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ON THE SET OF MANY-TO-ONE STRONGLY
STABLE FRACTIONAL MATCHINGS

Pablo A. Neme* ]. Oviedo*
July 10, 2020

Abstract

For a many-to-one matching market where firms have strict and g-responsive
preferences, we give a characterization of the set of strongly stable fractional match-
ings as the union of the convex hull of all connected sets of stable matchings. We
also prove that a strongly stable fractional matching is represented as a convex
combination of stable matchings that are ordered in the common preferences of all
firms.

Key words: Matching Markets; Many-to-one Matching Market; Strongly Stable Frac-
tional Matchings; Linear Programming.
MSC2000 subject classification: Primary: 90C05; secondary: 91B68.

1 Introduction.

A large part of the matching literature studies many-to-one matching markets. The
agents in these markets are divided into two disjoint sets: The many-side of the market,
namely resident doctors, students, workers, etc, and the one-side, namely hospitals,
colleges, firms, etc. The main property studied in the matching literature is stability.
A matching is called stable if all agents have acceptable partners and there is no un-
matched pair (hospital-doctor, college-student, firm-worker, etc.), where both agents
would prefer to be matched to each other rather than staying with their current part-
ners under the proposed matching. Each agent has a preference list that determines an
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order over the agents or sets of agents on the other side of the market, with the possibil-
ity of staying unmatched. In this paper, the agents on the many-side have g-responsive
and strict preferences.

Linear programming is a widely used mathematical tool in matching theory. Each
matching can be represented by an assignment matrix called the incidence vector of the
matching.

Vande Vate [21] and Rothblum [17] present a system of linear inequalities that char-
acterizes the set of stable matchings of the marriage market for two different restric-
tions of the market. Both papers show that the set of stable matchings for the marriage
market corresponds to the set of incidence vectors (integer solutions for linear inequal-
ities). In other words, stable matchings are exactly the extreme points of the polytope
generated by the system of linear inequalities. Roth et al. [16], for the marriage mar-
ket, introduce a linear program that characterizes all stable matchings as the integer
solutions.

Linear programming approaches have been developed for the theory of stable match-
ing markets also by Abeledo and Rothblum [4] [3], Abeledo and Blum [1], Abeledo et
al. [2], Fleiner [8], [9], Sethuraman et al. [19], Sethuraman and Teo [20], and many
others.

Baiou and Balinski [5] present two characterizations of the convex polytope for the
many-to-one matching market. We focus on one of these characterizations (the most
general one).

Lotteries over stable matchings have been studied in many instances in the litera-
ture. For the marriage market, Roth et al. [16] studied lotteries over stable matchings
via linear programming. When the extreme points of the convex polytope generated by
the constraints of a linear program are exactly the stable matchings of the market (this
is the case, for instance, in the marriage market) a random matching coincides with the
concept of stable fractional matching. Roth et al. [16] define a stable fractional matching
as a not necessarily integer solution of the linear program. When the extreme points
are not all integer, these two concepts are not the same, for instance, in a many-to-one
matching market with g-responsive and strict preferences. That is to say, a random
matching is always a stable fractional matching, but some stable fractional matchings
cannot be written as a lottery over stable matchings. Example 1 shows a many-to-one
matching market with an extreme point that is not a stable matching.

Each entry of an incidence vector of a stable fractional matching can be interpreted
as the time that each agent spends with one agent on the other side of the market.
For a stable fractional matching, it can happen that two agents, one of each side of
the market, have an incentive to increase the time that they spend together at the ex-
pense of those matched agents that they like less than each other at a stable fractional
matching. To study a “good” fractional solution, the idea is to avoid this and prevent
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that agents have incentives to “block” the stable fractional matching in a fractional
way. For a marriage market, Roth et al. [16] define a strongly stable fractional match-
ing as a stable fractional matching that fulfils non-linear equalities that represent this
non-blocking condition mentioned above. In other words, a stable fractional matching
that fulfils the non-linear equalities from Roth et al. [16], is a strongly stable fractional
matching. Neme and Oviedo [13] give a characterization of the strongly stable frac-
tional matching for the marriage market. Our work extends their result and provides
a characterization for the set of many-to-one strongly stable fractional matchings. We
extend the strong stability condition from Roth et al. [16] to a many-to-one matching
market. Our first result states that a strongly stable fractional matching is represented
by a convex combination among stable matching that are ordered in the eyes of all
firms (Theorem 1). Since we focus on one of the characterizations due to Baiou and
Balinski [5], a salient question now is, are the non-integer extreme points of this con-
vex polytope strongly stable fractional matchings? A corollary of Theorem 1 answers
negatively this question.

In the school choice set-up, strong stability for lotteries has been introduced by
Kesten and Unver [11] which they called ex-ante stability for lotteries. In this market,
they deal with indifferences in the priority of the schools. Kesten and Unver [11] also
present a fractional deferred-acceptance algorithm that computes a unique strongly
ex-ante stable random matching. Their paper analyses the strategy proofness and ef-
ficiency of this mechanism. Our characterization goes in another direction, we study
the relationship among the stable matchings that are involved in the lotteries.

Bansal et al. [6] and Cheng et al. [7] study the concept of cycles in preferences and
cyclic matchings for many-to-many and many-to-one matching markets, respectively.
These papers are an extension of Irving and Leather [10]. To seek for cycles in pref-
erences, these authors first reduce the preference lists of all agents. We present the
reduction procedure for our market in the Appendix. This reduction procedure allows
us to find cycles in preferences. Since the cycles of a reduced list are disjoint, we extend
the definition of cyclic matching to a set of cycles in the reduced preference profile.

Following the extension of cyclic matching used by Bansal et al. [6] and Cheng et
al. [7], we define a connected set generated by a stable matching u as the set of all cyclic
matchings of u (including p). Then, we characterize a strongly stable fractional match-
ing as a lottery over stable matchings that belong to the same connected set (Theorem
2). Moreover, by Theorem 1, we prove that the stable matchings that belong to the
same connected set, also have the decreasing order in the eyes of all firms. In this way,
we characterize the set of all strongly stable fractional matchings as the union of the
convex hulls of these connected sets (Corrolary 2).

