the matching market when preferences are strict cannot be extended when
agents have preferences with indifferences.1

In matching markets, stability is a desirable property to be satisfied by any matching. Unlike
the marriage market with strict preferences, in which there is a unique stability notion, when
indifferences are allowed there are several notions. A matching is stable if each agent is matched
to an acceptable partner, and there is no man-woman pair such that they are unmatched to
each other and strictly prefer each other to their current partners.2 Irving [10] formulates two
other possible definitions of stability for the marriage market with indifferences. A matching is
strongly stable if each agent is matched to an acceptable partner, and there is no man-woman
pair such that they are unmatched to each other and one of them strictly prefers the other
one to their current partner, the other weakly prefers the other one to their current partner.
A matching is super stable if each agent is matched to an acceptable partner, and there is no

*We would like to thank the Game Theory Group of IMASL for the helpful discussions and detailed comments.
Our work is partially supported by the UNSL through grant 319502, by the Consejo Nacional de Investigaciones
Cient́ıficas y Técnicas (CONICET) through grant PIP 112-201501-00505, and by Agencia Nacional de Promoción
Cient́ıfica y Tecnológica through grant PICT 2017-2355.

**Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis and CONICET, San Luis,
Argentina. RedNIE. Emails: nmjuarez@unsl.edu.ar (N. Juárez), pabloneme08@gmail.com (P. Neme), and
joviedo@unsl.edu.ar (J. Oviedo).

1See Roth and Sotomayor [17] for a more detailed explanation.
2Irving [10] refers to stable matchings as weakly stable matchings.
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man-woman pair such that they are unmatched to each other and weakly prefer each other to
their current partners.

Gale and Shapley [8] show that at least one stable matching for the marriage market always
exists, even when agents may have indifferences in their preferences. Usually, the procedure
to compute a stable matching is breaking ties and then applying Gale and Shapley’s Deferred
Acceptance Algorithm. How these indifferences may be ordered has both strategic and welfare
consequences. (See Erdil and Ergin [6] and Abdulkadiroğlu et al. [1]). On the other hand,
strongly stable matchings and super stable matchings may not exist. Irving [10] presents an
algorithm that computes a strongly stable matching when it exists. The same algorithm can
also compute a super stable matching. [15] shows that the set of strongly stable matchings forms
a distributive lattice. Ghosal el al. [9] present a polynomial-time algorithm the generation of
all strongly stable matchings. They also prove that the set of strongly stable matching forms a
distributive lattice (an alternative proof).

Many instances of matching problems are studied using a linear programming approach.
Rothblum [19] introduces a list of linear inequalities which generate a convex polytope.3 He
characterizes the stable matchings of the marriage market with strict preferences as extreme
points of this convex polytope. Roth et al. [18] present a linear program and use linear pro-
gramming theory to give alternative proofs to already well-know results in the marriage market
with strict preferences.

Kwanashie and Manlove [14] study the hospital resident market with indifferences. They
present an integer linear program for calculating a maximum stable matching. That is, a stable
matching with a maximum number of pairs assigned. Finding this stable matching is known
to be NP-hard. (See Irving et al. [15]). Kwanashie and Manlove [14] introduce a list of linear
inequalities that generate a convex polytope. They show that the integer extreme points are
the stable matchings.

The case in which all hospitals have quota equal to one is called a marriage market. In this
market when preferences are strict, the convex polytope of Kwanashie and Manlove [14] may
have non-integer vertices. The constraints of Kwanashie and Manlove’s linear program, do not
coincide with the linear inequalities of our linear program. Even in the marriage market when
preferences are strict, the linear inequalities of Kwanashie and Manlove [14] do not coincide
with the linear inequalities of Rothblum [19]. Anyway, the integer solutions of both convex
polytopes coincide with the stable matchings. In this paper, we generalize the linear inequalities
of Rothblum [19].

Here, we present a linear inequality system that characterizes the stable matchings for the
marriage market with indifferences. The convex polytope of stable matchings may have strictly
fractional extreme points (see Example 1).

Kunysz [13] study strongly stable matchings in the marriage market with indifferences. He
analyses this market as an undirected bipartite graph. For this market, he considering a weight
function that does not depends on the agents’ preferences. He finds a strongly stable matching
that maximizes this weight function. To this end, he presents a linear inequality system that
characterizes the strongly stable matchings as extreme points of a convex polytope. In this
paper, we give an alternative proof for the integrality of this convex polytope. Unlike Kunsy’s
proof, which uses graph theory techniques, our proof uses matching techniques. The structure
of our proof is inspired by the one presented in Roth et al. [18], (for the marriage market with
strict preferences).

For the marriage market with indifferences, Spieker [20] proves that the set of super stable
matchings is the intersection of the set of stable matchings each of which is for a possible tie-
breaking. That is, a super stable matching is a stable matching in each marriage market with

3Vande Vate [21] characterizes stable matchings as extreme points of a linear inequality system in a market
when all agents are mutually acceptable, and the set of men and women has the same number of agents.
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strict preferences obtained by breaking ties in some strict order. To obtain a system of linear
inequalities that characterizes super stable matchings, it is only necessary to list the linear
inequalities for each marriage market with strict preferences (using the characterization result
presented in Rothblum [19] for each market with strict preferences).

A stable matching is men-optimal at a preference profile if it is not dominated by another
stable matching (Pareto dominated) according to men’s opinions. In the marriage market with
strict preferences, a unique men-optimal stable matching always exists. However, when indif-
ferences in preferences are allowed, the optimal stable matching may not be unique. That is,
some times there are more than one stable matchings that are not Pareto dominated by another
stable matching.

