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Lattice structure of the random stable set in
many-to-many matching markets∗

Noelia Juárez† Pablo Neme† Jorge Oviedo†
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Abstract

We study the lattice structure of the set of random stable matchings for a many-
to-many matching market. We define a partial order on the random stable set and
present two natural binary operations for computing the least upper bound and
the greatest lower bound for each side of the matching market. Then we prove
that with these binary operations the set of random stable matchings forms two
distributive lattices for the appropriate partial order, one for each side of the mar-
ket. Moreover, these lattices are dual.

JEL classification: C71, C78, D49.

Keywords: Lattice Structure, Random Stable Matching markets, Many-to-many Match-
ing Markets.

1 Introduction

There have been studies of matching markets for several decades, beginning with Gale
and Shapley’s pioneering paper (Gale and Shapley, 1962). They introduce the notion
of stable matchings for a marriage market and provide an algorithm for finding them.
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Theory Group of IMASL for the helpful discussions and detailed comments. Our work is partially
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y Técnicas (CONICET) through grant PIP 112-201501-00505, and by Agencia Nacional de Promoción
Cientı́fica y Tecnológica through grant PICT 2017-2355.
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Luis, Argentina. RedNIE. Emails: nmjuarez@unsl.edu.ar (N. Juárez), pabloneme08@gmail.com (P.
Neme), and joviedo@unsl.edu.ar (J. Oviedo).
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Since then, a considerable amount of work has been carried out on both theory and
applications of stable matchings. A matching is stable if all agents have acceptable
partners and there is no pair of agents, one from each side of the market, that would
prefer to be matched to each other rather than to remain with their current partners.
Unfortunately, the set of many-to-one stable matchings may be empty. Substitutabil-
ity is the weakest condition that has so far been imposed on agents’ preferences under
which the existence of stable matchings is guaranteed. An agent has substitutable prefer-
ence if she wants to continue being partnering agents from the other side of the market
even if other agents become unavailable (see Kelso and Crawford, 1982; Roth, 1984, for
more detail).

One of the most important results in the literature on matching is that the set of
stable matchings has a distributive, dual lattice structure. This is important for at least
two reasons: First, it shows that even if agents from the same side of the market com-
pete for agents from the other side the conflict is attenuated since, in the set of stable
matchings, agents on the same side of the market have a coincidence of interests. Sec-
ond, many algorithms that find the full set of stable matchings are based on this lattice
structure.

In this paper, we study the lattice structure of the random stable set for a general
matching market, many-to-many matching markets with substitutable preferences,
and markets which satisfy the law of aggregated demand (L.A.D.). Random stable match-
ings are very useful for at least two reasons: First, randomization allows for a much
richer space of possible outcomes and may be essential to achieve fairness and anonymity.
Second, the framework of random stable matchings admits fractional matchings that
capture time-sharing arrangements (see Rothblum, 1992; Roth et al., 1993; Teo and
Sethuraman, 1998; Sethuraman et al., 2006; Baı̈ou and Balinski, 2000; Doğan and Yıldız,
2016; Neme and Oviedo, 2019a,b, among others).

Roth et al. (1993) define binary operations to compute the least upper bound (l.u.b.)
and the greatest lower bound (g.l.b.) for random stable matchings in the marriage market.
To that end, they use first-order stochastic dominance as the partial order for random
stable matchings. This partial order cannot be applied when agents’ preferences are
for subsets of agents from the other side of the market in a substitutable manner. We
present a partial order –a natural extension of first-order stochastic dominance– for
the random stable set of a matching market when agents’ preferences are substitutable
and satisfy the L.A.D.. Moreover, we prove that these partial orders (one for each
side of the market) respect the polarization of interests. That is, if one random stable
matching is unanimously preferred to another for one side of the market, the other side
unanimously prefers the opposite. In general, any random stable matching can have
many different representations. Despite this, we prove that there is a unique way to
represent a random stable matching fulfilling a special property: The stable matchings
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involved in the lottery are completely ordered by the unanimous order of all firms,
which we refer to from now on as ordered representation. In this way, the partial order
is independent of the representations of the random stable matching. The process for
constructing this ordered representation for each random stable matchings is presented
via an algorithm.

Our main contribution in this paper is to define two natural binary operations
(pointing functions) that compute the l.u.b. and g.l.b. for random stable matchings,
by which the set of those matchings has a dual lattice structure. Moreover, the lattices
are distributive. In other words, as long as the set of (deterministic) stable matchings
has a lattice structure where binary operations are computed via pointing functions,
the set of random stable matchings also has a lattice structure. The paper illustrates
the successive results with numerical examples.

Related literature

The lattice structure of the set of stable matchings is introduced by Knuth (1976) for
the marriage market. Given two stable matchings, he defines the l.u.b. for men by
matching each man with the better of two partners, and the g.l.b. for men by match-
ing each man with the less preferred of the two partners; these are usually called the
pointing functions relative to a partial order. Roth (1985) shows that these binary op-
erations (pointing functions) used in Knuth (1976) do not work in the more general
many-to-many and many-to-one matching markets even under substitutable prefer-
ences. Roth and Sotomayor (1990) present a natural extension of Knuth’s result for
a specific many-to-one matching market with q-responsive preferences, the so-called
college admission problem. Martı́nez et al. (2001) further extend the results proved by
Roth and Sotomayor (1990). They identify a weaker condition than q-responsiveness,
called q-separability, and propose two natural binary operations that give a dual lat-
tice structure to the set of stable matchings in a many-to-one matching market with
substitutable and q-separable preferences. Such binary operations are similar to those
of Knuth. Pepa Risma (2015) generalizes the result of Martı́nez et al. (2001) by show-
ing that their binary operations work well in many-to-one matching markets where
the preferences of the agents satisfy substitutability and the law of aggregate demand (a
less restrictive than q-separability). This paper is set in many-to-one matching markets
with contracts. Manasero (2019) extends the result in Pepa Risma (2015) to the many-
to-many marching market, where one side has substitutable preferences satisfying the
law of aggregate demand and the other side has q-responsive preferences. Alkan (2002)
considers a market with multiple partners on both sides. For that market, preferences
are given by rather general path-independent choice functions that do not necessarily re-
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spect any ordering of individuals and satisfy the law of aggregate demand.1 He shows
that the set of stable matchings in any two-sided market with path-independent choice
functions and preferences satisfying the law of aggregate demand has a lattice struc-
ture under the common preferences of all agents on either side of the market. Li (2014)
presents an alternative proof for Alkan’s result. The main distinction between Li (2014)
and Alkan (2002) lies in the conditions as regards preferences: Li (2014) assumes agents
with complete preferences, whereas Alkan (2002) assumes agents with incompletely
revealed preferences. All of these papers share natural definitions of binary operations
via pointing functions.

In another direction, there is an extensive literature that proves that the set of stable
matchings has a lattice structure by using fixed points theorems, but does not compute
binary operation (see Blair, 1988; Adachi, 2000; Fleiner, 2003; Echenique and Oviedo,
2004, 2006; Hatfield and Milgrom, 2005; Ostrovsky, 2008; Wu and Roth, 2018, among
others).

In the related literature concerning lattice structures of random stable sets, Roth
et al. (1993) define two binary operations for random stable matchings in marriage
markets. For these very particular markets, they prove that the set of random stable
matchings2 endowed with a partial order (first-order stochastic dominance) has a lat-
tice structure. They also present a natural extension of pairwise stability for random
stable matchings –a random stable matching may be blocked by a pair in a fractional
way– called the strong stability condition. Neme and Oviedo (2019a) prove for the mar-
riage market that the strongly stable fractional matching set (random stable matchings
that fulfill the strong stability condition), endowed with the same partial order (first-
order stochastic dominance), has a lattice structure. The binary operations defined in
Roth et al. (1993) and also used by Neme and Oviedo (2019a) cannot be extended to
more general markets: Not even to the college admission problem with q-responsive
preferences.

The rest of this paper is organized as follows. Section 2 introduces the matching
market and preliminary results. Section 3 proves that each random stable matching
has a unique strictly ordered representation (Theorem 1). Section 4 presents a partial
order for random matchings when agents’ preferences are substitutable and satisfy the
L.A.D. (Proposition 1). Section 5 defines binary operations and proves that natural
binary operations compute the l.u.b. and g.l.b. for each side of the market (Proposition
4). Moreover, these binary operations satisfy a distributive property (Proposition 5).
The main result of the paper is also presented: The random stable set has a distributive

1Alkan (2002) ) calls the law of aggregate demand “cardinal monotonicity”.
2They prove that the “stable fractional matching set” coincides with the random stable matching set.
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dual lattice structure (Theorem 2). Section 6 contains concluding remarks. Finally,
Appendix A contains proofs for the ordered representation and Appendix B contains
proofs of the partial order and the proof of the main theorem.

2 Preliminaries

We consider many-to-many matching markets where there are two disjoint sets of
agents: The set of firms F and the set of workers W. Each firm has an antisymmetric,
transitive, and complete preference relation (> f ) over the set of all subsets of W. Each
worker also has an antisymmetric, transitive, and complete preference relation (>w)
over the set of all subsets of F. We denote by P the preference profile for all agents:
Firms and workers. A many-to-many matching market is denoted by (F, W, P). Given
a set of firms S ⊆ F, each worker w ∈ W can determine which subset of S would most
prefer to hire her. This is called w’s choice set from S and is denoted by Ch(S,>w).
Formally,

Ch(S,>w) = max
>w
{T : T ⊆ S}.

Symmetrically, given a set of workers S ⊆ W, let Ch(S,> f ) denote firm f ’s most pre-
ferred subset of S according to her preference relation > f . Formally,

Ch(S,> f ) = max
> f
{T : T ⊆ S}.

Definition 1 A matching µ is a function from the set F ∪W into 2F∪W such that for each
w ∈W and for each f ∈ F:

1. µ(w) ⊆ F,

2. µ( f ) ⊆W,

3. w ∈ µ( f )⇔ f ∈ µ(w).