Roth et al. [16], (in Corollary 21) proved a necessarily condition that states that in
a strongly stable fractional matching, each agent is matched with at most two agents
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of the other side of the market. Schlegel [18] generalizes this necessarily condition for
the school choice set-up with strict priorities (similar setting as ours). He shows that
a strongly stable fractional matching fulfils that each worker has a positive probability
to be matched to at most two distinct firms, and for each firm, all but possibly one
position are assigned deterministically. For the one position that is assigned by a lot-
tery, two workers have a positive probability of been matched to the firm (here stated
as Corrolary 3). Further, although he proves that a strongly stable fractional match-
ing is “almost” integral, he does not describes which agents are matched (there are
several “almost” integral stable fractional matchings that are not strongly stable, Ex-
ample 1 presents an “almost” integral stable fractional matching that is not strongly
stable). Recall that our characterization gives a necessary and sufficient condition for
a stable fractional matching to be strongly stable. As a particular case, our characteri-
zation gives an alternative proof for these two results, for the school choice set-up due
to Schlegel [18] is straightforward, and for the marriage market due to Roth et al. [16],
it’s only necessary to set all quotas of all firms equal to one. Moreover, our character-
ization shows explicitly which are the matched agents in a strongly stable fractional
matching, through the stable matching involved in the convex combination (Cf. (14) in
proof of Theorem 2).

This paper is organized as follows. In Section 2 we formally introduce the market,
preliminary results, and one of Baiou and Balinski’s characterizations of stable match-
ings. In Section 3 we define a strongly stable fractional matching and prove that it can
be represented by a convex combination over stable matchings that are ordered for all
tirms. We also discuss cycles and cyclic matching properties that we use in the char-
acterization result. In Section 4, we present our characterization of a strongly stable
fractional matching. The Appendix contains the reduction procedure, lemmas, and
proofs of the lemmas needed for our characterization.

2 Preliminary Results.

The many-to-one matching market that we study, consists of two sets of agents, the set
of firms F = {fy,..., fu} and the set of workers W = {w+,...,w,,}. Each worker w
has an antisymmetric, transitive, and complete preference relation >, over F U {w},
and each firm f has an antisymmetric, transitive, and complete preference relation
> over the power set of workers, 2W. Also, each firm f has a maximum number of
positions to fill: its quota, denoted by g¢. Let 4 = (qy)scr be the vector of quotas.
Given Wy, W C W, we write Wy = Wi to indicate that the firm f likes Wy as much
as Wy. Given the preference relation -7, we say that Wy >y Wi when Wy = W; and
Wy # Wj. Analogously, for each worker w, and any two firms, fy, fi € F, we write



fO ~w fl andfo ~w fl-

Preference profiles are (n 4+ m) — tuples of preference relations and they are denoted
by P = (>f1, e T W >w,)- The matching market for the sets W and F with
the preference profile P and vector of quotas g is denoted by (F, W, P, q).

We say that a pair (f,w) € F x W is an acceptable pair at P if w is acceptable for
f,and f is acceptable for w, that is, {w} = @ and f = w. Let us denote by A(P)
the set of all acceptable pairs of the matching market (F, W, P, q), (simply A, when no
confusion arises).

The assignment problem consists of matching workers with firms keeping the bilat-
eral nature of their relationship and allowing for the possibility that firms and workers
remain unmatched. Formally,

Definition 1 Let (F, W, P, q) be a many-to-one matching market. A matching p is a map-
ping from the set F U W into the set of all subsets of F U W such that, for all w € W and
f € F:

1. |u(w)| = 1and if p(w) # {w}, then u(w) C F.
2. u(f) € 2% and [u(f)| < q5.
3. w(w) = {f} ifand only if w € p(f).

Usually we will omit the curly brackets, for instance, instead of condition 1. and 3.,
we will write: “1. |u(w)| = 1 and if u(w) # w, then u(w) C F.” and “3. pu(w) = f
if and only if w € pu(f).” Assume that each firm f gives its ranking of workers indi-
vidually, and orders subsets of workers in a responsive manner. That is to say, adding
“good” workers to a set leads to a better set, whereas adding “bad” workers to a set
leads to a worse set. In addition, for any two subsets that differ in only one worker, the
tirm prefers the subset containing the most preferred worker. Formally,

Definition 2 The preference relation ¢ over 2W is g-responsive if it satisfies the following
conditions:

1. Forall T C W such that |T| > qy, we have that @ ¢ T.

2. Forall T C W such that |T| < qr and w & T, we have that

TU{w} =f Tifand only if w = ¢ @.

3. Forall T C W such that |T| < qr and w, w' & T, we have

TU{w} =5 TU{w'} ifand only if w ¢ w'.



Let 4 =r u’' denote that all firms like y at least as well as u’ with at least one firm
strictly preferring p to y/, thatis, u(f) = p'(f) forall f € Fand u(f’) =¢ p'(f') for
at least one firm f’ € F. We say that u = y' means that either y >p ' or u = y'.
Analogously, define y -y p' and u = .

We say that a matching y is individually rational if y(w) = f for some worker w and
firm f, then (f,w) is an acceptable pair. Similarly, a pair (f,w) is a blocking pair for
matching y, if the worker w is not employed by the firm f, but they both prefer to be
matched to each other. That is, a matching y is blocked by a firm-worker pair (f,w):

L If |u(f)l = qp u(w) # f, f = p(w) and w = w’ for some w' € p(f).
2. If u(f)| < qf pu(w) # fand f =y p(w) and w = ¢ @.

In that way, a matching y is stable if it is individually rational and has no blocking
pairs. We denote by S(P) to the set of all stable matchings at the preference profile P.

An importat result of matching theory is the Rural Hospital Theorem (RHT). When
firms have g-responsive preference and workers strict preference, the Rural Hospital
Theorem states the following: (see Roth [14],[15] for more details)

Theorem (RHT) The set of matched agents is the same under every stable matching. Moreover,
each firm that does not fill its quota has the same set of agents matched under every stable
matching.

2.1 Linear Programming Approach.

For the marriage market, Rothblum [17] characterizes stable matchings as extreme
points of a convex polytope generated by a system of linear inequalities. Baiou and
Balinski [5] present two generalizations of the convex polytope for the many-to-one
matching market (F, W, P, q) with g-responsive preferences. We focus on the most
general one.

Given a matching y, a vector x* € {0,1} IFI<IWlis an incidence vector when x?/w =
1 if and only if pu (w) = f and x?/w = 0 otherwise. When no confusion arises, we
identify each matching with its incidence vector.

Let CP be the convex polytope generated by the following linear inequalities:

ZVJV xpj < 4 feF (1)
j€

Y xiw <1 weW (2)
ieF

Xfw >0 (f,w) € Fx W (3)
X =0 (f,w) e Fx W\ A (4)



Notice that an integer solution of CP represents the incidence vector of a individ-
ually rational matching for the many-to-one matching market. The extreme points of
this convex polytope are all integer points. This convex polytope is known as the poly-
tope of the transportation problem. For more detail, see Luenberger and Ye [12]. A
non-integer solution of CP is called a fractional matching.