A social planner may need to compute an optimal stable matching for one side of the
market, for instance, a men-optimal stable matching. One can be tempted to break ties and
use the Deferred Acceptance Algorithm (Gale and Shapley [8]) to compute the men-optimal
stable matching at the strict preference profile associated. Despite this, the men-optimal stable
matching at this strict preference profile may not be a men-optimal stable matching at the
original preference profile (with indifferences) (See Example 2). Erdil and Ergin [7] establish
an algorithm that computes optimal stable matchings in the college admission problem with
indifferences. To this end, they break ties and apply Pareto improvement cycles and Pareto
improvement chains.

In this paper, we present an integer linear program that computes one of the men-optimal
(women-optimal) stable matchings in the marriage market with indifferences without using
any tie-breaking. For the same market, using the linear inequality system presented in Kunysz
[13], we present a linear program (not integer) that computes a men-optimal (women-optimal)
strongly stable matching. In both cases, we define a new objective function in the linear program
that is correlated with men’s (women’s) preferences. To each pair of agents, we associate a
weight that depends on the preferences of the agents.

Other authors study stable matchings using linear programming in matching markets with
strict preferences. Baiou and Balinski [2] compute the optimal stable matching in a many-to-
one matching market with strict preferences. Given a pair of agents (a, u), they define a weight
wau to be a cost or profit associated with the assignment of agent a to agent u. To solve this
problem, once they find the set of stable matchings, they compute the stable matching µ such
that maximizes ∑(i,j)∈µwij. Despite this, for computing the optimal stable matching, they need
to compute all stable matchings ex-ante. The main difference with our approach is that we
compute directly the optimal stable matching (without computing all stable matchings).

On the other hand, Kiraly and Pap [11] introduce weights that do not depend on the
preferences of agents and study the stable marriage polytope with strict preferences. Chen,
Ding, Hu, and Zang [5] study the problem of finding the maximum-weight stable matching in
a more general strict market, which is known to be NP-hard. They use linear programming,
polyhedral approaches and graph theory to study this problem. They present a polynomial-time
algorithm for the maximum-weight stable matching problem under certain conditions.

The paper is organized as follows. In Section 2, we introduce the market, preliminary no-
tations and definitions. In Section 3, we characterize the set of stable matchings as integer
extreme points of a convex polytope. For the strongly stable matchings polytope, we present
an alternative proof that this polytope is integral. In Section 4, we present two linear pro-
grams that compute optimal stable matchings and optimal strongly stable matchings. Finally,
an Appendix with two examples.
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2. The Marriage Market
In the marriage market with indifferences, there are two finite sets of agents,M = {m1, ...,mn}

of men and the set W = {w1, ..., wp} of women. Each agent i ∈ M ∪W has a complete and
transitive preference order for the agents on the other side of the market and the prospect of
being alone. A preference profile R = (Ri)i∈M∪W is a vector of weak orders. We denote by Pi
and Ii the antisymmetric and symmetric parts of the binary relation Ri, respectively. Then,
Pi is an antisymmetric, transitive and irreflexive (strict preference relation), and Ii is reflexive,
symmetric and transitive (indifference preference relation).

For instance, the preferences Rm for the man m, where w1Pmw2, w2Pmw3, w2Pmw4, w3Imw4
(and by transitivity w1Pmw3 and w1Pmw4), will be denoted by

Rm : w1, w2, [w3, w4] .

A preference profile R satisfies no indifference to the single set if any agent is not indifferent
between remaining single or being assigned to another agent of the other side of the market.4
For instance, the following preference does not satisfy no indifference to the single set.

Rm : w1, w2, [w3,m] .

We denote the marriage market with indifferences by (M,W,R) . We say that (m,w) ∈
M ×W is an acceptable pair if mPww and wPmm. Let A be the set of all acceptable pairs.

Definition 1 A matching µ is a injective function µ : M ∪W →M ∪W such that:

1. µ(m) 6= m implies µ(m) ∈ W.

2. µ(w) 6= w implies µ(w) ∈M.

3. µ(m) = w if and only if µ(w) = m.5

Let M denote the set of all matchings. If µ(m) = w, then man m and woman w are said
to be matched to each other. If µ(i) = i, then agent i is said to be single or unmatched.
Given a preference Ri of agent i, we extend these binary relations to the set of matchings in a
natural way. Let µ and µ′ be two matchings, µRiµ

′ if and only if µ(i)Riµ
′(i). Moreover, given a

preference profile R and a subset of agents X ⊆M ∪W , then µRXµ
′ if and only if µ(i)Riµ

′(i)
for all i ∈ X. In a similar way, we extend the relations IX and PX .

A matching µ is individually rational if it is not blocked by any individual agent, i.e.,
for all i ∈ M ∪W we have that µ(i)Rii. Given a preference profile R, we denote the set of
individually rational matchings by IR(R).

Definition 2 Let µ be a matching and let m ∈M and w ∈ W .

A pair (m,w) is said to form a blocking pair if mPwµ(w) and wPmµ(m).

A pair (m,w) is said to form a strongly blocking pair if either mPwµ(w) and wRmµ(m),
or mRwµ(w) and wPmµ(m).

Definition 3 Let µ be a matching for a marriage market (M,W,R).

µ is stable if it is individually rational and if there is no blocking pair.
4This assumption is commonly used in the literature; see Erdil and Ergin [6] and [7] and Biró and McBride

[4].
5Item 3 is equivalent to say that µ is a homogeneous function of order two, i.e., µ2 (i) = i, for all i ∈M ∪W.
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µ is strongly stable if it is individually rational and there is not a strongly blocking pair.

Given a preference profile R, we denote the set of stable matchings by S(R). Also, we denote
the set of strongly stable matchings by SS(R).