Agent a ∈ F ∪W is said to be matched if µ(a) 6= ∅, otherwise she is unmatched.
A matching µ is blocked by agent a if µ(a) 6= Ch(µ(a),>a). A matching is said

to be individually rational if it is not blocked by any individual agent. A matching
µ is blocked by a worker-firm pair (w, f ) if w /∈ µ( f ), w ∈ Ch(µ( f ) ∪ {w},> f ), and
f ∈ Ch(µ(w) ∪ { f },>w). A matching µ is stable if it is not blocked by any individual
agent or any worker-firm pair. The set of stable matchings is denoted by S(P).3 A
random stable matching is a lottery over stable matchings, and RS(P) denotes the
random stable set for the many-to-many matching market (F, W, P).

3In the rest of the paper we use either µ or ν to denote a stable matching.
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Given an agent a’s preference relation (>a) and two stable matchings µ and µ′,
we denote that µ(a) ≥B

a µ′(a) when µ(a) = Ch(µ(a) ∪ µ′(a),>a). It can be said that
µ(a) >B

a µ′(a) if µ(a) ≥B
a µ′(a) and µ(a) 6= µ′(a). Given a preference profile P and

two stable matchings µ and µ′, let µ >B
F µ′ denote the case in which all firms like µ at

least as well as µ′, with at least one firm preferring µ to µ′ outright. Let µ ≥B
F µ′ denote

that either µ >B
F µ′ or that µ = µ′. Similarly, define >B

W and ≥B
W . Notice that ≥B

F and
≥B

W are known as Blair’s partial orders over the set of stable matchings (see Blair, 1988,
for more detail). Moreover, there is a bridge between these two partial orders that is
known as polarization of interests, and states that if µ, µ′ ∈ S(P) then µ ≥B

F µ′ if and
only if µ′ ≥B

W µ (see Blair, 1988; Alkan, 2002; Li, 2014, among others).
An agent a’s preference relation satisfies substitutability if, for each subset S of the

opposite set (for instance, if a ∈ F then S ⊆ W) that contains agent b, b ∈ Ch(S,>a)

implies that b ∈ Ch(S′ ∪ {b},>a) for each S′ ⊆ S. Moreover, if agent a’s preference
relation is substitutable then it holds that Ch(S ∪ S′,>a) = Ch(Ch(S,>a) ∪ S′,>a) for
each subset S and S′ of the opposite set. An agent a’s preference relation (>a) is said
to satisfy the law of aggregate demand (L.A.D.) if for all subsets S of the opposite set
and all S′ ⊆ S, |Ch(S′,>a)| ≤ |Ch(S,>a)|. 4

For a matching market (F, W, P) where the preference relation of each agent satis-
fies substitutability and the L.A.D., Alkan (2002)5 proves that the set of stable match-
ings has a lattice structure. Given two stable matchings µ and µ′, l.u.b. for firms is
denoted by µ∨F µ′ and g.l.b. for firms is denoted by µ∧F µ′. Similarly, l.u.b. for work-
ers is denoted by µ∨W µ′ and g.l.b. for workers is denoted by µ∧W µ′. The binary
operations are defined as follows (see Blair, 1988; Alkan, 2002; Li, 2014, among others).

µ ∨F µ′( f ) := Ch(µ( f ) ∪ µ′( f ),> f ), for each firm f ∈ F,

µ ∨F µ′(w) := { f : w ∈ Ch(µ( f ) ∪ µ′( f ),> f )}, for each worker w ∈W.

Similarly,

µ ∨W µ′(w) := Ch(µ(w) ∪ µ′(w),>w), for each worker w ∈W,

µ ∨W µ′( f ) := {w : f ∈ Ch(µ(w) ∪ µ′(w),>w)}, for each firm f ∈ F.

µ ∨F µ′, µ ∨F µ′, µ ∨W µ′, and µ ∨W µ′ are stable matchings (for more detail see Blair,
1988; Alkan, 2002; Li, 2014, among others). From the polarization of interests of Blair’s
partial orders (≥B

F and ≥B
W), it follows that

µ ∨F µ′ = µ ∧W µ′,

4|S| denotes the number of agents in S.
5Li (2014) presents an alternative proof for Alkan’s result Li (2014) assumes agents with complete

preferences, whereas Alkan (2002) assumes agents with incomplete preferences.
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µ ∧F µ′ = µ ∨W µ′,

Therefore, (S(P),∨F,∧F,≥B
F) and (S(P),∨W ,∧W ,≥B

W) are dual lattices. Moreover,
these binary operations satisfy µ ∧F (µ

′ ∨F µ′′) = (µ ∧F µ′) ∨F (µ ∧F µ′′) and
µ ∨F (µ′ ∧F µ′′) = (µ ∨F µ′) ∧F (µ ∨F µ′′) for each µ, µ′, µ′′ ∈ S(P), and this implies
that the lattices are distributive. The distributiveness of ∨W and ∧W is analogous.
Given µ, µ′, µ′′ ∈ S(P), computing the l.u.b. (g.l.b.) among three stable matchings is
equivalent to computing the l.u.b. (g.l.b.) between two of them, say µ and µ′, and then
computing the l.u.b. (g.l.b.) between the resulting stable matching and µ′′. Formally,

(µ ∨F µ′( f )) ∨F µ′′( f ) = Ch(Ch(µ( f ) ∪ µ′( f ),> f ) ∪ µ′′( f ),> f ), for each firm f ∈ F.

Given that for an agent a’s preference relation it holds that Ch(S ∪ S′,>a) =

Ch(Ch(S,>a) ∪ S′,>a) for each subset S and S′ of the opposite set, it holds that

Ch(Ch(µ( f )∪µ′( f ),> f )∪µ′′( f ),> f ) = Ch((µ∪µ′ ∪µ′′)( f ),> f ), for each firm f ∈ F.

Therefore, (µ∨F µ′( f ))∨F µ′′( f ) = µ∨F µ′ ∨F µ′′( f ). This is called the associative prop-
erty of ∨F. The associative properties of ∨W ,∧W , and ∧F are analogous.

Let T ⊆ S(P). Denote

µ∨T( f ) = Ch

⋃
µ∈T

µ( f ),> f


and

µ∧T( f ) =

w : f ∈ Ch

⋃
µ∈T

µ(w),>w


for each f ∈ F. From the associative property, it follows that µ∨T and µ∧T are stable
matchings which are the l.u.b.≥F and g.l.b.≥F among the stable matchings in T respec-
tively.

3 Random stable matchings: Representations

This section presents a result that is of interest in itself and is used in the following
sections to define a partial order for random stable matchings and prove the main
result of the paper.

To describe the representation of random stable matchings, we first need to define
an incidence vector. Then, given a stable matching µ, a vector xµ ∈ {0, 1}|F|×|W| is an
incidence vector where xµ

i,j = 1 if and only if j ∈ µ (i) and xµ
i,j = 0 otherwise. Hence, a
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random stable matching is represented as a lottery over the incidence vectors of stable
matchings. That is,

x = ∑
ν∈M

λνxν

where 0 < λν ≤ 1, ∑ν∈S(P) λν = 1, andM⊆ S(P).
This paper, only considers representations where each scalar, λ, is positive. Despite

this, each random stable matching may have several representations. Notice that the
incidence vector of a random stable matching is a vector fulfilling the requirements
that x ∈ [0, 1]|F|×|W|. Each entry xi,j can also be represented as the probability of i being
matched with j. The following example illustrates this.

Example 1 Let (F, W, P) be a many-to-one matching market instance where F = { f1, f2, f3, f4},
W = {w1, w2, w3, w4} and the preference profile is given by

> f1= {w1, w2}, {w1, w3}, {w2, w4}, {w3, w4}, {w1}, {w2}, {w3}, {w4}.
> f2= {w3, w4}, {w2, w4}, {w1, w3}, {w1, w2}, {w3}, {w4}, {w1}, {w2}.
> f3= {w1, w3}, {w3, w4}, {w1, w2}, {w2, w4}, {w1}, {w3}, {w2}, {w4}.
> f4= {w2, w4}, {w1, w2}, {w3, w4}, {w1, w3}, {w2}, {w4}, {w1}, {w3}.

>w1= { f2, f4}, { f2, f3}, { f1, f4}, { f1, f3}, { f2}, { f4}, { f3}, { f1}.
>w2= { f2, f3}, { f1, f3}, { f2, f4}, { f1, f4}, { f2}, { f3}, { f1}, { f4}.
>w3= { f1, f4}, { f2, f4}, { f1, f3}, { f2, f3}, { f1}, { f4}, { f2}, { f3}.
>w4= { f1, f3}, { f1, f4}, { f2, f3}, { f2, f4}, { f1}, { f3}, { f4}, { f2}.

It is easy to check that these preference relations are substitutable and satisfy the L.A.D.. The
set of stable matchings {ν1, ν2, ν3, ν4}, is represented in Table 1 and its lattice for the partial
order ≥B

F is represented in Figure 1.

f1 f2 f3 f4

ν1 {w1, w2} {w3, w4} {w1, w3} {w2, w4}
ν2 {w1, w3} {w2, w4} {w3, w4} {w1, w2}
ν3 {w2, w4} {w1, w3} {w1, w2} {w3, w4}
ν4 {w3, w4} {w1, w2} {w2, w4} {w1, w3}

Table 1

ν1

ν2 ν3

ν4

Figure 1

Let x1 = 3
4 xν2 + 1

4 xν3 be a random stable matching. The incidence vector associated is the
following

x1 =


3
4

1
4

3
4

1
4

1
4

3
4

1
4

3
4

1
4

1
4

3
4

3
4

3
4

3
4

1
4

1
4

 .

Note that x1 is also represented by the following lottery
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x1 = 1
4 xν1 + 1

2 xν2 + 1
4 xν4 .

Given a representation of a random stable matching x, say x = ∑R
r=1 λrxνr ; 0 < λr ≤

1, ∑R
r=1 λr = 1, A = {ν1, . . . , νR} is defined as the set of all stable matchings involved

in the representation. It can also be said that a random stable matching has a weakly
(strictly) ordered representation if νr ≥B

F νr+1
(
νr >B

F νr+1
)

for each r = 1, . . . , R− 1.
Notice that in Example 1 the latter representation is a strictly ordered representation
of x1. Given any representation of a random stable matching, we show that there is a
unique strictly ordered representation.