Define a new convex polytope SCP, by adding to the convex polytope CP the fol-
lowing inequality:

Y. Xt ) Xiw X 2qp  (fw) €A ®)
j>-fw i~wf
Lemma 1 (Baiou and Balinski [5]) Let (F, W, P, q) be a many-to-one matching market. u
is a stable matching for (F, W, P, q) if and only if its incidence vector is an integer solution of
SCP.

We define a stable fractional matching as a not necessarily integer solution of the
convex polytope SCP. For the marriage market, i.e. g = 1 for all f € F, Rothblum
[17] proves that the extreme points of the associated convex polytope, are the stable
matchings. It is naturally expected that this result carries over to the more general
case, a many-to-one matching market. But this is not true for the convex polytope SCP.
Here, we present an example taken from Baiou and Balinski [5] that shows a many-to-
one market, where the convex polytope has fractional extreme points. This also shows
that a lottery over stable matchings is also a stable fractional matching. However, the
opposite case does not always hold.

Example 1 Let (F,W, P,q) be a many-to-one matching market. Let F = {f1, o}, W =
{w1, wy, w3, ws}, P is the following preference profile:

= f = W1, W, W3, Wy w1 = f2, fi
> f,= W4, W3, W2, W1 —w,= fo, fi
=wy,= f2, f1
=ws= f1, f2,

and q1 = q2 = 2. The only two stable matchings for this market are:

1100 1 001
x’”lF == ; x]’lW = .
0 011 0110

Baiou and Balinski observe that the stable fractional matching

0
1 4

=
—_
I
| —— |
o -
NI NI —
NI Nl =

is a vertex of the convex polytope SCP.



After observing that the convex polytope has fractional extreme points, Baiou and
Balinski [5] present a second generalization for the many-to-one matching market. In
this second generalization, the extreme points of the convex polytope, are exactly the
stable matchings for the many-to-one market. This assures that this last convex poly-
tope, is a subset of the convex polytope SCP. For that reason, our study is based on the
convex polytope SCP.

3 The Strongly Stable Fractional Matchings.

Each entry of the vector that represents a stable fractional matching, x¢,, can be in-
terpreted as the time that firm f and worker w spend with each other. For a stable
fractional matching x, it can happen that two agents, one from each side of the market,
have an incentive to increase the time that they spend together at the expense of those
they like less at a stable fractional matching x. The importance of a strongly stable
fractional matching is to avoid this and prevent that agents have incentives to block
the stable fractional matching in a fractional way. We formally present the definition
of a strongly stable fractional matching for our market.

Definition 3 Let (F, W, P, q) be a many-to-one matching market. A fractional matching X is
strongly stable if, for each (f,w) € A, X satisfies the strong stability condition

qr— Y %ril - [1— Y fi,w] = 0. (6)
The matching X satisfying the strong stability condition is known as a strongly stable frac-
tional matching.

We denote by SSF(P) to the set of all strongly stable fractional matchings at the pref-
erence profile P. Assume that for a pair (f,w) € A, the fractional matching ¥ does
not fulfil condition (6). Then, we have that g5 — Y- o Xp;>0and1— Y ¢ Xigp > 0.
Meaning that there are at least two agents f’ and w’ such that, f =y f', w =¢ @/,
X >0, Xprp > 0and Xr,, < 1. Hence, both f and w will have an incentive to in-
crease the time that they spend together at the expense of w’ and f’ respectively. This
means that ¥ is blocked in a fractional way by the pair (f, w).

Example 1 (Continued) Recall the stable fractional matching

i

=
—
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—
S =
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Also, we have that fy =, f1 and wy = f, W3 >, wa. Now, we compute condition (6) for the
pair (f2, w3).

!Wz Z Jzf:z/]'] ' !1 Z Xi,u%]

jtfzw:’) itw3f2
3 1
=|2-2].-]1-2| #0.
P2 )
Hence, x' does not fulfils condition (6) for the pair (f, ws). Moreover, since x . = 1>0,
1 _ 1 1 _ 1 : ; :
Xpw, =12 >0 and x fows =2 < L then agents f, and w3 have incentive to increase the

time that they spend together at expense of wy and fi respectively. Hence, x! is blocked in a
fractional way by the pair (fa, w3). Therefore, x* is not strongly stable.

Remark 1 The incidence vector of a stable matching, also fulfils condition (6).

For the particular case where all quotas are equal to one, (the marriage market), and
for a stable fractional matching x, Rothblum [17] defines a stable matching that assigns
to each firm f the most preferred worker among those that x¢,, > 0, forallw € W.
Here we generalize this definition for the many-to-one matching market (F, W, P, q).
We denote supp(x) to the support of the fractional matching x, that is, supp(x) =
{(f,w) s xp4 >0},

For a many-to-one matching market (F, W, P, q), and for a given stable fractional
matching x, we define the set of workers employed in the best g positions of f. Let
ng(x) = {w : (f,w) € supp(x)}, and define C;E(x) ={w e C?(x) : thereisno w' €
Cjof(x) \ Cj‘f_l(x), w' ¢ w}. In words, lei(x) is the set of the k-best workers in the
supp(x) for the firm f.

Now, we define the matching where each firm is matched to the best gy workers in
the supp(x). Formally,

Definition 4 Let (F, W, P, q) be a many-to-one matching market. Let x be a stable fractional
matching. For each firm f, we define y, as:

Remark 2 If for some firm f we have that \C})(x)| < gy, then x?"w =1forallw € C?(x).

The following lemma generalizes Lemma 12 of Roth et al. [16], and states that y5 is a
stable matching whenever X is a strongly stable fractional matching.



Lemma 2 Let (F,W,P,q) be a many-to-one matching market. Let X be a strongly stable
fractional matching. Then, yx is a stable matching.

Proof. See the Appendix. O

The following lemma is a technical result used further in Theorem 1. This lemma
states that a strongly stable fractional matching X is always represented as a convex
combination between the stable matching u;z and another strongly stable fractional
matching.

Lemma 3 Let (F,W,P,q) be a many-to-one matching market. Let X be a strongly stable
fractional matching and X # x'*. Let & = min{%s, : xj,”?w = 1}. Then, y defined as:

_J?—txfo
Yy=1=4

is a strongly stable fractional matching, such that supp(y) C supp(%).!
Proof. See the Appendix. O

The following theorem states that a strongly stable fractional matching can be repre-
sented by a particular convex combination of stable matchings. These stable matchings
are all comparable in the eyes of all firms.