Notice that, from Definition 2 and 3 it follows that SS(R) ⊆ S(R).
Given a matching µ, we can define the incidence vector xµ ∈ {0, 1}|M |×|W | , as follows:

the entry xµm,w = 1 if and only if µ (m) = w and the entry xµm,w = 0 otherwise. We identify each
matching with its incidence vector.

Let CIR(R) be the convex polytope generated by the following inequalities:∑
j∈W

xm,j ≤ 1 for all m ∈M (1)

∑
i∈M

xi,w ≤ 1 for all w ∈ W (2)

xm,w ≥ 0 for all (m,w) ∈ A (3)

xm,w = 0 for all (m,w) ∈ (M ×W ) \ A (4)

Notice that inequalities (4) are called individual rationality linear inequalities. The extreme
points of CIR(R) are exactly the individually rational matchings. This follows from the Birkhoff-
von Neumann Theorem [3].

Rothblum [19] defines the convex polytope CS(P ) generated by adding to the linear inequa-
lities of CIR(R), the following linear inequalities:∑

jPmw

xm,j +
∑
iPwm

xi,w + xm,w ≥ 1 for all (m,w) ∈ A (5)

Linear inequalities (5) assure that there is no blocking pair. These linear inequalities are
called stability linear inequalities.

For the marriage market with strict preferences, Rothblum [19] characterizes the stable
matchings as integer solutions of the linear inequality system (1)–(5).

3. A Polyhedral Approach

3.1. Stable Marriage Polytope
For the marriage market with indifferences (M,W,R), we introduce modifications to the

convex polytope CS(P ). These modifications will characterize the stable matchings as the integer
extreme points of a new convex polytope.

For m ∈M and w ∈ W, we define

Rm(w) = {w′ : w′Rmw and w′ 6= w}

and
Rw(m) = {m′ : m′Rwm and m′ 6= m}.

Let CS(R) be the convex polytope generated by (1)–(4) and∑
j∈Rm(w)

xm,j +
∑

i∈Rw(m)
xi,w + xm,w ≥ 1 for all (m,w) ∈ A (6)
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Notice that, the only linear inequalities modified from the marriage market with strict
preferences are the ones that represent the stability restrictions. When preferences are strict,
linear inequalities (5) and (6) are equivalent.

We define a stable fractional matching to be a (not necessarily integer) solution of
(1)–(4) and (6).

The following theorem characterizes stable matchings as integer extreme points of the convex
polytope CS(R).

Theorem 1 Let (M,W,R) be a marriage market with indifferences. A matching µ is stable, if
and only if its incidence vector is an integer point of CS(R).

Proof.
=⇒) Assume that µ ∈ S(R). Let xµ be its incidence vector. Is easy to check that xµ satisfies

linear inequalities (1)–(4). Assume that xµ does not satisfy (6); that is, there is a pair (m,w) ∈ A
such that, ∑

j∈Rm(w)
xµm,j +

∑
i∈Rw(m)

xµi,w + xµm,w < 1.

Notice that each entry of xµ is either zero or one. Then,∑
j∈Rm(w)

xµm,j = 0,
∑

i∈Rw(m)
xµi,w = 0 and xµm,w = 0. (7)

Since xµm,w = 0, we have that m and w are not matched.
Now we consider the following cases:

(i) ∑
j∈W

xµm,j = ∑
i∈M

xµi,w = 0.

Since (m,w) ∈ A, wPmm = µ(m) and mPww = µ(w). Then (m,w) is a blocking pair of
µ. This is a contradiction to the assumption that µ is stable.

(ii) ∑
j∈W

xµm,j = 0 and there is m′ ∈M , m′ 6= m such that xµm′,w = 1.

Observe that ∑i∈Rw(m) x
µ
i,w = 0. Then mPwm

′ = µ(w). Since xm,j = 0 for each j ∈ W
and (m,w) ∈ A, then wPmm = µ(m). That is, (m,w) is a blocking pair of µ. This is a
contradiction to the assumption that µ is stable.

(iii) ∑
i∈M

xµi,w = 0 and there is w′ ∈ W , w′ 6= w such that xm,w′ = 1.

This case is similar to case (ii), and we omit the proof.

(iv) There is m′ ∈M , m′ 6= m and w′ ∈ W , w′ 6= w such that xµm′,w = 1 and xµm,w′ = 1.
Observe that ∑i∈Rw(m) x

µ
i,w = 0 and ∑

j∈Rm(w) x
µ
m,j = 0, then m′ /∈ Rm(w) and w′ /∈

Rw(m). Since xm,w = 0, then mPwm
′ = µ(w) and wPmw

′ = µ(m).
Thus, the pair (m,w) is a blocking pair of µ. This is a contradiction to the assumption
that µ is stable.

⇐=) Let x be an integer point of CS(R). Since x satisfies (1)–(4), from Birkhoff-von Neumann
Theorem we have that x is the incidence vector of an individually rational matching, i.e., there
is an individually rational matching µ such that x = xµ. We will prove that µ ∈ S(R).

Assume that there is a pair (m,w) ∈ A that blocks µ, i.e., wPmµ(m) and mPwµ(m). This
implies that

xµm,w = 0 (8)
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and ∑
i/∈Rw(m)

xi,w = xµµ(m),w = 1 and
∑

j /∈Rm(w)
xm,j = xµm,µ(w) = 1.

Since each entry of xµ is either zero or one, it holds that:∑
i∈Rw(m)

xµi,w = 0 and
∑

j∈Rm(w)
xµm,j = 0. (9)

Then, (8) and (9) imply that linear inequalities (6) fails for the pair (m,w) ∈ A. This is a
contradiction to the assumption that xµ is an integer point of CS(R).

�

The following example shows that the convex polytope CS(R) may have non-integer extreme
points.