Theorem 1 If x is a random stable matching then x has a unique strictly ordered representa-
tion.

Proof. See proof in Appendix A. �

The proof of Theorem 1 is constructive. Algorithm 1 presents the construction of
the strictly ordered representation. But before the algorithm is formally presented a
brief explanation of how the procedure goes is provided. Let x be a random stable
matching with a representation. Let A be the set of stable matchings involved in the
representation of x. Let B1 be the set of stable matchings that form the minimum sub-
lattice, concerning the partial order ≥B

F , which contains the set A.6 Set x1 := x, and B1

as the input. First, we compute µ1 as the stable matching which is the l.u.b.≥F of set
B1. Thus, µ1 is the stable matching of the first term of the strictly ordered representa-
tion. Then define the first scalar as follows: set α1 as the minimum positive probability
assigned to pairs of agents in x1 that are also matched in µ1. Thus, α1xµ1 is the first
term of the strictly ordered representation. Now, some stable matchings of the set B1

must be eliminated, because once the first term of the strictly ordered representation is
established, no other term can be allowed to share with µ1 the entry of x1 in which the
minimum probability (α1) is obtained. To do this, set L1 as the set of pairs of agents,
which are assigned in µ1, and have probability α1 at x1. Then eliminate from B1 each
stable matching that matches a pair of agents that belong to L1. If the resulting set is
empty, the algorithm stops, which means that x1 = xµ1 . If not, to complete the output
of the first step, set x2 such that x1 = α1xµ1

+ (1− α1)x2, and the algorithm continues
to Step 2 with input x2 and the resulting set of stable matchings.

Now, the algorithm is formally presented. Set B1 = {ν∨T : T ⊆ A}
⋃
{ν∧T : T ⊆ A} .

6Given the set of stable matchings, a lattice formed by a subset of stable matchings is called a sub-
lattice (see Birkhoff, 1940, for more detail on lattice theory).
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Algorithm 1:

Step k = 1 INPUT: x1 and B1.
Set µ1 := ν∨B1

.
α1 := min{x1

i,j : xµ1
i,j = 1}.

L1 := {(i, j) ∈ F×W : x1
i,j = α1 and xµ1

i,j = 1}.
C1 :=

⋃
(i,j)∈L1

{ν ∈ B1 : xν
i,j = 1}.

B2 := B1 \ C1.
IF B2 = ∅,

THEN, the procedure stops.
ELSE set x2 such that x1 = α1xµ1 + (1− αk)x2.

OUTPUT: x2 and B2. Continue to Step 2.
Step k > 1 INPUT: xk and Bk.

Set µk := ν∨Bk
.

αk := min{xk
i,j : xµk

i,j = 1}.
Lk := {(i, j) ∈ F×W : xk

i,j = αk and xµk
i,j = 1}.

Ck :=
⋃

(i,j)∈Lk

{ν ∈ Bk : xν
i,j = 1}.

Bk+1 := Bk \ Ck.
IF Bk+1 = ∅,

THEN, the procedure stops.
ELSE set xk+1 such that xk = αkxµk + (1− αk)xk+1.

THEN, x1 = α1xµ1 + ∑k
s=2 ∏s−1

`=1(1− α`)αsxµs + ∏k
`=1(1− α`)xk+1.

OUTPUT: xk+1 and Bk+1. Continue to Step k + 1.

The following example illustrates Algorithm 1.
Example 1 (Continued) Let x1 = 3

4 xν2 + 1
4 xν3 be a random stable matching. Now, obtain

the strictly ordered representation of x1 as follows. Recall that

x1 =


3
4

1
4

3
4

1
4

1
4

3
4

1
4

3
4

1
4

1
4

3
4

3
4

3
4

3
4

1
4

1
4

 .

Thus, A = {ν2, ν3}. The non-empty subsets of A are T1 = {ν2}, T2 = {ν3} and T3 =

{ν2, ν3}. Thus, the elements of B1 are ν∨T1
= ν2, ν∨T2

= ν3, ν∨T3
= ν1, ν∧T1

= ν2, ν∧T2
= ν3 and

ν∧T3
= ν4. Hence, B1 = {ν1, ν2, ν3, ν4}.

Step 1 INPUT: x1 and B1. Set µ1 := ν1 = ν∨B1
, α1 = 1

4 , and C1 = {ν1, ν3}.
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Since B2 = B1 \ C1 = {ν2, ν4} 6= ∅, set

x2 :=
x− 1

4 xµ1

1− 1
4

=


2
3 0 1 1

3
1
3 1 0 2

3
0 1

3
2
3 1

1 2
3

1
3 0

 .

Thus, x1 = 1
4 xµ1 + (1− 1

4)x2.
OUTPUT:x2 and B2. Continue to Step 2.
Step 2 INPUT:x2 and B2. Set µ2 := ν2 = ν∨B2

, α2 = 2
3 , and C2 = {ν2}.

Since B3 = B2 \ C2 = {ν4} 6= ∅, set

x3 =
x− 2

3 xµ2

1− 2
3

=


0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0

 .

Thus, x1 = 1
4 xµ1 + (1− 1

4)(
2
3)xµ2 + (1− 1

4)(1−
2
3)x3.

OUTPUT:x3 and B3. Continue to Step 3.
Step 3 INPUT:x3 and B3. Set µ3 := ν4 = ν∨B3

, α3 = 1, and C3 = {ν4}.
Since B4 = B3 \ C3 = ∅, the procedure stops.
The output of Algorithm 1 is

x1 = 1
4 xµ1 + (1− 1

4)(
2
3)xµ2 + (1− 1

4)(1−
2
3)(1)xµ3

= 1
4 xµ1 + 1

2 xµ2 + 1
4 xµ3 .

Since µ1 = ν1, µ2 = ν2 and µ3 = ν4, the ordered representation of x1 is the following:

x1 = 1
4 xν1 + 1

2 xν2 + 1
4 xν4 .

As shown in Figure 1, the stable matchings of the representation lottery fulfill ν1 >B
F ν2 >B

F ν4.

4 Partial order for random stable matchings

This section defines a partial order for the random stable set in a many-to-many match-
ing market with substitutable preferences satisfying the L.A.D.. This partial order is a
generalization of the first-order stochastic dominance presented in Roth et al. (1993)
for the random stable set in a marriage market (one-to-one matching market). For a
given marriage market (M, W, P), they define the following partial order: With x and
y being two random stable matchings, they say that x weakly dominates? y for man m,
(here denoted by x �?

m y) if

11



∑
j≥mw

xm,j ≥ ∑
j≥mw

ym,j

for each w ∈ W. They also say that x �?
M y if x �?

m y for each m ∈ M. The partial
order �?

W is defined analogously. Notice that the partial orders �?
M and �?

W are de-
fined over single agents. These relations cannot order random stable matchings when
agents have preferences over subsets of agents on the other side of the market in a
substitutable manner. Therefore, for the setting considered in this paper, a new partial
order is defined. A desired property of that partial order is that it be independent of
the representation of the random stable matchings. To that end it is defined for strictly
ordered representations, since they are unique. Formally,

Definition 2 Let x and y be two random stable matchings. Let x = ∑I
i=1 αixµx

i and y =

∑J
j=1 β jx

µ
y
j their strictly ordered representations. It is said that x weakly dominates y for the

firm f , (x � f y), if and only if for each µ
y
j ( f )

∑{
i:µx

i ( f )≥B
f µ

y
j ( f )

} αi ≥ ∑{
l:µy

l ( f )≥B
f µ

y
j ( f )

} βl.

It can also be said that x strongly dominates y for the firm f , (x � f y), if the above
inequalities hold with at least one strict inequality for any µ

y
j ( f ). That is, x � f y when

x � f y and x 6= y for the firm f . Furthermore, if x � f y for each f ∈ F it can be said that
x �F y. Relations�w, �w and�W are defined analogously. Notice that if each random
stable matching has a weakly ordered representation, the domination relations applies
in the same way. Furthermore, if x f ,w is interpreted as the probability that f is matched
with w, then x � f y if x f ,· stochastically dominates y f ,·.

Remark 1 For the particular case of a marriage market, the domination relation �F (�W)

coincides with �?
M (�?

W).

The following proposition states that the domination relation �F (�W) is a partial
order. Formally,

Proposition 1 The domination relation �F (�W) is a partial order.

Proof. See proof in Appendix B. �

Before presenting the main results, we present a special representation of random
stable matchings. This special representation is crucial in defining binary operations in
a natural way. Given x and y two random stable matchings with their strictly ordered
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representations, these random stable matchings are said to have Ordered Equally
Scalar (OES)-representations if and only if

x =
k̃

∑
`=1

γ`µ` and y =
k̃

∑
`=1

γ`µ
′
`,

with µ` ≥B
F µ`+1 and µ′` ≥B

F µ′`+1 for each ` = 1, . . . , k̃ − 1. That is, both are weakly
ordered representations that also have the same numbers of terms and the same scalar,
term to term.

The following two subsections show how to construct OES-representations. The
first subsection constructs the OES-representation for rational random stable match-
ings (each scalar is a rational number). The second subsection presents the general
construction of OES-representations.

4.1 OES-representations: rational random stable matchings

This subsection, shows how to construct OES-representations for random stable match-
ings where each scalar of the strictly ordered representations is a rational number. These
random stable matchings are called rational random stable matchings.

Let x and y be two rational random stable matchings, so that their strictly ordered
representations are as follows:

x =
I

∑
i=1

αiµ
x
i , and y =

J

∑
j=1

β jµ
y
j . (1)

αi and β j are positive rational numbers, so for each αi there are natural numbers
ai, bi such that αi =

ai
bi

. Similarly, for each β j there are natural numbers cj, dj such that

β j =
cj
dj

.
Denote by e the least common multiple (lcm) of all denominators bi, dj for each i =

1, . . . , I and for each j = 1, . . . , J. That is,

e = lcm(b1, . . . , bI , d1, . . . , dJ).