Theorem 1 Let (F,W, P, q) be a many-to-one matching market. Let X be a strongly stable
fractional matching. Then, there are stable matchings u',. .., u*, and real numbers 1, . . ., a;
such that

k k
X = thlxyl, 0<ay <1, Yay=1andp' =p p® =¢ ... =p p~. (7)
I=1 I=1

Proof. Let (F, W, P, q) be a many-to-one matching market and let X be a strongly stable
fractional matching. By Lemma 2, y; is a stable matching. Denote by u! = .

If ¥ = x (i.e., ¥ is a stable matching), then X is represented as in (7) with k = 1 and
X1 — 1.

If x # ! (i.e., x¥ is not a stable matching), then by Lemma 3, there is a strongly
stable fractional matching, x2, defined by

, X— uc’le‘l

X = —
/ 7
1—a

for some 0 < &) < 1, with supp (x*) C supp (%). Then,

= (1—af) x* +ajxt. (8)

INotice that, here we use “C” to denote the strict inclusion; that is, A C B means that A is a proper
subset of B.
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for 0 < &} < 1and supp (x"1) C supp ().

By Lemma 2, . is a stable matching. Denote by u?> = p,.. Notice that, since
supp (x#1) C supp (%), supp (x*) C supp (%), then by definitions of u! and x?, we
have that u! = p2.

If x2 = x#* (i.e., x? is a stable matching), then ¥ is represented as in (7).

If x2 # x (i.e., x% is not a stable matching), again by Lemma 3, there is a strongly
stable fractional matching x3, defined by

2
x% — ahxH
3 _ 2
S Y
x3

for some 0 < & < 1 with supp (x®) C supp (x?). That s,
= (1-ap) x>+ ahxt’. )

Since 0 < &} < 1, we have that supp (x#2) C supp (x*). By Lemma 2, ju,s is a stable
matching. Denote by p® = s Since supp (x3) C supp (x?), we have that y? ~p p°.
Then, u! =p p? = .

If 3 = x#° (i.e., x3 is a stable matching), from equalities (8) and (9) we have that

= (1-af) 2 +aqxh
= (1—a) ((1—a5) ¥ +apx) +
= (1-a) (1—ab) P+ (1—a}) ahxt” + afx”',

Then ¥ is represented as in (7) with k = 3, a1 = af, ap = (1—a})a}, and a3 =
(1 —af) (1 —af). Notice that ag +ap + a3 = 1.

If x3 # x/3 (i.e., x® is not a stable matching), then we continue this procedure. The
finiteness of the supp (X) guarantees that this procedure ends by constructing a stable
matching. This proves that & is represented as in (7) for some k > 1. O]

Recall that the convex polytope SCP has extreme points that are not integer. A
salient question now is, are these non-integer extreme points strongly stable fractional
matchings? The following corollary answers this, and states that non-integer extreme
points of the convex polytope SCP are not strongly stable fractional matchings.

Corollary 1 Let (F,W, P, q) be a many-to-one matching market. Let x be a non-integer ex-
treme point of the convex polytope SCP. Then, x is not a strongly stable fractional matching.

Proof. Let x be a non-integer extreme point of the convex polytope SCP. Then, x cannot
be represented as a convex combination of different extreme points of the same convex
polytope. More precisely, x cannot be represented as a convex combination of different
integer extreme points of the convex polytope SCP (stable matchings). Therefore, by
Theorem 1, x is not a strongly stable fractional matching. 4

11



3.1 Cycles in Preferences.

For the marriage market, Irving and Leather [10] define a cycle in preference and a
cyclic matching in order to present an algorithm that finds all stable matchings. Bansal
et al. [6] and Cheng et al. [7] extend the concept of cycles and cyclic matchings for
many-to-many and many-to-one matching markets, respectively. We will state some
properties of cycles that are taken from these authors. They refer to the cycles as rota-
tions.

Given a stable matching y for a many-to-one matching market (F,W,P,q), we de-
tine a reduced preference profile P¥, as the preference profile obtained after the reduc-
tion procedure. This reduction procedure is presented in the Appendix. The reduced
preference list of firm f, is denoted by >? . In the same way, the reduced preference

list of worker w, is denoted by >4, .

Definition 5 Let (F, W, P, q) be a many-to-one matching market. Given a stable matching u,
and the reduced preference profile P¥, a set of firms 0 = {ey,...,e,} C F defines a cycle if for
We,, - .., We, € W we have that:

1. Foreachd = 1,...,r —1, w,, € ulegs1), we, & uley) and we, =, w' for all w' &
m(eq)
2. we, & pler), We, =, w' forallw’ & u(e,), and w,, € u(ey).

Given a cycle ¢, we can define a cyclic matching as follows:

Definition 6 Let (F,W,P,q) be a many-to-one matching market. Given a stable match-
ing p, and the reduced preference profile P*, let o = {ey,..., e} be a cycle in P¥, and let
{we,, ..., we,} be the set of workers defined by the cycle o. The cyclic matching of y is defined

as follows:
plol(er) = pler) \ {we, } U {we, },
ulo] = { Moltea) = plea) \iwe,, } Udwe b ford =2,...,r =1,
plol(er) = pler) \{we,_, } U {we, }
plol(f) = p(f) forall f ¢ o

In the reduced preference lists of each firm that belongs to the cycle o, we have that
the preferred worker that is unmatched under y is always matched to another firm in
the same cycle. Think of each firm e; in the cycle as being asked to hire its preferred
worker that is unmatched in its preference list. Also, this new worker replaces the
worker that other firm in the cycle wants to hire. The firms that do not belong to the
cycle o, will be matched to the same set of workers. Notice that if a firm f belongs to a
cycle o, this means that it has different sets of workers assigned in y as well as in y[o].
Then, by Theorem RHT, we have that |u(f)| = q;.

12



Lemma 4 (Bansal et al. [6]) Let (F, W, P, q) be a many-to-one matching market.

1. Let y be a stable matching and let o be a cycle in P*. Then, the cyclic matching u[c] is a
stable matching in the original preference profile.

2. A matching y' is stable under P if and only if u' is stable under the original preference
profile and y = .

Let ®(u) denote the set of cycles of the reduced preference profile P*. Now, we can
extend the definition of a cyclic matching as follows.

Definition 7 Let (F,W, P, q) be a many-to-one matching market. For a stable matching u,
and the reduced preference profile P¥, let K C ®(u), define the cyclic matching u[K] as
follows:

1. IfK = @, then u[K] = p.
2. IfK#@,and K = {0q,...,0,}, then

) ulol(f)  feoh=1,...,n
HKI) = { u(f) otherwise.

Lemma 5 (Cheng et al. [7]) Let (F,W, P, q) be a many-to-one matching market, and let P*
be the reduced preference profile at .