Example 1 Let (M,W,R) be a marriage market with indifferences. Let M = {m1,m2,m3},
W = {w1, w2, w3} and the preference profile R be such that

Rm1 : [w2, w1] , w3. Rw1 : m1,m2,m3.
Rm2 : [w2, w1] , w3. Rw2 : m3,m1,m2.
Rm3 : w1, [w2, w3] . Rw3 : m1,m2,m3.

There are only three stable matchings:

xµ1 =

 1 0 0
0 1 0
0 0 1

 ; xµ2 =

 0 1 0
1 0 0
0 0 1

 ; xµ3 =

 1 0 0
0 0 1
0 1 0

 .
But the stable fractional matching 

1
2

1
2 0

0 1
2

1
2

1
2 0 1

2

 ,
is also a vertex of the convex polytope CS(R).

3.2. Strongly Stable Marriage Polytope
For marriage market with indifferences (M,W,R), Kunysz [13] presents a linear inequality

system to characterize the strongly stable matching as the extreme points of the convex polytope
generated by these linear inequalities. Each extreme point of this convex polytope is an integer
point, and the extreme points coincide with the strongly stable matchings. In this section, we
present an alternative proof of Theorem 13 in Kunysz [13].

Let CSS(R) be the convex polytope generated by (1)–(4) and∑
jPmw

xm,j +
∑
iPwm

xi,w +
∑
iIwm

xi,w ≥ 1 for each (m,w) ∈ A (10)

∑
jPmw

xm,j +
∑
iPwm

xi,w +
∑
jImw

xm,j ≥ 1 for each (m,w) ∈ A (11)

Notice that, the only linear inequalities modified from the marriage market with strict
preferences are the ones that represent the stability restrictions. When preferences are strict,
linear inequalities (10) and (11) are equivalent to (5).

We define a strongly stable fractional matching to be a (not necessarily integer) solution
of (1)–(4), (10) and (11).

The following lemma is taken from Kunysz [13] (Lemma 12).
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Lemma 1 Kunysz [13] Let x be a strongly stable fractional matching. Then, for each (m,w) ∈
M ×W the following hold:

xm,w > 0⇒ ∑
jPmw xm,j +∑

iPwm xi,w +∑
jImw xm,j = 1

xm,w > 0⇒ ∑
jPmw xm,j +∑

iPwm xi,w +∑
iIwm xi,w = 1

xm,w > 0⇒ ∑
j∈W xm,j = 1

xm,w > 0⇒ ∑
j∈W xm,j = 1

Remark 1 Note that for each feasible solution x if xm,w > 0 then ∑
jImw xm,j = ∑

iIwm xi,w.
This implies that, if there is w′ ∈ W such that, xm,w′ > 0 and wImw

′, then there is at least
m′ 6= m with xm′,w > 0 and there is at least m̄ 6= m with xm̄,w′ > 0 (where m′ and m̄ may or
may not be the same man). This means that if xm,w > 0 then, |{j ∈ W : jImw, xm,j > 0}| ≥ 2
if and only if |{i ∈M : iIwm,xi,w > 0}| ≥ 2.

Given a strongly stable fractional matching x, we define for each m ∈ M the optimal class
of indifference within those women that fulfill xm,w > 0. Formally,

[µx](m) = {w ∈ W : xm,w > 0 and wRmj for each j ∈ W with xm,j > 0}.

Analogously, we define for each w ∈ W the pessimal class of indifference within those women
that fulfill xm,w > 0. Formally,

[µx](w) = {m ∈M : xm,w > 0 and iRwm for each i ∈M with xi,w > 0}.

Lemma 2 Let x be a strongly stable fractional matching. Then,

(i) w ∈ [µx](m) if and only if m ∈ [µx](w).

(ii) If w ∈ [µx](m) and |[µx](m)| ≥ 2, then |[µx](w)| ≥ 2.

(iii) If m ∈ [µx](w) and |[µx](w)| ≥ 2, then |[µx](m)| ≥ 2.

Proof. Let x be a strongly stable fractional matching.

(i) Let w ∈ [µx](m). Then, ∑jPmw xm,j = 0. Since xm,w > 0, by Lemma 1 we have that,

∑
iPwm

xi,w +
∑
iIwm

xi,w = 1.

This means that ∑mPwi xi,w = 0. Since xm,w > 0 we have that m ∈ [µx](w).
Let m ∈ [µx](w). This means that∑

iPwm

xi,w +
∑
iIwm

xi,w = 1.

Since xm,w > 0, by Lemma 12 we have that ∑jPmw xm,j = 0. Since xm,w > 0 we have that
w ∈ [µx](m).

The proof of items (ii) and (iii) is straightforward using Remark 1.
�

Given a strongly stable fractional matching, and a set of men M̃ ⊆M . We have that M̃ is
partitioned in two subsets as follows:

M̃1 = {m ∈ M̃ : |[µx](m)| = 1} and M̃2 = {m ∈ M̃ : |[µx](m)| ≥ 2},

that is,
M̃ = M̃1 ∪ M̃2 (12)

If M̃2 6= ∅ we define a cycle of agents as follows. Letm1 ∈ M̃2 and Cm1 = {m1, w1, . . . , wk−1,mk, wk}
with mi 6= mj, wi 6= wj and
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(i) wi ∈ [µx](mi) with i = 1, . . . , k.

(ii) mi ∈ [µx](wi−1) with i = 2, . . . , k.

(iii) m1 ∈ [µx](wk).

Define W̃2 = {w ∈ W : there is m ∈ M̃2, w ∈ [µx](m)}.
Given m′ ∈ M̃2, we denote by M̃2(Cm′) = {m ∈ M̃2 : m ∈ Cm′} and W̃2(Cm′) = {w ∈ W̃2 :

w ∈ Cm′}.
The following lemma is used to prove that given a strongly stable fractional matching, there

is always a strongly stable matching that assign to each man a woman in the optimal class,
and to each woman a man in the pessimal class.