It is then possible to write αi =
ai
bi

=
ai

e
bi

e and βi =
cj
dj

=
cj

e
dj
e for each i = 1, . . . , I

and for each j = 1, . . . , J. Hence, all the scalars α and β ca be written with the same
denominator.

Define
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µ̃x
k :=



µx
1 for k = 1, . . . , a1

b1
e

µx
2 for k = a1

b1
e + 1, . . . ,

(
a2
b2
+ a1

b1

)
e

...
...

µx
I for k =

(
I−1

∑
n=1

an

bn

)
e + 1, . . . ,

(
I

∑
n=1

an

bn

)
e

µ̃
y
k :=



µ
y
1 for k = 1, . . . , c1

d1
e

µ
y
2 for k = c1

d1
e + 1, . . . ,

(
c2
d2
+ c1

d1

)
e

...
...

µ
y
J for k =

(
J−1

∑
m=1

cm

dm

)
e + 1, . . . ,

(
J

∑
m=1

cm

dm

)
e

Then,

x =
I

∑
i=1

αiµ
x
i =

I

∑
i=1

ai

bi
µx

i =
I

∑
i=1

ai
e
bi

e
µx

i =
e

∑
k=1

1
e

µ̃x
k . (2)

Analogously,

y =
J

∑
j=1

β jµ
y
j =

J

∑
j=1

cj

dj
µ

y
j =

J

∑
j=1

cj
e
dj

e
µ

y
j =

e

∑
k=1

1
e

µ̃
y
k . (3)

Therefore, the OES-representations of x and y are the following,

x =
e

∑
k=1

1
e

µ̃x
k , and y =

e

∑
k=1

1
e

µ̃
y
k .

The following example illustrates this construction.
Example 1 (Continued) Let x and y be two random stable matchings with their strictly
ordered representations,

x = 1
4 xν1 + 1

2 xν2 + 1
4 xν4 ,

y = 1
6 xν1

+ 1
2 xν3

+ 1
3 xν4

.

Let e = lcm(2, 3, 4, 6) = 12. Thus, the random stable matchings x and y can be represented
as:

x = 1
12 xν1 + 1

12 xν1 + 1
12 xν1 + 1

12 xν2 + 1
12 xν2 + 1

12 xν2 + 1
12 xν2 + 1

12 xν2

+ 1
12 xν2 + 1

12 xν4 + 1
12 xν4 + 1

12 xν4 ,

y = 1
12 xν1 + 1

12 xν1 + 1
12 xν3 + 1

12 xν3 + 1
12 xν3 + 1

12 xν3 + 1
12 xν3 + 1

12 xν3

+ 1
12 xν4 + 1

12 xν4 + 1
12 xν4 + 1

12 xν4 .
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4.2 OES-representation: The general case

This subsection briefly explains the procedure for constructing weakly ordered OES-
representations for a general case. That is, the scalar of the strictly ordered repre-
sentations of x or y are not necessarily rational numbers. This procedure is formal-
ized by Algorithm 2 in Appendix B. First, take two random stable matchings x and y
and represent them by their strictly ordered representations. That is, x = ∑I

i=1 αixµx
i

and y = ∑J
j=1 β jx

µ
y
j with µx

i >B
F µx

i+1 for each i = 1, . . . , I − 1 and µ
y
j >B

F µ
y
j+1 for

each j = 1, . . . , J − 1. Thus, the OES-representation procedure goes as follows: Let
γ1 = min{α1, β1}. W.l.o.g. assume that γ1 = α1. Thus,

x = γ1µx
1 +

I

∑
i=2

αixµx
i

y = γ1µ
y
1 + (β1 − γ1)µ

y
1 +

J

∑
j=2

β jx
µ

y
j .

Notice that the first term of each new representation has the same scalar. Now, take the
second scalar of each representation and set γ2 = min{α2, β1 − γ1}. If γ2 = α2, then

x = γ1µx
1 + γ2µx

2 +
I

∑
i=3

αixµx
i

y = γ1µ
y
1 + γ2µ

y
1 + (β1 − γ1 − γ2)µ

y
1 +

J

∑
j=2

β jx
µ

y
j .

If γ2 = β1 − γ1, then

x = γ1µx
1 + γ2µx

2 + (α2 − γ2)µ
x
2 +

I

∑
i=3

αixµx
i

y = γ1µ
y
1 + γ2µ

y
1 +

J

∑
j=2

β jx
µ

y
j .

The first two terms of each new representation have the same scalars. Now take the
third scalar of each representation and set either γ3 = min{α3, β1 − γ1 − γ2} or γ3 =

min{α2 − γ2, β2}, and so on.7 Notice that the OES-representations are weakly ordered
representations.

The OES-representation general procedure is illustrated by the following example.
Example 1 (Continued) Let x = 1

4 xν1 + 1
2 xν2 + 1

4 xν4 and y = 1
6 xν1

+ 1
2 xν3

+ 1
3 xν4

. No-
tice that both random stable matchings have their strictly ordered representations. If γ1 =

min{1
4 , 1

6} =
1
6 , then

7Notice that the procedure for constructing the OES-representations for more than two random stable
matchings is analogous.
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x = 1
6 xν1 + (1

4 −
1
6)xν1 + 1

2 xν2 + 1
4 xν4 ,

y = 1
6 xν1

+ 1
2 xν3

+ 1
3 xν4

Notice that the first term of each new representation has the same scalar 1
6 . If γ2 = min{ 1

4 −
1
6 , 1

2} =
1
4 −

1
6 = 1

12 , then

x = 1
6 xν1 + 1

12 xν1 + 1
2 xν2 + 1

4 xν4 ,

y = 1
6 xν1

+ 1
12 xν3 + (1

2 −
1
12)xν3

+ 1
3 xν4

.

Notice that the second term of each new representation also has the same scalar 1
12 . If γ3 =

min{1
2 , 1

2 −
1

12} =
1
2 −

1
12 = 5

12 , then

x = 1
6 xν1 + 1

12 xν1 + 5
12 xν2

+ (1
2 −

5
12)xν2 + 1

4 xν4 ,

y = 1
6 xν1

+ 1
12 xν3 + 5

12 xν3
+ 1

3 xν4
.

Notice that the third term of each new representation also has the same scalar 5
12 . If γ4 =

min{1
2 −

5
12 , 1

3} =
1
2 −

1
12 = 1

12 , then

x = 1
6 xν1 + 1

12 xν1 + 5
12 xν2

+ 1
12 xν2 + 1

4 xν4 ,

y = 1
6 xν1

+ 1
12 xν3 + 5

12 xν3
+ 1

12 xν4 + (1
3 −

1
12)xν4

.

Notice that the fourth term of each new representation also has the same scalar 1
12 . If γ4 =

min{1
4 , 1

3 −
1

12} = min{ 1
4 , 1

4} =
1
4 , then

x = 1
6 xν1 + 1

12 xν1 + 5
12 xν2

+ 1
12 xν2 + 1

4 xν4 ,

y = 1
6 xν1

+ 1
12 xν3 + 5

12 xν3
+ 1

12 xν4 + 1
4 xν4

.

Notice that the fifth term of each new representation also has the same scalar 1
4 . Now, once the

OES-representation procedure is complete, both x and y have five terms in each representation.
Moreover, both lotteries have the same scalar, term to term.

In Appendix B the same example is used to illustrate the OES-representation pro-
cedure using Algorithm 2, detailing the procedure step by step.

It can now be stated that any two random stable matchings will have OES-representations.

Proposition 2 If x and y are two random stable matchings then x and y have OES-representations.
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Proof. See proof in Appendix B. �

The following proposition presents a bridge between the partial order �F (�W)

over random stable matchings and the partial order ≥B
F (≥B

W) over the stable match-
ings involved in their OES-representations.

Consider x and y two random stable matchings with their OES-representations, i.e.

x =
k̃

∑
`=1

γ`µ̃
x
` and y =

k̃

∑
`=1

γ`µ̃
y
` ,

where for each ` = 1, . . . , k̃, 0 < γ` ≤ 1, ∑k̃
`=1 γ` = 1, and for each ` = 1, . . . , k̃ − 1

µ̃x
` ≥

B
F µ̃x

`+1 and µ̃
y
` ≥

B
F µ̃

y
`+1.

Proposition 3 It is said that x weakly dominates y for all firms (x �F y) if and only if µ̃x
` ≥

B
F

µ̃
y
` for each ` = 1, . . . , k̃. Analogously, x �W y if and only if µ̃x

` ≥
B
W µ̃

y
` for each ` = 1, . . . , k̃.

Proof. See proof in Appendix B. �

As a consequence of Proposition 3 and the polarization of interest of partial orders
≥B

F and ≥B
W , the partial orders for random stable matching also have the property of

polarization of interests. Formally,

Lemma 1 If x and y are two random stable matchings, then

x �F y⇐⇒ y �W x.

Proof. See proof in Appendix B. �

5 Main result

This section presents the main result of the paper, proving that the random stable set of
a many-to-many matching market endowed with the partial orders (�F and �W) has
a distributive, dual lattice structure. Moreover, given two random stable matchings,
natural binary operations are defined for computing the l.u.b. and g.l.b. for each side
of the market.

Recall that ∨W , ∧W , ∨F and ∧F are the binary operations relative to the partial
orders≥B

F and≥B
W defined between two (deterministic) stable matchings. These binary

operations are now extended to random stable matchings.
Given x and y two random stable matchings with their OES-representations,

x =
k̃

∑
`=1

γ`µ̃
x
` and y =

k̃

∑
`=1

γ`µ̃
y
` .
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This study defines

x YF y :=
k̃

∑
`=1

γ`(µ̃
x
` ∨F µ̃

y
`) , x ZF y :=

k̃

∑
`=1

γ`(µ̃
x
` ∧F µ̃

y
`),

and

x YW y :=
k̃

∑
`=1

γ`(µ̃
x
` ∨W µ̃

y
`) , x ZW y :=

k̃

∑
`=1

γ`(µ̃
x
` ∧W µ̃

y
`).