1. Let 0 and ¢’ be two different cycles. Then, o N o’ = Q.

2. Let y' be a stable matching in P*. If u # ', then there is a cycle o € P such that
ulo] = p'.

Remark 3 Let K C ®(u) be a subset of cycles of P*. By Lemma (5), we have that u[K](f) =
ulo](f) foreach f € o witho € K.

Notice that Lemmas 4 and 5 assure that the cyclic matching y[K] from Definition 7
is stable under the original preference profile.

The following lemma states that, the matching obtained by applying different cy-
cles is independent from the order in which they are applied.

Lemma 6 Let (F,W, P, q) be a many-to-one matching market. Let P* be the reduced prefer-
ence profile at y, and let o and o' be two different cycles in O ().

1. o is a cycle of PM],
2. ylo, o’} = uld’,ol.

Proof. See the Appendix. O
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4 A characterization of the set of strongly stable fractional

matchings.

In this section, we present our main findings. Our aim is to describe the relationship
among the stable matchings involved in the lottery that represents a strongly stable
fractional matching. Our characterization of a strongly stable fractional matching is
based on the idea of cyclic matchings. For a many-to-one matching market, finding all
stable matchings via cycles in preference and cyclic matchings requires a polynomial
time algorithm, (see Bansal et al. [6]). The importance of our characterization is to
present an elegant and useful way to describe the strongly stable fractional matchings
via the stable matchings involved in the lottery that generates them. Since our result
is based on the idea of cycles and cyclic matchings, we need that a stable fractional
matching that is strongly stable in a reduced preference profile, is also strongly stable in
the original preference profile. This statement is proved on Lemma 8 in the Appendix.

In order to present our characterization, we define a connected set generated by a
stable matching.

Definition 8 Let (F,W, P, q) be a many-to-one matching market. A set of stable matchings
M is connected if there is a stable matching y and a set of cycles K' C ® () such that

M= M,
where Mﬁl = {u[K] : K C K'}. Let us denote by M,, = /\/l;,b(y).

Notice that from the Definition 7, we can see that y is also a cyclic matching of itself
and, for each K’ C ®(u), we have that u € M}If/.

The main result of this paper states that & is a strongly stable fractional matching if
and only if it belongs to the convex hull of a connected set. Formally:

Theorem 2 Let (F, W, P, q) be a many-to-one matching market and let % be a stable fractional
matching in (F, W, P). Then, % is strongly stable if and only if there is a collection of connected
stable matchings {u', ..., u*}, such that & = Zé‘zl oclel, 0<a <1, and Zé;l o =1.

Proof. Let (F, W, P, q) be a many-to-one matching market.
(=) Let % be a strongly stable fractional matching. Theorem 1, assures that there
are stable matchings ptl, cee, ;tk and real numbers &1, ..., a; such that

k k

f:szlel, 0<a <1, Yay=1 andp! =pp? =p... = p~.
1=1 =1

Denote by Conv {/\/l yl} the convex hull of elements of M 1. Assume, by way of

contradiction, that ¥ ¢ Conv {./\/l i } Then, there is ;tt of the convex combination of ¥

14



such that u!,..., ut"1 € M, and p' ¢ M. Let K C @(u) be the set of cycles such
that u[K'] = u!~!. Notice that, /\/lllfl/ C M, is the smallest connected set generated by
ulsuchthat u!,... ut"1 € M]Iﬁ and u' ¢ /\/lllﬁ

Then, by Lemma 4 item 2) and Lemma 5 item 2) there is a cycle 0* € @ (u'~1) such
that u'~1[c*] ¢ MI;; and u'~'[¢*] =F u'. Notice that this implies that ¢* ¢ K'.

Here we analyse two cases:

Case 1: If there is ¢ € K’ such that c* N o # @.

Notice that in this case, by Lemma 5 item 1), 0* ¢ O( u1). Then for any f € o*No,
we have that, u! > 7 ut=1 -7 ut=1o*] s ut. If t = 2, we have that ¢* € K/, and
since 0 N o™ # @, then o = ¢* which results in a contradiction. Therefore t > 3.

By Theorem RHT, there are w*, wy, wy such that:
w* € =1 (f) = ul(f), (10)
)

and wy > w* -7 w2. Now, we prove that for the pair ( f,w*), condition (6) fails.
That is,
[qf - ) xf,j] : {1 - ) xw} # 0.
jz= pw* '

We analyse the two factors separately:

Case 1.1: a7 — thfw* Xz

k 1
7= L Y=9- L (me%) -

j= Fw* j= Fw*

Since p' <7 ut~1[o*], we have that
wo KK o]

LoXps L Xy,

JZfw JZfw
forallw € W.
In particular for w = w*, and the fact that w* ¢ w? with w? € u!~1o*](f),
we have that
tfl[a*]

t
E X < X’
P ) B SO
JZfw JZfw

< qu
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By (10) we also have that foreach =1,...,k

fofgf

=

Using the decreasing sequence of stable matchings of Theorem 1, we have
that a; > 0 foreach [ = 1,...,k. Then, we have that

k 7
Qf_'z Xf’j—qum( ) xf,]) (thqu) =0.
Case1.2: 1 — Zitw*f Xi .

k
LY seo1 T (+z) -

itw*f ltw*f =2

[ o (“1 Z xzw*+zal Z xzw*)] :
l>.w*f =2 1>.w*f

By (10), we have that w* ¢ u!(f). Since u! =7 ut=1, wehave that u!~!(w*) =
f =w ut(w*). Therefore,
1
Y« =0

itw*f

Since o > 0 foreach ! =1,...,k, then

— (Dél Z xlw*—l—Zoq Z xlw*> =

iz u*f =2 i v*f
t
1—ZocZZx L=1-) a;>0.
=2 1>—w*f =2

Then from cases 1.1 and 1.2, we have that for the pair ( f , W),

[qﬁ Z Xf]] |: Z i w*]
]th* l>‘w*f

That is, for the pair (f,w*) condition (6) fails.

Case2: IfcNoc* =@ forall o € K.