Lemma 3 If M̃2 6= ∅, then there are m′ ∈ M̃2 and a cycle of agents C generated by m′ such
that M̃2(C) ⊆ M̃2 and W̃2(C) ⊆ W̃2.

Proof. Let m1 ∈ M̃2, then there is w1 ∈ [µx](m1). Then, by Lemma 2 (i) and (ii) we have
that m1 ∈ [µx](w1) and |[µx](w1)| ≥ 2. Then, there is m2 6= m1 such that m2 ∈ [µx](w1).
Lemma 2 (i) implies that w1 ∈ [µx](m2). By Lemma 2 (iii) we have that |[µx](m2)| ≥ 2 and
there is w2 6= w1 such that w2 ∈ [µx](m2). Lemma 2 (ii) implies that |[µx](w2)| ≥ 2 and there is
m3 6= m2 such that m3 ∈ [µx](w2). If m3 = m1 we are done and C = {m1, w1,m2, w2}. If not,
by Lemma 2 (i) and (iii) there is w3 6= w2 such that w3 ∈ [µx](m3). If w3 = w1 we are done and
C = {m2, w2,m3, w1}. If not, we continue this procedure until we have that the cycle is closed
by the finiteness of M̃2. By construction we have that M̃2(C) ⊆ M̃2 and W̃2(C) ⊆ W̃2.

�

Procedure to construct cycles in the men optimal indifference class:

Given M and W be the set of men and women respectively.
Step 1: We have that M = M1 = M1

1 ∪M1
2 by decomposition (12). Denote by W 1

2 = {w ∈
W : there is m ∈M1

2 , w ∈ [µx](m)} and W 1
1 = W \W 1

2 .
If M1

2 = ∅ the procedure stops.
If M1

2 6= ∅, Lemma 3 implies that there are m′ ∈M1
2 and a cycle of agents C1 generated by

m′ such that M1
2 (C1) ⊆M1

2 and W 1
2 (C1) ⊆ W 1

2 .
Let M2 = M1

2 \M1
2 (C1).

Step k > 1: We have that Mk = Mk
1 ∪Mk

2 by decomposition (12). Denote by W k
2 = {w ∈ W :

there is m ∈Mk
2 , w ∈ [µx](m)} and W k

1 = W \W k
2 .

If Mk
2 = ∅ the procedure stops.

If Mk
2 6= ∅, by Lemma 3 we have that there are m′ ∈Mk

2 and a cycle of agents Ck generated
by m′ such that Mk

2 (Ck) ⊆Mk
2 and W k

2 (C) ⊆ W k
2 .

Let Mk+1 = Mk
2 \Mk

2 (C1).

Remark 2 By the finiteness of the set of men M , there is a step k̃ such that the procedure
stops.

Given a strongly stable fractional matching x, [µx](m) for each m ∈ M and the procedure
to construct cycles in the optimal class for men, we define µx as follows

µx(m) =


w if m ∈M2(Ck), w ∈ [µx](m) and w ∈ W2(Ck) for each k = 1, . . . , k̃
w if m ∈Mk

1 , w ∈ [µx](m) and w ∈ W k for each k = 1, . . . , k̃
m otherwise

In the following lemma we prove that the assignment µx is a strongly stable matching.
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Lemma 4 Let x be a fractional solution of LP. Then, µx defined before is a strongly stable
matching such that µx(m) ∈ [µx](m) for each m ∈M .

Proof. Notice that by construction and Lemma 1, it is straightforward that xµx fulfills inequali-
ties (1), (2) and (3), then µx is a matching. Also, by construction, we have that µx(m) ∈ [µx](m)
for each m ∈ M . Now we prove that xµx fulfills inequalities (4) and (5). Assume that (m,w)
is a strongly blocking pair for µx. Then, either mPwµx(w) and wRmµx(m), or mRwµx(w) and
wPmµx(m).

Case 1: Assume that mRwµx(w) and wPmµx(m). By construction of µx we have that∑
jPmw

xm,j +
∑
jImw

xm,j = 0.

Then, since x satisfies inequalities (1) and (4) we have that∑
iPwm

xi,w = 1.

Hence, we have that µx(w)Pwm. Therefore, the pair (m,w) can not be a strongly
blocking pair.

Case 2: Assume that mPwµx(w) and wRmµx(m). By construction of µx we have that∑
jPmw

xm,j = 0.

Then, since x satisfies inequalities (1) and (5) we have that∑
iPwm

xi,w +
∑
iIwm

xi,w = 1.

Hence, we have that µx(w)Rwm. Therefore, the pair (m,w) can not be a strongly
blocking pair.

Hence, µx is a strongly stable matching. �

The following theorem states that the extreme points of the convex polytope coincide with
the strongly stable matchings.

Theorem 2 The extreme points of CSS(R) are exactly the strongly stable matchings.

The proof follows similarly to the proof of Theorem 13 in Roth et al. [18]. Proof. It is straight-
forward that every integer solution of CSS(R) is an extreme point of CIR(R).6 Then, strongly
stable matchings are an extreme point of CSS(R). We only need to prove that each extreme
point of LP is a strongly stable matching. Let x be a fractional solution of LP that is not a
matching. Let xµx be the incidence vector of µx. Since x is not a matching, then x 6= xµx . We
show that x is not an extreme point of LP. Then consider for 0 < α < 1, the following vector

yα = x− αxµx

1− α .