Observe that, for each ` = 1, . . . , k̃, 0 < γ` ≤ 1, ∑k̃
`=1 γ` = 1, µ̃x

` , µ̃
y
` ∈ S(P), and

for each ` = 1, . . . , k̃− 1, µ̃x
` ≥F µ̃x

`+1 and µ̃
y
` ≥F µ̃

y
`+1.

For each ` = 1, . . . , k̃ it follows that µ̃x
` ∧F µ̃

y
` , µ̃x

` ∧W µ̃
y
` , µ̃x

` ∨W µ̃
y
` , and µ̃x

` ∨F µ̃
y
` are

stable matchings, so x YF y, x ZF y, x YW y and x ZW y are random stable matchings.
Now, it can be stated that these binary operations defined for random stable matchings
are actually the l.u.b. and g.l.b. for each side of the market. Formally,

Proposition 4 If x and y are two random stable matchings then for X ∈ {F, W} it follows
that

x YX y = l.u.b.�X(x, y) and x ZX y = g.l.b.�X
(x, y).

Also,
x YF y = x ZW y and x YW y = x ZF y.

Proof. See proof in Appendix B. �

The following proposition states that the binary operations for random stable match-
ings are distributive.

Proposition 5 If x, y, and z are random stable matchings then for X ∈ {F, W} it follows that

x YX (y ZX z) = (x YX y) ZX (x YX z), and x ZX (y YX z) = (x ZX y) YX (x ZX z).

Proof. See proof in Appendix B. �

Furthermore, with Propositions 4 and 5, it is possible to state the main result.

Theorem 2 (RS(P),�F,YF,ZF) and (RS(P),�W ,YW ,ZW) are distributive and dual lat-
tices.

Remark 2 Notice that if x and y are two rational random stable matchings (i.e. each α and
each β in (1) are rational numbers) then for X ∈ {F, W} it follows that

x YX y =
e

∑
k=1

1
e
(µ̃x

k ∨X µ̃
y
k) and x ZX y =

e

∑
k=1

1
e
(µ̃x

k ∧X µ̃
y
k).
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The following example illustrates how to compute the binary operations for two ran-
dom stable matchings.
Example 1 (Continued) Given x and y represented by the OES-representation, x YF y and
x ZF y are computed as follows (the other two binary operations are similar):

x = 1
6 xν1 + 1

12 xν1 + 5
12 xν2 + 1

12 xν2 + 1
4 xν4 ,

y = 1
6 xν1 + 1

12 xν3 + 5
12 xν3 + 1

12 xν4 + 1
4 xν4 .

x YF y = 1
6 xν1∨Fν1 + 1

12 xν1∨Fν3 + 5
12 xν2∨Fν3 + 1

12 xν2∨Fν4 + 1
4 xν4∨Fν4

= 1
6 xν1 + 1

12 xν1 + 5
12 xν1 + 1

12 xν2 + 1
4 xν4

= 2
3 xν1 + 1

12 xν2 + 1
4 xν4 .

x ZF y = 1
6 xν1∧Fν1 + 1

12 xν1∧Fν3 + 5
12 xν2∧Fν3 + 1

12 xν2∧Fν4 + 1
4 xν4∧Fν4

= 1
6 xν1 + 1

12 xν3 + 5
12 xν4 + 1

12 xν4 + 1
4 xν4

= 1
6 xν1 + 1

12 xν3 + 3
4 xν4 .

6 Concluding remarks

Martınez et al. (2004) present an algorithm for computing the full set of many-to-many
stable matchings. They consider many-to-many matching markets where agents have
substitutable preferences. The algorithm obtains a finite sequence of stable matchings,
starting from the firm-optimal stable matching (µF) and ending with the worker-optimal
stable matching (µW) (which is also the firm-pessimal stable matching). First, they use
the deferred acceptance algorithm to compute µF and µW . Then the algorithm iden-
tifies all firm–worker pairs ( f , w) where firm f is matched with worker w in µF but
not in µW . Successively, for each of these pairs, it modifies the preference of firm f
by declaring all subsets of workers that contain worker w unacceptable but leaving the
orderings of all subsets that do not contain w unchanged. For each new preference pro-
file, they compute the firm-optimal stable matching and thus construct the sequence
of stable matchings. The algorithm stops when there is no firm–worker pair ( f , w)

where firm f is matched with worker w in the firm-optimal stable matching (relative
to the “reduced” preference profile) but not in µW . Notice that each sequence describes
a “path” –from µF to µW– over the lattice of stable matchings relative to the partial
order ≥B

F . Thus, the full set of stable matchings is described by the set of these pos-
sible sequences. Moreover, each sequence shares the same property with our strictly
ordered representation of a random stable matching. That is, the stable matchings of
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the sequence are strictly ordered in regard to the partial order ≥B
F . Thus, each possi-

ble a lottery from among the stable matchings of a sequence –allowing a scalar of the
representation to be zero– is a strictly ordered representation of random stable match-
ing. Furthermore, Theorem 1 enables the full set of random stable matchings to be
described as all possibles lotteries over each sequence. This considerably reduces the
set of possible lotteries needed to describe the full set of random stable matchings.

Recall that the binary operations for random stable matchings are defined for the
OES-representation of the random matchings. Notice that the OES-representation is
also a lottery over stable matchings in a sequence. Now, given that each firm’s pref-
erence relation (> f ) is substitutable, it emerges that Ch(S ∪ S′,> f ) = Ch(Ch(S,> f

) ∪ S′,> f ) for each S and S′ subsets of W. Thus, for each f ∈ F

Ch
(
(µx

` ∨F µ
y
`)( f ) ∪ (µx

`+1 ∨F µ
y
`+1)( f ),> f

)
= Ch

(
Ch(µx

` ( f ) ∪ µ
y
`( f )),> f ) ∪ Ch(µx

`+1( f ) ∪ µ
y
`+1( f ),> f ),> f

)
= Ch

(
µx
` ( f ) ∪ µ

y
`( f ) ∪ µx

`+1( f ) ∪ µ
y
`+1( f ),> f

)
= Ch

(
µx
` ( f ) ∪ µx

`+1( f ) ∪ µ
y
`( f ) ∪ µ

y
`+1( f ),> f

)
= Ch

(
Ch(µx

` ( f ) ∪ µx
`+1( f )),> f ) ∪ Ch(µy

`( f ) ∪ µ
y
`+1( f ),> f ),> f

)
= Ch

(
µx
` ( f ) ∪ µ

y
`( f ,> f ),> f

)
= (µx

` ∨F µ
y
`)( f ).

Thus, µx
` ∨F µ

y
` ≥

B
F µx

`+1 ∨F µ
y
`+1 for each ` = 1, . . . , k̃ − 1. The proof for µx

` ∧F µ
y
` ≥

B
F

µx
`+1 ∧F µ

y
`+1 is analogous. Therefore, the l.u.b. and g.l.b. of two random stable match-

ings also have OES-representations. That is, l.u.b. and g.l.b. of two lotteries over the
elements of a sequence, are also lotteries over elements of a sequence. Thus, some how
this states that the set of sequences, when the lotteries over the stable matchings of
each sequence are considered, also has a lattice structure.

Another fact that follows from this analysis is that firm-optimal random stable
matching is the degenerated lottery that coincides with µF (the deterministic firm-
optimal stable matching). The same goes for the worker-optimal random stable match-
ing.

For more general matching markets, e.g. markets that only satisfy substitutability
(not L.A.D.), the binary operations between (deterministic) stable matchings are com-
puted as fixed points. Thus, the lattice structure of the set of random stable matchings
for these markets is still an open problem and is left for future research.
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Appendix

A The ordered representation

The following technical results are used in the proof of Theorem 1.

Lemma 2 µk ∈ Bk for each k = 1, . . . , k̃.

Proof. Let µ1 = ν∨B1
. Then, by definition of B1, µ1 ∈ B1. Let µ2 = ν∨B2

. Assuming that
µ2 /∈ B2, then µ2 ∈ C2. Since µ2 is computed via pointing functions, there is ν′ ∈ B2

such that ν′ ∈ C1, which is a contradiction, so µ2 ∈ B2. Similar arguments proves that
µk ∈ Bk for each k = 1, . . . , k̃, where k̃ is the last step of Algorithm 1. �

Lemma 3 If Bk 6= ∅, then Bk+1 ⊂ Bk.

Proof. By definition of µk and Ck, µk ∈ Bk ∩ Ck. Thus, Bk+1 = Bk \ Ck ⊂ Bk. �

Lemma 4 Let ν̃ = ν∧B1
and k̃ be the step of Algorithm 1 in which Bk̃ 6= ∅ and Bk̃+1 = ∅.

Thus, ν̃ ∈ Bk̃.

Proof. Let ν̃ = ν∧B1
and k̃ be the step of Algorithm 1 in which Bk̃ 6= ∅ and Bk̃+1 = ∅.