Notice that in this case, ¢* may or may not belong to ®(u!). Notice also that

L) # ut=o*](f) forall f € o*.
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Case 2.1: o & ®(ul).
We claim that there are f € o*and @ € W\ {'(f)) Un'~1(f)}, such that for
ul(f) = {will,...,wf;;}, ut=1(f) = {wi‘ti ,...,wgft.i }, we have that w?l -7
ﬂt_l
qF
If not, for all f € ¢*, we have that u'(f) >¢ u'~'[o*](f) >f w, for each
w ¢ {u(f)up=1c*](f)}.? Since cNo* = @, we have that u!(f) = u'~1(f)
forall f € o*. Then, let {w/} = u!~1[c*](f) \ u'(f) for each f € o*. That is,
w! is the most preferred worker in the reduced preference list pr (f) such
that it does not belong to u!(f). This implies that c* € ®(u!), and it is a

contradiction since c* ¢ ®(u!).
Therefore, there are f € c* and @ € W\ {u'(f)) U u*~1(f)}, such that

W () =u"F) =p o= e () (11)

Since 0* € ®(u'~1), in order to obtain the reduced preference lists P¥' ', f

ZT)>-JEZU

should have eliminated @ by means of the third step of the reduction proce-
dure. Then, we have that

u (@) =o p' o] (@) =0 p' (@) =0 f -0 ' (@). (12)

Since X can be written as in Theorem 1, (u!, uf~1 € M}Iﬁ and pf~1 =p uh),
and using inequalities (11) and (12), we have that

Z X]F,j < qf and 2 o <l
]tfw iizvf

Then,

{q}; Y. xf,j] - [1 in,w] > 0.

jZf@ izaf
That is, condition (6) fails for the pair (f, ®).
Case 2.2: ¢ € ®(ul).
In this case, we have that u!~1[c*] € Mo\ M]Ifll Then by Lemma 4 item 2)
and Lemma 5 item 2), there is a cycle 0’ € @ (u!~1[0*]) such that

]/tt_l —F ]/tt_l[O'*] —F ‘ut—l[o_*] [(T’] —F ,ut'

Notice that, ¢/ may or may not belong to ®(u!). If ¢ ¢ ®(u!), the arguments
follows as in Case 2.1. If ¢/ € ®(u') we continue this process until, by

2Here, u'~1o*](f) = ¢ w denotes that worker w is less preferred for the firm f than all workers
matched to firm f under the stable matching u!~![¢*].
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finiteness of the set ®(u!), there is & ¢ ®(u!), and the arguments follows as
in Case 2.1.

Therefore, from cases 1 and 2, we have that there is a connected set Mﬂl such that
x € Conv (M i

(<=) Let ¥ be a convex combination of stable matchings from a connected set.
That is, there are a stable matching y, and a list of sets Ky,..., Ky C ®(u) with the
corresponding cyclic matchings yl, e, yk, such that ¥ = 25(:1 txlel with 0 < g < 1
and Zé‘zl o = 1.

Since ¥ is a convex combination of stable matchings from /\/ly, we have that u >
yl foreach I = 1,...,k. Then, we have that x is a stable fractional matching for the
matching market (F, W, P¥). Moreover, since S(P*) C S(P), we have that ¥ is also a
stable fractional matching for the matching market (F, W, P, q). By Lemma 8, we only
need to prove that ¥ is strongly stable in the reduced preference profile P¥.

If &1 = 1 we have that ¥ = x*. Since ! is also a stable matching in the original
preferences profile, then we have that x is strongly stable. Hence, we assume 0 <
a; < 1foreach! = 1,...,k. Now, we prove that x fulfils condition (6) for each pair
(f,w) € A(PH).

Fix f € F. Assume that firm f does not fill its quota. Theorem RHT assures that
this firm is always assigned to the same set of workers in every stable matching. Then
Xfi = x}‘,l]. for! = 1,...,k and for all j such that (f,j) € A(PH). Since y' is a stable
matching for I = 1,...,k, it fulfils condition (6) for each (f,j) € A(P*). Then, by
Remark 1 we have that ¥ also fulfil condition (6) for each (f,j) € A(P*).

Assume now that f does fill its quota. Let K =Uf_,K;. Let u(f) = {wy,.. L Wo, b
and w; > ¢ w; ;1. We analyse two cases separately.

Case 1: Thereisno o € ICsuch that f € o.
By Definition 7,we have that u[K](f) = u(f). Thatis, for eachj € W, ¢ ; = x? i
Thus, if w < f Wqp We have that
Z xf] Z x ,]

o
jrlw

Ifw >fwy o we have that

Y%= ) xf] <4
]t? ]>?w

Then, ). ji-teo f J
1, we have that }_. it f Xi g > 0. Therefore, Y_.

< gf. Moreover, by linear mequahty (5) for the stable matching

il f lw = 1. Recall that y is the firm
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oltimal stable matching in the reduced preference profile P¥, then Lemma 7 states

that ¥ =}, x*, ie.,

Z Xiw > Z xffw =1.

izlof il
By the linear inequality (2), we have that ), _x i = 1. Thus, for (f,w) €
A(P"), we have that

95— ) %y, {1 D xzw] =

j=tw il
J=f

Case 2: There is 0y € K such that f € oy.

By Lemma 5, there is a unique cycle 0y € K; such that f € oy. But 0y may be in
more than one set K;. We denote Ly = {I : 07 € K;}. Therefore,

k
XfJIZlXfo] Zoqxf]-l—Zoqxf]
=1

Since oy is unique, by Lemma 5 and Lemma 6, we have that u[Kj](f) = u[of](f)
1

and x?/[]. = x;,[;f] for those | € Ly. Also, u[KiJ(f) = u(f) and x?] x? for those

| ¢ Ly. Hence,

Zocle]+2a1xf] Zocxf] —|—Zoqxf]

x;ll[]‘,ff} (Z le) +x?,j (Z oq) . (13)

Since ZleLf n; + ):lgsz «; = 1, then we define & = ZleLf Kj.

Then (13) is equal to zxxf[] /!

uloy]
ofxf]

+(1—-a)x ? ;- That is, %y is the convex combination

and x" i Since f € of, then

( plo f])

supp(df )| = [supp(x )| = q7 and [supp(c ™) Nsupp(et )| = g5 — 1.