Since, x = αxµx + (1− α)yα for each 0 < α < 1, we only need to prove that yα is a solution of
CSS(R). That is,

6The extreme points of CIR(R) are exactly the individually rational matchings.
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Inequality (1): If m ∈ M has xm,j = 0 for each j ∈ W , then xµx
m,j = 0 for each j ∈ W and

yαm,j = 0 for each j ∈ W , assuring that yα satisfies (1). If m ∈ M has ∑j∈W xm,j > 0, then
µx(m) 6= m. Hence, ∑j∈W xµx

m,j = 1. As x satisfies (1), then it follows that yα satisfies inequality
(1) for all 0 < α < 1.
Inequality (2): Analogous to inequality (1).
Inequality (3): Observe that xµx

m,w = 0 whenever xm,w = 0. Hence, for a sufficient small
positive α we have that yα satisfies inequality 3.
Inequality (4): If (m,w) ∈ (M ×W ) \ A, then we have that xm,w = 0. Hence, we have that
yαm,w = xµx

m,w = 0 for each 0 < α < 1. Therefore, yα satisfies inequality (4).
Inequality (10): Now we show that for a small positive α, yα satisfies inequality (10). As∑

jPmw

yαm,j +
∑
iPwm

yαi,w +
∑
iIwm

yαi,w

= 1
1− α

 ∑
jPmw

xm,j +
∑
iPwm

xi,w +
∑
iIwm

xi,w

−
α

 ∑
jPmw

xµx
m,j +

∑
iPwm

xµx
i,w +

∑
iIwm

xµx
i,w


for each pair (m,w) and as x satisfies inequality (10), it suffices to prove that whenever x
satisfies inequality (10) as an equality so does xµx . Then, assume that for (m,w), x satisfies
inequality (10) as an equality. As µx is a strongly stable matching, then xµx satisfies inequality
(10). Further, xµx satisfies inequality (10) strictly for (m,w) if and only if one of the following
two cases may happen: either µx(m)Pmw and µx(w)Pwm, or µx(m)Pmw and µx(w)Iwm.

If µx(m)Pmw and µx(w)Pwm, by construction of µx we have that∑
jPmw

xm,j > 0 and
∑
iPwm

xi,w = 1.

If µx(m)Pmw and µx(w)Iwm, by construction of µx we have that∑
jPmw

xm,j > 0 and
∑
iPwm

xi,w +
∑
iIwm

xi,w = 1.

Both cases, contradict the assertion that x satisfies inequality (10) for the pair (m,w) as an
equality. This contradiction proves that whenever x satisfies inequality (10) as an equality, so
does xµx . Therefore, we have that for a small positive α, yα satisfies inequality (10).
Inequality (11): Analogous to inequality (10).

�

4. Men-Optimal Matchings
Gale and Shapley [8] showed the existence of optimal stable matchings for the marriage mar-

ket with strict preferences. The Deferred Acceptance algorithm is a mechanism that computes
the men-optimal stable matching (µM) when men offer, and it computes the women-optimal
stable matching (µW ) when women offer. The stable matching µM is men-optimal in the sense
that there is no other stable matching µ 6= µM such that assigns to each man m a partner
that m prefers to the agent assigned by µM . This is also the case for the women-optimal stable
matching µW .

If we consider the marriage market with indifferences, we say that µ′ is a men-optimal
stable matching if there is no other stable matching µ, that assigns to each man m a partner
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weakly preferred to what µ′ assigns to him, and there is at least one man that strictly prefers
µ′ to any other µ. That is, there is no µ ∈ S(R) such that µPMµ′.

Given a preference profile with indifferences R, we can define P to be a strict preference
profile obtained from R by some tie-breaking. That is, P is a preference profile in which each
agent replaces indifferences by some strict order.

Notice that there are many ways of breaking the indifferences. Then, we define L(R), as the
set of all linear orders that can be obtained from R by a tie-breaking. It is well known that
S (R) can be computed by finding all stable matchings for any associated matching market
(M,W,P ) , where P is obtained from R by some tie-breaking. That is

S(R) = ∪P∈L(R)S(P ).

See Roth and Sotomayor [17] for details.
The following example shows that the men-optimal stable matching may not be unique. It

also shows that when we choose different ways to break indifferences and apply the deferred
acceptance algorithm with men offering, we may obtain a stable matching that is not men-
optimal on the original preference profile R.

Example 2 Let M = {m1,m2,m3,m4}, W = {w1, w2, w3, w4} and the preference profile R be
such that

Rm1 : w1, [w2, w3] . Rw1 : m3, [m1,m2] .
Rm2 : w1, w4. Rw2 : [m1,m4] .
Rm3 : w4, w1. Rw3 : [m1,m4] .
Rm4 : [w2, w3] . Rw4 : m2,m3.

S(R) = {µ1, µ2, µ3, µ4} is given by:

xµ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ; xµ2 =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 ;

xµ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ; xµ4 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .
Notice that the men-optimal stable matching is not unique. The matchings µ1 and µ2 are

men-optimal stable matchings.
Let us consider a tie-breaking such that the strict profile P associated is as follows:

Pm1 : w1, w2, w3. Pw1 : m3,m1,m2.
Pm2 : w1, w4. Pw2 : m1,m4.
Pm3 : w4, w1. Pw3 : m1,m4.
Pm4 : w2, w3. Pw4 : m2,m3.

Then, the set of stable matchings for the preference profile P is: S(P ) = {µ3, µ4} and the men-
optimal stable matching for the preference profile P is µ3, but this matching is not a men-optimal
stable one for the original market (M,W,R).

Next, to find an optimal stable matching, we use linear programming tools. Roth et al. [18]
present a linear program in which, the constraints are the inequalities (1)–(5). They introduce
an objective function such that the optimal solutions of the linear program (LP ) are precisely
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the extreme points of the convex polytope CS(P ). That is, the stable matchings are the integer
solutions of the following linear program:

LP máx ∑
(i,j)∈A

xi,j

st : x ∈ CS(P ).