By definition of B1, ν̃ ∈ B1. Assume that ν̃ /∈ Bk̃, there is thus a Step k′ < k̃ such that
ν̃ ∈ Bk′ and ν̃ /∈ Bk′+1. Thus, ν̃ ∈ Ck′ . Hence, by definition of Ck′ , there is a pair (i′, j′)
such that xk′

i′,j′ = αk′ and xν̃
i′,j′ = xµk′

i′,j′ = 1. Notice that, by definition of µk′ , it holds that
j′ ∈ µk′(i′) = Ch(∪ν∈Bk′

ν(i′),>i′). Since the preferences relation >i′ is substitutable
and ν̃ ∈ Bk′ , it follows that

j′ ∈ Ch(ν̃(i′) ∪ {j′},>i′). (4)

By Lemma 3 and k′ < k̃, it holds that Bk′+1 6= ∅. Thus, there is ν′ ∈ Bk′ such that
ν′ /∈ Ck′ . We claim that j′ /∈ ν′(i′). If j′ ∈ ν′(i′), for (i′, j′) then xk′

i′,j′ = αk′ and xνk̃

i′,j′ =

xµk′
i′,j′ = 1, then ν′ ∈ Ck′ , which is a contradiction. Thus, j′ /∈ ν′(i′). Since ν′ ∈ Bk′ ⊆ B1,

then ν′ ≥B
F ν̃. That is, ν′(i′) = Ch(ν̃(i′) ∪ ν′(i′),>i′). Now, given that j′ ∈ ν̃(i′) \ ν′(i′),

it follows that j′ /∈ Ch(ν̃(i′) ∪ {j′},>i′), which is a contradiction with (4). Therefore,
ν̃ ∈ Bk̃. �

To prove the following lemma, first we need to state an important result of matching
theory. The Rural Hospital Theorem (RHT from now on), is proven in different context
by many authors (see McVitie and Wilson, 1970; Roth, 1984, 1985; Martı́nez et al., 2000;
Alkan, 2002; Kojima, 2012, among others). The version of this theorem for a many-
to-many matching market where all agents have substitutable preferences satisfying
the L.A.D. presented in Alkan (2002) states that each agent is matched with the same
number of partners in every stable matching. That is, |µ(a)| = |µ′(a)| for each µ, µ′ ∈
S(P) and for each a ∈ F ∪W.
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Lemma 5 Let µ ∈ S(P), let x1 be a random stable matching, and xk =
xk−1−αk−1xµk−1

1−αk−1
be

the matrix constructed by Algorithm 1 in Step k. Then, for each k, ∑i∈F xk
i,j = |µ(j)| for each

j ∈W, and ∑j∈W xk
i,j = |µ(i)| for each i ∈ F.

Proof. We proceed by an inductive process. Let µ ∈ S(P) and let k = 1 be the first step
of Algorithm 1. If B2 = ∅, then B1 = C1. That is, ν̃ ∈ C1. Hence, there is (i, j) ∈ L1

such that xµ1
i,j = 1, xν̃

i,j = 1 and x1
i,j = α1. Thus, for each ν ∈ B1 such that µ1 ≥B

F ν ≥B
F ν̃

it follows that xν
i,j = 1. Hence, α1 = 1. Since {(i, j) : xµ1

i,j > 0} ⊆ {(i, j) : x1
i,j > 0}

and α1 = min{x1
i,j : xµ1

i,j = 1}, then x1 = xµ1 . Thus, by Theorem (RHT) and definition

of incidence vector, ∑i∈F xµ1
i,j = |µ(j)| for each j ∈ W, and ∑j∈W xµ1

i,j = |µ(i)| for each
i ∈ F.

Assume that B2 6= ∅ and ∑i∈F xk−1
i,j = |µ(j)| for each j ∈W. Thus, then by Theorem

(RHT) and definition of xk

∑
i∈F

xk
i,j =

∑i∈F xk−1
i,j − αk−1 ∑i∈F xµk−1

i,j

1− αk−1
=
|µ(j)| − αk−1|µ(j)|

1− αk−1
= |µ(j)|.

Therefore, ∑i∈F xk
i,j = |µ(j)| for each j ∈ W and for each k = 1, . . . , k̃. Similarly, it can

be proved that ∑j∈W xk
i,j = |µ(i)| for each i ∈ F and for each k = 1, . . . , k̃. �

Lemma 6 Bk+1 6= ∅ if and only if αk < 1.

Proof. (=⇒) Let Bk+1 6= ∅. Thus Bk 6= Ck. Hence, |Bk| > 1. By Lemma 4, ν̃ ∈ Bk. Also,
by definition of µk, it follows that ν̃ 6= µk. Thus, by Theorem (RHT), there are at least
three agents i′ ∈ F and j̃, j′ ∈W such that:

xk
i′,j′ > 0, xk

i′, j̃ > 0, xµk
i′,j′ = 1, xµk

i′, j̃
= 0, xν̃

i′,j′ = 0, and xν̃
i′, j̃ = 1.

By Lemma 5, ∑j∈W xk
i′,j = |µk(i′)| = |ν̃(i′)|. Since {(i, j) : xµk

i,j > 0} ⊂ {(i, j) : xk
i,j > 0},

and {(i, j) : xν̃
i,j > 0} ⊂ {(i, j) : xk

i,j > 0}, it follows that |{j ∈ W : xk
i′,j > 0}| > |µk(i′)|.

There is thus an agent ĵ ∈ W such that xµk
i′, ĵ

= 1 and 0 < xk
i′, ĵ

< 1. Thus, αk = min{xk
i,j :

xµk
i,j = 1} ≤ xk

i′, ĵ
< 1.

(⇐=) Let αk < 1. Thus, there is a pair (i′, j′) such that xµk
i′,j′ = 1 and xk

i′,j′ = αk < 1.

Then, by Lemma 5 there is a pair (i′, j̃) such that xµk
i′, j̃

= 0, xk
i′, j̃ > 0 and xν̃

i′, j̃ = 1. Hence,

for each pair (i, j) such that xµk
i,j = 1 and xν̃

i,j = 1, by Theorem (RHT) it follows that

xν
i,j = 1 for each ν ∈ Bk. Thus, xk

i,j ≥ xk
i′, j̃ + xk

i′,j′ = xk
i′, j̃ + αk > αk, Then, ν̃ /∈ Ck.

Therefore, Bk+1 6= ∅. �

Corollary 1 If αk = 1, then xk = xµk .
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Proof. Let Lk = {(i, j) ∈ F×W : xk
i,j = αk and xµk

i,j = 1} and recall that by definition of

µk, it follows that {(i, j) : xµk
i,j > 0} ⊆ {(i, j) : xk

i,j > 0}. If αk = 1, then Lk = {(i, j) :

xµk
i,j > 0}. By Lemma 5, ∑i∈F xk

i,j = |µk(j)| for each i ∈ F, so {(i, j) : xk
i,j > 0} = {(i, j) :

xµk
i,j > 0}. Therefore, xk = xµk . �

Proof of Theorem 1. Let x be a random stable matching. The output of Algorithm 1
is

x = α1xµ1 +
k

∑
s=2

s−1

∏
`=1

(1− α`)αsxµs +
k

∏
`=1

(1− α`)xk+1.

By Lemma 3, Bk+1 ⊂ Bk. By the finiteness of the set of stable matchings, there is a
step of Algorithm 1, say Step k̃, such that Bk̃+1 = ∅. Then the algorithm stops. Hence,
by Lemma 6 αk̃ = 1. Therefore, by Corollary 1, xk̃ = xµk̃ . Thus, the output of Algorithm
1 is

x = α1xµ1 +
k̃

∑
s=2

s−1

∏
`=1

(1− α`)αsxµs .

Recall that µk = ν∨Bk
, and µk+1 = ν∨Bk+1

. By Lemma 3, Bk+1 ⊂ Bk, by Lemma 2
µk ∈ Bk, and by definition of Ck, µk ∈ Ck. Hence, µk /∈ Bk+1. Thus, µk >

B
F µk+1.

To simplify the notation, set β1 = α1, β2 = (1− α1)α2, β3 = (1− α1)(1− α2)α3, . . . ,
and βk̃ = ∏k̃−1

k=1(1− αk).

Now we prove that ∑k̃
k=1 βk = 1.

k̃

∑
k=1

βk =
k̃−1

∑
k=1

βk + βk̃ =
k̃−1

∑
k=1

k−1

∏
`=1

(1− α`) +
k̃−1

∏
`=1

(1− α`).

Note that

βk̃−1 + βk̃ =
k̃−2

∏
`=1

(1− α`)αk̃−1 +
k̃−1

∏
`=1

(1− α`) =
k̃−2

∏
`=1

(1− α`)(αk̃−1 +(1− αk̃−1)) =
k̃−2

∏
`=1

(1− α`).

Also,

βk̃−2 + βk̃−1 + βk̃ =
k̃−3

∏
`=1

(1− α`)αk̃−2 +
k̃−3

∏
`=1

(1− α`)(1− αk̃−2) =
k̃−3

∏
`=1

(1− α`).

Continuing this inductive process, β2 + · · ·+ βk̃ = (1− α1). Thus,

k̃

∑
k=1

βk = β1 +
k̃

∑
k=2

βk = α1 + (1− α1) = 1.

Therefore,

x =
k̃

∑
k=1

βkxµk
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where 0 < βk ≤ 1, ∑k̃
k=1 βk = 1, and µk >

B
F µk+1 for each k = 1, . . . , k̃− 1.

Uniqueness: Assume that x has two different representations:

x = ∑
ν∈A

λνxν = ∑
ν′∈A′

λ′ν′x
ν′

where 0 < λν ≤ 1, 0 < λ′ν′ ≤ 1, ∑ν∈A λν = 1, ∑ν′∈A′ λ
′
ν′ = 1, and ν, ν′ ∈ S(P).

Since,
⋃

ν∈A ν(i) = {j : xi,j > 0} = ⋃
ν′∈A′ ν

′(i), so µ1(i) = Ch(
⋃

ν∈B1
ν(i),>i) =

Ch(
⋃

ν′∈B′1
ν′(i),>i) = µ′1(i) for each i ∈ F. Therefore, µ1 = µ′1.

Let k > 1 such that µ1 = µ′1, . . . , µk−1 = µ′k−1. Then, xk =
xk−1−αk−1xµk−1

1−αk−1
=

xk−1−αk−1xµ′k−1

1−αk−1
.

We claim that {(i, j) : xk
i,j > 0} = {(i, j) :

⋃
ν∈Bk

xν
i,j = 1} (and {(i, j) : xk

i,j > 0} =
{(i, j) :

⋃
ν′∈B′k

xν′
i,j = 1}). If not, there is a pair (i, j) such that xk

i,j > 0 and xν
i,j = 0 for

each ν ∈ Bk. Thus, xk̃
i,j > 0 and there is no ν ∈ Bk̃ such that xν

i,j = 1. This contradicts

the fact that xk̃
i,j = xµk̃

i,j . Hence, {(i, j) :
⋃

ν∈Bk
xν

i,j = 1} ⊇ {(i, j) : xk
i,j > 0}.

Assume that there is ν ∈ Bk such that xν
i,j = 1 and xk

i,j = 0. Since xν
i,j = 1, xi,j > 0.