Hence, there are two workers w, and w; 1 such that (f, w,) € supp(x¥) \ supp(xMlrly

and (f,wg,+1) € supp(x*O)\ supp(x). Let T = {ws : (f, ws) € supp(x#) Nsupp(x11)}.
Then,
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1 itjeT
ff,j = 1—&a lf] = Wy (14)
X lf]:wqurl

Now, we prove that x fulfils condition (6) in P¥ for each w:

i) If w <¢ wy, 41, then

Z i = fow X, + Ty 0 = (1) + (1 -a) +a=qy

Then,
95— Y, %, =0,
j=lew
hence,

9= ) % [1 ) XI =0.
j=lpw il

i) If w >5’r We, then

Y, % <ay.
j=lw
Since
a5 > ), Xy = fo,waf] :
]E?W ]>-H
then,
Z x <qfand Z xf] <qf
]>'f ]>'f

But u and u[o] are stable matchings, and these stable matchings fulfil condi-
tion (6). So we have that

Z xlw—land Zx loy] =1,
1>—y 1>J‘
in which case we can assure that
_ _ _ ploy]
Z xi,w:(l_‘x) Z xzw—i_lx Z xi,wf =1
i=hf i=hf il f
That is,
95— Y %l [1 szw] =0.

j=tw it
J=f
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iii) If w = wg,. Recall that u(f) = {wy,...,wy}, then p(w) = f. Also, we
have that, u =% p' and y! =}, pforalll = 1,..., k. In particular, u!(w) =},
p(w) = fforalll =1,...,k. This implies that

1
Y. xffw =1
i=hf
foralll =1,...,k. Hence

t 1 t z t
Y = ) Y mx, =) a ) X, =) a=1
=1 =1

irtof iz f =1 =

Qf— Z xf,j . [1 2 xi/w:| =0.

. 1 .
]t}w ztz,

From cases 1 and 2, we have that for the pair (f, w),

qf — Z xf,j 11— 2 Xiw = 0.
j=hw =
Therefore, ¥ is a strongly stable fractional matching in the reduced preference pro-

tile P¥, and by Lemma 8, ¥ is a strongly stable fractional matching in the original pref-
erence profile P. ]

Once we have characterized all strongly stable fractional matchings for the many-
to-one matching market (F, W, P, q), we can characterize the set of all strongly stable
fractional matchings. Recall that, SSF(P) denotes the set of all strongly stable fractional
matchings at the preference profile P.

Corollary 2 Let (F, W, P, q) be a many-to-one matching market. Then,

SSF(P) = |J Conv{M,}.
HeS(P)

The following corollary extends Corollary 21 from Roth et al. [16]. It gives an up-
per bound to the number of worker matched to each firm, and the number of firms
matched to each worker.

Corollary 3 Let (F,W, P, q) be a many-to-one matching market. Each strongly stable frac-
tional matching fulfils the following two conditions:

1. Each worker has a positive probability with at most two distinct firms.
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2. Each firm, all but possibly one position are assigned deterministically. For the one po-
sition that is assigned by a lottery, two workers have a positive probability of being em-
ployed.

Notice that, from (14) in the proof of Theorem 2, the previous corollary follows
straightforward. Another extension is due to Schlegel [18] for a school choice matching
market with strict preferences (similar setting as ours). Our characterization gives an
alternative proof for these two similar results, for the school choice set-up presented in
Schlegel [18] is straightforward, and for the marriage market presented in Roth et al.
[16], it’s necessary only to set all quotas of all firms equal to one.

Conclusions.

In this paper we present a strong stability condition for a many-to-one matching mar-
ket where firms’ preference are g-responsive. Further, we prove that a strongly stable
fractional matching can be represented as a convex combination of stable matchings
that fulfil a decreasing order in the eyes of all firms. Although it was already known the
“almost” integrability of a strongly stable fractional matchings, there may be more “al-
most” integral stable fractional matchings that are not strongly stable (the stable frac-
tional matching x! in Example 1 illustrates this). Our characterization of strongly stable
fractional matching allows us to describe precisely which are the agents matched. Also,
we characterize the set of all strongly stable fractional matchings. We think that our
results gives a complete description of the strongly stable fractional matchings.
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A  Appendix

The reduction procedure:

Let (F, W, P, ) be a many-to-one matching market. Let yr be the optimal stable match-
ing for all firms, and pyy be the optimal stable matching for all workers.
Step 1: Remove all w who are more preferred than the most preferred worker matched
under pp(f) from f’s list of acceptable workers. Remove all f who are more preferred
than py (w) from w’s list of acceptable firms.

Therefore, the most preferred worker matched in pp(f) will be the first entry in f’s
reduced list, and ppy (w) will be the first entry in w’s reduced list.
Step 2: Remove all f who are less preferred than ur (w) from w’s list of acceptable
firms. Remove all w who are less preferred than the least worker matched under uw (f)
from f’s list of acceptable workers.

Thus, ur (w) will be the last entry in w’s reduced list and the least preferred worker
in py (f) will be the last entry in f’s reduced list.
Step 3: After steps 1 and 2, if f is not acceptable for w (i.e., if f is not on w’s preference
list as now modified), then remove w from f’s list of acceptable workers, and similarly,
remove from w’s list of acceptable firms, any firm f to whom w is no longer acceptable.

Hence, f will be acceptable for w if and only if w is acceptable for f after Step 3.
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For the matching market (F, W, P¥, q), the stable matching y is the F — optimal sta-
ble matching, that is the stable matching that all firm prefer in the matching market
(F,W,P*,q).

Lemmas and Proofs.

Proof of Lemma 2.  Let (F,W,P,q) be a many-to-one matching market. Let ¥ be a
strongly stable fractional matching. First, we will prove that y ¢ is a matching. Assume
that all positive entries of x are equal to 1, then we have by Definition 4 that x#* = x.
Since ¥ is a strongly stable fractional matching, by Lemma 1 we have that yx is a stable
matching.

Assume now that not all positive entries of X are equal to 1. We will prove that 5
is a matching. Assume that is not a matching. That is, there is a worker w and two
different firms f and f’, such that w € ux(f) and w € uz(f’). Since the preferences of
the worker w are strict, without loss of generality, we can assume that f >, f’. We will
show that ) ;. Friw=1, for this we analyse two cases:

Case 1: |C;)c(32)| < gy.

We have that if } ;- joXfj < qf, since X is a stable fractional matching. Then

Y Fiw=1

imwf
Hence, }; -, Fxiw =0, and x =0, which contradicts the assumption of x >
0.

condition (6) implies that

If) s Xfi = qf then w € ijf and ¥f, = 1. This implies that

Z Xiw=1

imwf

Case 2: |C;’c(32)| > gr.
Notice that C;f(f) C CJQ(J?). Since w € px(f), thenw € C;f(f), and we have that
LTS ) < ), XS

jzfw jEC;f(J?) jEC?(J?)

Hence, } - s Xfi <4 Since ¥ is a strongly stable fractional matching, condition
(6) implies that
Z Xiw =1

iiwf
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From cases 1 and 2, we have that ) ;. %, =1, then) ;. (%, = 0, and also xp,, =
0 since f =4 f', which contradicts the assumption of %/, > 0. Therefore s is a
matching.

Now, we will prove that iz is a stable matching. Letw € px(f), thenw € C;f (%) C CJQ(JZ)
Hence w ¢ f and f >y w. Then pz in an individually rational matching.