Observe that using McVitie and Wilson’s Theorem [16], the number of couples matched
in each stable matching is the same. Therefore, the incidence vectors have the same amount
of entries equal to one. Hence, all stable matchings generate the same value of the objective
function. So, this linear program does not distinguish among any stable matching.

To compute a men-optimal stable matching for the marriage market with indifferences
(M,W,R), we present a new linear program with weights in the objective function, which
depends on men’s preferences.7

Given a preference profile R, for each pair (m,w) ∈M ×W , we define a weight αm,w ∈ R
that satisfies the following conditions:

1. αm,w > αm,w′ when wPmw
′.

2. αm,w = αm,w′ when wImw
′.

We denote by LPS the following linear program:

LPS máx ∑
(i,j)∈A

αi,jxi,j

st : x ∈ CS(R).

In Section 3, we show that the convex polytope CS(R) can have fractional stable matchings
as extreme points. The following example shows that the solution for LPS can be a stable
fractional matching.

Example 3 Continuing with Example 1: Consider the following associated weight matrix for
the preference R is:

α =

 2 2 1
2 2 1
2 1 1

 .
The linear program LPS is:

máx 2x11 + 2x12 + x13 + 2x21 + 2x22 + x23 + 2x31 + x32 + x33
st:x ∈ CS(R).

The value of the objective function for the stable matching µ1 is 5.

xµ1 =

 1 0 0
0 1 0
0 0 1

 .
Nevertheless, consider the value of the objective function at the stable fractional matching

x =


1
2

1
2 0

0 1
2

1
2

1
2 0 1

2

 .
It is also equal to 5. So, there are at least two solutions, one integral and one fractional, that
have the same value of the objective function.

7Symmetrically, we can define these weights depending on women’s preferences.
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The previous example shows that, to reach a men-optimal stable matching we need to define
the following integer linear program,

IPS máx
∑

(i,j)∈A
αi,jxi,j

st : x ∈ CS(R), x ∈ {0, 1}.

The following proposition is used in the proof of Theorem 3.

Proposition 1 Let (M,W,R) be a marriage market with indifferences. Let µ1 and µ2 be two
stable matchings such that µ1PMµ2. Then,∑

(i,j)∈M×W
αj,ix

µ1
j,i >

∑
(i,j)∈M×W

αj,ix
µ2
j,i .

Lemma 5 If µ1Rmµ2 for some m ∈M, then∑
j∈W

αm,jx
µ1
m,j ≥

∑
j∈W

αm,jx
µ2
m,j.

Moreover, if there exists m ∈M such that µ1Pmµ2, then∑
j∈W

αm,jx
µ1
m,j >

∑
j∈W

αm,jx
µ2
m,j.

Proof.
For the marriage market with indifferences (M,W,R), let µ1 and µ2 be stable matchings.
Given m ∈M such that

w′ = µ1(m)Rmµ2(m) = w′′,

using the definition of αm,w, we have

αm,w′ ≥ αm,w′′ . (13)

It also holds that ∑
j∈W

αm,jx
µ1
m,j = αm,w′ and

∑
j∈W

αm,jx
µ2
m,j = αm,w′′ .

Therefore, condition (13) assures that∑
j∈W

αm,jx
µ1
m,j ≥

∑
j∈W

αm,jx
µ2
m,j,

giving us the desired property.
For the case when there is m ∈M such that µ1Pmµ2, the proof is analogous to the above.

�

Proof of Proposition 1.
If µ1PMµ2, for all m ∈M , it holds that

µ1Rmµ2

and by Lemma 5, we have that for all m ∈M∑
j∈W

αm,jx
µ1
m,j ≥

∑
j∈W

αm,jx
µ2
m,j (14)

and there is at least one m′ ∈M such that

µ1Pm′µ2.
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By Lemma 5, we have ∑
j∈W

αm′,jx
µ1
m′,j >

∑
j∈W

αm′,jx
µ2
m′,j. (15)

Therefore, conditions (14) and (15) imply that
∑
i∈M

∑
j∈W

αi,jx
µ1
m,j >

∑
i∈M

∑
j∈W

αi,jx
µ2
i,j .

That is, ∑
(i,j)∈M×W

αi,jx
µ1
i,j >

∑
(i,j)∈M×W

αi,jx
µ2
i,j .

This concludes the proof. �

Theorem 3 Let (M,W,R) be a marriage market with indifferences. A solution for IPS is a
men-optimal stable matching.

Proof. For a marriage market with indifferences (M,W,R), let x̄ be a solution of the integer
linear program IPS. Let µ̄ be the stable matching associated to x̄, (x̄ = xµ̄). Assume that the
stable matching µ̄ is not optimal for M. That is, there exists µ′ ∈ S(R) such that µ′PM µ̄. By
Proposition 1, we have ∑

(i,j)∈M×W
αi,jx

µ′

i,j >
∑

(i,j)∈M×W
αi,jx

µ̄
i,j.

Then x̄ is not a solution for the linear program IPS.
�

If a marriage market with indifferences (M,W,R) has at least two men-optimal stable
matchings, the solution of IPS depends on the selection of the weights (αm,w). That is, for
different selections of weights on the objective function of IPS, the integer linear program may
yield different men-optimal stable matchings as solutions. For more details, see Example 4 in
the Appendix.

To compute a men-optimal strongly stable matching, let LPSS be the following linear
program. To compute a men-optimal strongly stable matching, we only use linear programming.
This is because the extreme point of the convex polytope CSS(R) are exactly the strongly stable
matchings.

LPSS máx
∑

(i,j)∈A
αi,jxi,j

st : x ∈ CSS(R).

Theorem 4 Let (M,W,R) be a marriage market with indifferences. A solution for LPSS is
a men-optimal strongly stable matching.