Hence, there is k′ < k such that xk′
i,j > 0 and xk′+1

i,j = 0. Since xk′+1
i,j =

xk′
i,j−αk′ x

µk′
i,j

1−αk′
= 0

it follows that xk′
i,j = αk′x

µk′
i,j . Hence, (i, j) ∈ Lk′ and ν ∈ Ck′ because we assume that

xν
i,j = 1. Thus, ν /∈ Bk′+1, and since k′ + 1 ≤ k it follows that Bk′+1 ⊆ Bk. This in turns

implies that ν /∈ Bk, which is a contradiction. Therefore, {(i, j) :
⋃

ν∈Bk
xν

i,j = 1} ⊆
{(i, j) : xk

i,j > 0}.
Similar arguments prove that {(i, j) : xk

i,j > 0} = {(i, j) :
⋃

ν′∈B′k
xν′

i,j = 1}.
Since

⋃
ν∈Bk

ν(i) = {j : xk
i,j > 0} = ⋃

ν′∈B′k
ν′(i), it follows that µk(i) = Ch(

⋃
ν∈Bk

ν(i),≥i

) = Ch({j : xk
i,j > 0},>i) = Ch(

⋃
ν′∈B′k

ν′(i),>i) = µ′k(i) for each i ∈ F. Therefore,
µk = µ′k.

�
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B Partial order and OES-representation

Proof of partial order

Proof of Proposition 1. Let x, y and z be random stable matchings with their strictly
ordered representations:

x =
I

∑
i=1

αixµx
i , y =

J

∑
j=1

β jx
µ

y
j and z =

K

∑
k=1

γkxµz
k .

Reflexivity: x �F x.
By the uniqueness of the strictly ordered representation of x, it follows that for each

µx
k

∑
{i:µx

i ≥
B
F µx

k}
αl ≥ ∑

{i:µx
i ≥

B
F µx

k}
αl.

Transitivity: If x �F y and y �F z, then x �F z.
Since y �F z, it follows that ∑{l:µy

l ≥
B
F µz

k} βl ≥ ∑{n:µz
n≥B

F µz
k} γn for each µz

k. Since

x �F y, it follows that ∑{i:µx
i ≥

B
F µ

y
j

} αi ≥ ∑{l:µy
l ≥

B
F µ

y
j

} βl for each µ
y
j . Recall that x, y and

z are represented by the strictly ordered representations. Then, for each µz
k there is an

unique µ
y
j = min≥B

F
{µy

l : µ
y
l ≥

B
F µz

k} such that

∑
{m:µx

m≥B
F µz

k}
αm = ∑{

i:µx
i ≥

B
F µ

y
j

} αi by {µy
l : µ

y
l ≥

B
F µ

y
j } = {µ

y
l : µ

y
l ≥

B
F µz

k}

∑{
i:µx

i ≥
B
F µ

y
j

}αi ≥ ∑{
l:µy

l ≥
B
F µ

y
j

} βl by x �F y

∑{
l:µy

l ≥
B
F µ

y
j

}βl = ∑
{l:µy

l ≥
B
F µz

k}
βl by {µx

m : µx
m ≥B

F µz
k} = {µ

x
m : µx

m ≥B
F µ

y
j }

∑
{l:µy

l ≥
B
F µz

k}
βl ≥ ∑

{n:µz
n≥B

F µz
k}

γn by y �F z

Hence, for each µz
k

∑
{m:µx

m≥B
F µz

k}
αm ≥ ∑

{n:µz
n≥B

F µz
k}

γn.

Therefore, x �F z.
Antisymmetry: If x �F y and y �F x, then x = y.

Assume that x �F y and x 6= y. We then prove that y �F x. By definition of x �F y
it follows that x � f y for each f ∈ F. Since x 6= y, there is at least one f ′ ∈ F such that
x � f ′ y. Hence, by definition of x � f ′ y, there is µ

y
j ( f ′) such that

∑{
i:µx

i ( f ′)≥B
f ′µ

y
j ( f ′)

} αi > ∑{
l:µy

l ( f ′)≥B
f ′µ

y
j ( f ′)

} βl.
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Then, y � f ′ x, which in turns implies that y �F x.
Therefore, the domination relation �F is a partial order. �

Algorithm 2

Let x and y be two random stable matchings such that

x =
I

∑
i=1

α0
i µx

i and y =
J

∑
j=1

β0
j µ

y
j .

where 0 < α0
i ≤ I for i = 1, . . . , I, 0 < β0

j ≤ J for j = 1, . . . , J, ∑I
i=1 α0

i = 1 and ∑J
j=1 β0

j =

1.
Let I0 = {1, . . . , I} and J0 = {1, . . . , J}. Set Ω = ∅.

Algorithm 2:
Step k ≥ 1 IF |Ik−1| = 1 and |Jk−1| = 1,

THEN, the procedure stops.
Set, γk = αk−1

1 = βk−1
1 , µ̃x

k = µx
I , µ̃

y
k = µ

y
J .

Set Ω = Ω ∪ {(γk, µ̃x
k , µ̃

y
k)}.

ELSE (|Ik−1| > 1 or |Jk−1| > 1), the procedure continues as follows:
Set γk = min{αk−1

1 , βk−1
1 }.

IF γk 6= αk−1
1 ,

THEN, set Ik := Ik−1 and αk
` :=

{
αk−1

1 − γk if ` = 1
αk−1
` if ` > 1

,

for each ` ∈ Ik−1.
ELSE (γk = αk−1

1 ), set Ik := Ik−1 \ {max Ik−1} and αk
`−1 = αk−1

`

for each ` ∈ Ik−1.
IF γk 6= βk−1

1 ,

THEN, Jk := Jk−1 and βk
` :=

{
βk−1

1 − γk if ` = 1
βk−1
` if ` > 1

,

for each ` ∈ Jk−1.
ELSE (γk = βk−1

1 ), set Jk := Jk−1 \ {max Jk−1} and βk
`−1 = βk−1

`

for each ` ∈ Jk−1.
Set p = |I0| − |Ik−1| and r = |J0| − |Jk−1|.
Set µ̃x

k = µx
p+1 and µ̃

y
k = µ

y
r+1.

Set Ω = Ω ∪ {(γk, µ̃x
k , µ̃

y
k)}, and continue to Step k+1.

Notice that the procedure for more than two random stable matching is analogous.

Lemma 7 Algorithm 2 stops in a finite number of steps. That is, there is a k̃ such that |I k̃−1| =
|J k̃−1| = 1 and αk̃

1 = βk̃
1.
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Proof. Note that in each step of Algorithm 2, |Ik| = |Ik−1| − 1 or |Jk| = |Jk−1| − 1.
Moreover, in each Step k of the algorithm

∑
`∈Ik

αk
` = ∑

`∈Ik−1

αk−1
` − γk and ∑

`∈Jk

βk
` = ∑

`∈Jk−1

βk−1
` − γk.

Hence,

∑
`∈Ik

αk
` = ∑

`∈I0

α0
` −

k

∑
t=1

γt = 1−
k

∑
t=1

γt.

Similarly,

∑
`∈Jk

βk
` = ∑

`∈J0

β0
` −

k

∑
t=1

γt = 1−
k

∑
t=1

γt.

That is, for each k it follows that

∑
`∈Ik

αk
` = ∑

`∈Jk

βk
` = 1−

k

∑
t=1

γt. (5)

By the finiteness of the sets I0 and J0, and given that in each step of Algorithm 2
it holds that |Ik| = |Ik−1| − 1 or |Jk| = |Jk−1| − 1. We claim that there is a k̃ such
that |I k̃−1| = |J k̃−1| = 1. Assume that there is a Step k1 − 1 such that |Ik1−1| =

1 and |Jk1−1| > 1. By equality (5), αk1−1
1 = ∑`∈Jk1−1 βk1−1

` . Hence, αk1−1
1 > βk1−1

` for

each ` ∈ Jk1−1, and |Ik1 | = |Ik1−1|. Thus, αk1 = αk1−1
1 − γk1 = αk1−1

1 − βk1−1
1 and

Jk1 = Jk1−1 \ {max Jk1−1}, and βk1
` = βk1−1

`+1 for each ` ∈ Jk1 . Thus, |Ik1−1| = |Ik1 | =
1 and |Jk1 | = |Jk1−1| − 1 ≥ 1. If |Jk1 | > 1, then proceed with Algorithm 2 until there is
a step k̃ such that |I k̃−1| = |J k̃−1| = 1 and the procedure stops. Therefore, by equality
(5), αk̃

1 = βk̃
1 = γk̃. �

Proof of Proposition 2. First we prove that there is k1 such that α0
1 = ∑k1

t=1 γt. Since
γ1 = min{α0

1, β0
1}, we analyze two cases.

Case 1: γ1 = α0
1. In this case k1 = 1.

Case 2: γ1 < α0
1. In this case |I0| = |I1| and α1

1 = α0
1 − γ1. Thus, in the next step,

γ2 ≤ α1
1.

If γ2 = α1
1, then α0

1 = γ1 + γ2.

If γ2 < α1
1, then repeat this procedure until k1 is found such that γk1 =

αk1−1
1 . Then α0

1 = ∑k1
t=1 γt. Note that |I0| = |I1| = . . . = |Ik1 |. Then, we

have that µ̃x
t = µx

1 for t = 1, . . . , k1 and

k1

∑
t=1

γtµ̃
x
t =

k1

∑
t=1

γtµ
x
1 = α0

1µx
1 .
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Notice that |Ik1 | = |Ik1−1| − 1. That is, 1 = p = |I0| − |Ik1 | and µ̃x
k1+1 = µx

2 .
Then, for each k ≥ k1 + 1 it emerges that µ̃x

k 6= µx
1 .

When k1 is found this procedure must be repeated with each α0
` for ` ≥ 2.

The case for β is similar. �

We illustrate Algorithm 2 with two random matchings from Example 1.

Example 1 (Continued) Let x = 1
4 xν1 + 1

2 xν2 + 1
4 xν4 and y = 1

6 xν1
+ 1

2 xν3
+ 1

3 xν4
. Notice

that both random stable matchings are represented as in Theorem 1. We use Algorithm 2 to
obtain their OES-representations. Let I0 = {1, 2, 3} and J0 = {1, 2, 3}. Set Ω = ∅.

Step 1 Since I0 = {1, 2, 3} and J0 = {1, 2, 3}, set γ1 = min{ 1
4 , 1

6} =
1
6 ,

α1
1 = 1

4 −
1
6 = 1

12
α1

2 = 1
2

α1
3 = 1

4

β1
1 = 1

2
β1

2 = 1
3

Then, I1 = {1, 2, 3}, J1 = {1, 2}, µ̃x
1 = ν1 and µ̃

y
1 = ν1. Set Ω = Ω ∪ {(ν1, ν1, 1

6)}
and continue to Step 2.

Step 2 Since I1 = {1, 2, 3}, J1 = {1, 2}, set γ2 = min{ 1
12 , 1

2} =
1
12 ,

α2
1 = 1

2
α2

2 = 1
4

β2
1 = 1

2 −
1

12 = 5
12

β2
2 = 1

3

Then, I2 = {1, 2}, J2 = {1, 2}, µ̃x
2 = ν1 and µ̃

y
2 = ν3. Set Ω = Ω ∪ {(ν1, ν2, 1

12)} and
continue to Step 3.

Step 3 Since I2 = {1, 2}, J2 = {1, 2}, set γ3 = min{1
2 , 5

12} =
5
12 ,

α3
1 = 1

2 −
5

12 = 1
12

α3
2 = 1

4
β3

1 = 1
4

Then, I3 = {1, 2}, J3 = {1}, µ̃x
3 = ν2 and µ̃

y
3 = ν3. Set Ω = Ω ∪ {(ν2, ν3, 5

12)} and
continue to Step 4.

Step 4 Since I3 = {1, 2}, J3 = {1}, µ̃x
3 = ν2, set γ4 = min{ 1

12 , 1
3} =

1
12 ,

α4
1 = 1

4 β4
1 = 1

3 −
1

12 = 1
4

Then, I4 = {1}, J4 = {1}, µ̃x
4 = ν2 and µ̃

y
4 = ν4. Set Ω = Ω ∪ {(ν2, ν4, 1

12)} and
continue to Step 5.

Step 5 Since I4 = {1}, J4 = {1}, so the procedure stops. Set γ6 = min{1
4 , 1

4} =
1
4 , µ̃x

6 = ν4

and µ̃
y
6 = ν4. Set Ω = Ω ∪ {(ν4, ν4, 1

4)}

Therefore, the random stable matchings x and y can be represented as follows:
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x = 1
6 xν1 + 1

12 xν1 + 5
12 xν2 + 1

12 xν2 + 1
4 xν4 ,

y = 1
6 xν1 + 1

12 xν3 + 5
12 xν3 + 1

12 xν4 + 1
4 xν4 .

Observe that x and y have five terms in each representation. Moreover, both lotter-
ies have the same scalar, term to term.

Proof of Proposition 3.
(=⇒) Let x and y be two random stable matchings with their OES-representations.
Assume that x �F y. Fix f ∈ F. We prove that µ̃x

` ( f ) ≥B
f µ̃

y
`( f ) for each ` = 1, . . . , k̃.

If µ̃
y
1( f ) >B

f µ̃x
1( f ), then

0 = ∑{
`:µ̃x

` ( f )≥B
f µ̃

y
1( f )

} γ` ≥ ∑{
`:µ̃y

` ( f )≥B
f µ̃

y
1( f )

} γ` = γ1 > 0,

which is a contradiction. Thus, µ̃x
1( f ) ≥B

f µ̃
y
1( f ). Assume that there is k1 ≤ k̃ such that

for each ` < k1 there is µ̃x
` ( f ) ≥B

f µ̃
y
`( f ), and µ̃x

k1
( f ) <B

f µ̃
y
k1
( f ).

Note that µ̃
y
`( f ) ≥B

f µ̃
y
`+1( f ) for each ` = 1, . . . , k̃− 1 implies that

k1

∑
`=1

γ` = ∑{
`:µ̃y

` ( f )≥B
f µ̃

y
k1
( f )
} γ`. (6)

By hypothesis (x �F y), in particular for w = µ̃
y
k1
(m) it follows that

∑{
`:µ̃y

` ( f )≥B
f µ̃

y
k1
( f )
} γ` ≤ ∑{

`:µ̃x
` ( f )≥B

f µ̃
y
k1
( f )
} γ`.

Notice that for k1, it follows that µ̃x
k1−1( f ) ≥B

f µ̃
y
k1−1( f ) and µ̃x

k1
( f ) <B

f µ̃
y
k1
( f ). Thus,

µ̃x
k1−1( f ) ≥B

f µ̃
y
k1−1( f ) ≥B

f µ̃
y
k1
( f ) >B

f µ̃x
k1
( f ). Hence,

∑{
`:µ̃x

` ( f )≥B
f µ̃

y
k1
( f )
} γ` = ∑{

`:µ̃x
` ( f )≥B

f µ̃x
k1−1( f )

} γ` =
k1−1

∑
`=1

γ`. (7)

Thus, by equalities (6) and (7), it follows that ∑k1
`=1 γ` ≤ ∑k1−1

`=1 γ`, which is a contra-
diction since γk1 > 0. Thus, there is no k1 such that for each ` < k1 it follows that
µ̃x
` ( f ) ≥B

f µ̃
y
`( f ), and µ̃x

k1
( f ) <B

f µ̃
y
k1
( f ). Thus, µ̃x

` ( f ) ≥B
f µ̃

y
`( f ) for each ` = 1, . . . , k̃.

(⇐=) Recall that both x and y are represented by their OES-representations. That is,
both representations have the same numbers of terms and the same scalar term to term.
Moreover, µ̃x

` ≥
B
F µ̃x

`+1 and µ̃
y
` ≥

B
F µ̃

y
`+1 for each ` = 1, . . . , k̃− 1. Also, by hypothesis it

follows that µ̃x
` ≥

B
F µ̃

y
` for each ` = 1, . . . , k̃. Fix `′, then{

γ` : µ̃x
` ≥

B
F µ̃x

`′

}
=
{

γ` : µ̃
y
` ≥

B
F µ̃

y
`′

}
⊆
{

γ` : µ̃x
` ≥

B
F µ̃

y
`′

}
.
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Hence,

∑{
`:µ̃y

` ( f )≥B
f µ̃

y
`′ ( f )

} γ` ≤ ∑{
`:µ̃x

` ( f )≥B
f µ̃

y
`′ ( f )

} γ`

for each f ∈ F and for each `′ = 1, . . . , k̃. Then, x �F y.
�

Proof of Lemma 1. Let x and y be two random stable matching with their OES-
representations. Assume that x �F y. By Proposition 3, this is equivalent to µ̃x

` ≥
B
F µ̃

y
`

for each ` = 1, . . . , k̃. By the polarization of interest of the partial orders ≥B
F and ≥B

W ,
it emerges that µ̃x

` ≥
B
F µ̃

y
` if and only if µ̃

y
` ≥

B
W µ̃x

` for each ` = 1, . . . , k̃. Again, by
Proposition 3, this is equivalent to y �W x. �

Proof of Proposition 4. We prove that x YX y = l.u.b.�X(x, y). Recall that both x and
y are represented by their OES-representations.

(i) x YX y �X x :

Since µ̃x
` ∨X µ̃

y
` ≥

B
X µ̃x

` for each ` = 1, . . . , k̃, then x YX y �X x.

(ii) x YX y �X y :

Since µ̃x
` ∨X µ̃

y
` ≥

B
X µ̃

y
` for each ` = 1, . . . , k̃, then x YX y �X y.

(iii) If z �X x and z �X y, then z �X x Y y:

We have that µ̃z
` ≥

B
X µ̃x

` and µ̃z
` ≥

B
X µ̃

y
` for each ` = 1, . . . , k̃. Since, µ̃x

` ∨X µ̃
y
` is the

l.u.b.≥B
X
(µ̃x

` , µ̃
y
` ), then µ̃z

` ≥
B
X µ̃x

` ∨X µ̃
y
` for each ` = 1, . . . , k̃. Therefore, z �X x YX y.

The proof for x ZX y = g.l.b.�X
(x, y) is analogous.

To prove that x YF y = x ZW y, recall that the lattices of stable matchings are dual,
that is, given µ, µ′ ∈ S(P) µ ∨F µ′ = µ ∧W µ′. By definition of binary operations, it
follows that if 0 < γ` ≤ 1, ∑k̃

`=1 γ` = 1, µ̃x
` ∈ S(P) , µ̃x

` ≥
B
F µ̃x

`+1 and µ̃
y
` ≥

B
F µ̃

y
`+1, then

x YF y =
k̃

∑
`=1

γ`

(
µ̃x
` ∨F µ̃

y
`

)
=

k̃

∑
`=1

γ`

(
µ̃x
` ∧W µ̃

y
`

)
= x ZW y.

The proof for x YW y = x ZF y is analogous. �

Proof of Proposition 5. Let x, y and z be random stable matchings with their OES-
representations,

x =
k̃

∑
`=1

γ`µ̃
x
` , y =

k̃

∑
`=1

γ`µ̃
y
` , and z =

k̃

∑
`=1

γ`µ̃
z
`.

First we prove that x YF (y ZF z) = (x YF y) ZF (x YF z).
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x YF (y ZF z) =
k̃

∑
`=1

γ`

(
µ̃x
` ∨F

(
µ̃

y
` ∧F µ̃z

`

))
. (8)

Then, by distributive of ∨F and ∧F, it follows that (8) is equal to

k̃

∑
`=1

γ`

((
µ̃x
` ∧F µ̃

y
`

)
∧F (µ̃

x
` ∧F µ̃z

`)
)
= (x YF y) ZF (x YF z).

Therefore, x YF (y ZF z) = (x YF y) ZF (x YF z). The proof for x YW (y ZW z) = (x YW

y) ZW (x YW z), x ZF (y YF z) = (x ZF y) YF (x ZF z), and x ZW (y YW z) = (x ZW y) YW

(x ZW z) are analogous. �
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