The proof is analogous to that of Theorem 3 .

4.1. Strict Preferences
The weights αi,j, defined in this Section, depend on the preferences of men (here the prefe-

rences are strict, so item (2) of definition of α does not apply)8. When preferences are strict,
we will see that the linear program LPS computes the unique men-optimal stable matching.
The following corollary characterizes the men-optimal stable matching for the marriage market
with strict preferences as the unique solution of a linear program.

82. αm,w = αm,w′ when wImw
′.
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Corollary 1 Let (M,W,P ) be a marriage market with strict preferences. The unique solution
for LPS is the incidence vector of µM . That is,

máx
∑

(i,j)∈A
αi,jxi,j =

∑
(i,j)∈A

αi,jx
µM
i,j .

Proof. The proof that xµM is the solution of LPS is a particular case of Theorem 3.
Now we will prove that xµM is a unique solution. To this end, assume that xµM is not the

unique optimal solution, that is, assume that x̄ is also an optimal solution. Then, there is a
extreme point of the convex polytope (1)–(5) such that x̄ is the incidence vector of a stable
matching different from µM . Denote by xµ = x̄. Since µ 6= µM , by the optimality of µM , we
have µMPMµ. By Proposition 1, ∑

(i,j)∈A
αi,jx

µM
i,j >

∑
(i,j)∈A

αi,jx
µ
i,j.

That is, xµ is not an optimal solution of LPS. This proves that xµM is the unique solution of
LPS.

�

For a marriage market with strict preferences (M,W,P ), the men-optimal stable matching is
always unique, unlike the marriage market with indifferences (M,W,R); so, the solution of the
LPS does not depend on the selection of the weights. If we define βi,j as the weight associated
to the preferences of women, the linear program that maximizes ∑

(i,j)∈A
βi,jxi,j computes the

incidence vector of µW . From the optimality results obtained by Gale and Shapley [8] and
Knuth [12], µM (µW ) is the preferred stable matching for men (women) and also the less
preferred stable matching for women (men). In this way, the linear programs with the objective
functions “mı́n ∑

(i,j)∈A
αi,jxi,j.and “mı́n ∑

(i,j)∈A
βi,jxi,j çompute the incidence vector of µW and µM ,

respectively. Notice that this does not happen when we allow for indifferences in preferences.
See Example 5 in the Appendix.
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[4] Biró, P., McBride, I.: Integer programming methods for special college admissions pro-
blems. In: International Conference on Combinatorial Optimization and Applications, pp.
429–443. Springer (2014)

[5] Chen, X., Ding, G., Hu, X., Zang, W.: The maximum-weight stable matching problem:
duality and efficiency. SIAM Journal on Discrete Mathematics 26(3), 1346–1360 (2012)

[6] Erdil, A., Ergin, H.: Two-sided matching with indifferences. Unpublished mimeo, Harvard
Business School (2006)

16



[7] Erdil, A., Ergin, H.: What’s the matter with tie-breaking? improving efficiency in school
choice. The American Economic Review 98(3), 669–689 (2008)

[8] Gale, D., Shapley, L.: College admissions and the stability of marriage. The American
Mathematical Monthly 69(1), 9–15 (1962)

[9] Ghosal, P., Kunysz, A., Paluch, K.: Characterisation of strongly stable matchings. In: Pro-
ceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 107–119. SIAM (2016)

[10] Irving, R.W.: Stable marriage and indifference. Discrete Applied Mathematics 48(3), 261–
272 (1994)
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Appendix
The following example shows how the selection of weights influence the optimal solution

reached.
Example 4 Let M = {m1,m2}, W = {w1, w2, w3, w4} and the preference profile R:

Rm1 : [w1, w2] , w3, w4. Rw1 : [m1,m2] .
Rm2 : w1, w3, w2. Rw2 : m2.

Rw3 : m2.
Rw4 : m1.

S (R) = {µ1, µ2} is given by

xµ1 =
(

1 0 0 0
0 0 1 0

)
xµ2 =

(
0 0 0 1
1 0 0 0

)
.

Both matchings are men-optimal.
Consider two different selections of weights:

α =
(

3 3 2 1
3 1 2 0

)
and α? =

(
3 3 2 1
30 10 20 0

)
.

If we compute the IPS, the solution will be a men-optimal stable matching for any selection
of weights. Despite this, the solution of IPS with the weights αi,j will be the stable matching
µ1. Meanwhile, the solution of IPS? with the weights α?i,j will be the stable matching µ2. So,
the solution depends on the selection of the weights.

The following example shows that for a marriage market with indifferences, if we change
the linear program from a maximization problem to a minimization problem, the new linear
program does not compute one of the women-optimal stable matchings.

Example 5 Let M = {m1,m2,m3}, W = {w1, w2, w3} and the preference profile R be such
that

Rm1 = [w1, w2] , w3. Rw1 = m1,m2,m3.
Rm2 = [w1, w2] , w3. Rw2 = [m1,m2,m3] .
Rm3 = w1, w2, w3. Rw3 = m1,m2,m3.

S (R) = {µ1, µ2, µ3} is given by

xµ1 =

 1 0 0
0 1 0
0 0 1

 , xµ2 =

 0 1 0
1 0 0
0 0 1

 , xµ3 =

 1 0 0
0 0 1
0 1 0

 .
Notice that µ3 is the unique women-optimal stable matching.
Consider the selection of weights:

α =

 2 2 1
2 2 1
30 20 1

 .
If we compute the IPS, (minimization)

IPS mı́n ∑
(i,j)∈A

αi,jxi,j

st: x ∈ C∗, x ∈ {0, 1}.
The solutions of IPS are the stable matchings µ1 and µ2, which are not woman-optimal.
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