Assume that there is a blocking pair (f, @) of uz. This means that we have the
following three statements:

a) @ ¢ pz(f).
b) There is w' € px(f) such that: either @ =7 w' if |uz(f)| = q7 or @ »; fif
)] < 4y
) f o px(0).
Now, we will show that Xpp =0

i) If |Cff(f)] < qy, then Cc(x) = C?(f). Hence, since uz(f) = C}g(f) and @ ¢
pz(f), we have that %7

i) If \C f( ¥)| = g5 Letw* € qu( )\ qu (%). That is, w* is the least preferred
worker employed with firm f under the matching yz. Then, by item b), we have
that

fo]< Z Xpi <4 (15)
j=f® jz
By items a) and b), we have that @ > 7 w*, and by Definition 4 we can assure that
X5 = 0. If not, we have that @ € jue( f), a contradiction.

By (15) and the fact that x by hypothesis is strongly stable, we have that
1— ) %p=0.
itzbf
Then,
1= ) Zip=Z%5+ ) Zia=0+ ) Tigp
liwf i>—wf l‘>—wf7
Hence, ), of Xiw = = 0, but this is a contradiction since from Definition 4, we have that

X (w)0 > 0 and by item ¢) we have f =a puz(@). Therefore, y5 is a stable matching. [

Proof of Lemma 3. Let X be a strongly stable fractional matching. Then, by Lemma
(2) we have that py is a stable matching. By Definition 4 we have that supp(x#*) C
supp(x), and by the fact that ¥ # x#* we have that

¥ =oaxt*+(1—a)y.
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We need to prove that
X — axhs
A P
is a strongly stable fractional matching. That is, y is a solution of CP and fulfils condi-
tion (6).
From ¥ # x#*, we have that & > 0. From definition of &, we have that « < 1.
Assume that & = %7 5, with @ € C;f_ (%).

¢ Inequality (1) of CP. Following from the definition of y and the definition of «,
we have that:
If ]CJQ(JZ)\ > gy, then

Y Fpi-a) xpt=) Fpj—aqp < g —aqy.
jeEW jeEW iewW

Therefore,

ny]

jEW

Xri—a x”’?-lﬁq.
— LZW 12 j;w Fil = 4r

If |C0( )| = r < gy, then Zjewff,j—azjewx% = YiewXpj—ar < r—ar =
r(1—a) < qf(1—a). Then,

Y Vfj= [fo] ) Xy ]Sqf-

jeEW jeEW jEW
That is, y satisfy linear inequality (1).

e Inequality (2) of CP. A similar argument that is used for inequality (1), proves
that y satisfy linear inequality (2).

e Inequality (3) of CP. If (f,w) € supp(x), by definition of s, we shall consider
two cases:

- If (f,w) & supp(x#*), thatis, x?"w = 0. Then, yf,, = 1% = 0.
- If (f,w) € supp(xr), that is, x;”‘ — 1 and also xf_ =1,
Xfwiax?’gu

Then, y¢, = —G—5 = ffl’fﬂx > 0. Then, for (f,w) € A, Yfw = 0, thatisy

o

satisfies linear inequality (3).

e Inequality (4) of CP. Inequality (4) it is easily satisfied form definition of y.
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e Condition (6). By hypothesis we have that ¥ is a strongly stable fractional match-
ing, then x fulfils condition (6). Hence,

[qf - ) xf,f] :

1- ) fi,w] =0,

]tfw itwf

for each (f,w) € A(P). Since ¥ = ax'* + (1 — a)y, with 0 < a < 1, then for each
(f,w) € A(P) we have that

{Qf - Z (fxx;{j' +(1- Dé)]/fJ) : -1 - ) ((xxff; +(1— “)]/z‘,w)] —0

]tfw L itwf

{qf"‘.z Xy = (L=a) Yy [1-a ) xjg, — (1-a) Zyi,w] =0

itwf iiwf

[«x (qf 3 X?,’}) +(1—a) (‘U 2 ny)] '
jzfw jzpw

[oc (1 — Z xlyz‘v> +(1—a) (1 - Z %,w)] = 0. (16)
irwf izwf

Since x#* and y fulfil inequality (1) and (2), then

r— 2 X =0 a5— Y} v >0,

sumi- Xy > 0and1— ) | ys; > 0. (17)
jzwf

Then, by (16) and (17), we have that either

or
1— Z xZ;:Oandl— Eyi,w:O.

iiwf liwf

Since, by Lemma 2 yy is a stable matching, and by Remark 1 x## fulfils condition
(6) for each (f,w) € A(P). Therefore, y fulfils condition (6) for each (f,w) €

A(P).
Since supp(x#*) C supp(x), we have that supp(y) C supp(x). Moreover, since yz ; =
0, and xf’?w =1, then supp(y) C supp(x). O

Proof of Lemma 6. Let P be a profile of reduced lists for (F, W, P), and let ¢ and ¢’
be two different cycles in P¥.
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1. By Lemma 5, we have that ¢ N ¢’ = @. Then, we can assume that ¢’ = {ey,..., e}
and o = {e,41,...,€,4,}. By Definition 7,

V(el) if f=¢
uld|(f) =< wulers1) iff=e, k=1,...,r—1
u(f) if f & {ey,...,er}.

That is, the firms that do not belong to the cycle ¢’ do not change the set of workers
in both stable matchings (4 and u[c”]). Then, by Lemma 5, the cycle ¢ is a subset of
those firms that do not change. That is, ¢ is a cycle of P,

2. Let K = {0, ¢’}. Since K is a set of cycles (not an ordered set), by Definition 7 and
item 1., we have that

ulol(f) iffeo
uIK](f) = ulo')(f) iffeo
u(f) otherwise.

Then, ulo’, o] = ulo,o’].

O

We say that a fractional matching x weakly dominates a fractional matching y with
respect to the preference of the firm f, if for all workers w,

Y. X = ) Vs

and it will be denoted by x ¢ y, using the same notation that is used for stable match-
ings.

Similarly x strongly dominates y, denoted by x -, y, if the previous inequality
holds strictly for at least one worker w. Weak and strong domination under a worker’s
preferences are defined analogously. We say that x =p y when x = y forall f € F.
The relation x = y is defined analogously.

Lemma 7 Let (F,W,P,q) be a many-to-one matching market. Let X be a strongly stable
fractional matching. Then, x'F = ¢ X = x"W for all f € F and x'V =y X = xVF for all
we W.

Proof. Let (F,W,P,q) be a many-to-one matching market. Let ¥ be a strongly sta-
ble fractional matching. By Theorem 1, there are stable matchings !, ..., u* and real
numbers aj,...,a, such that ¥ = 25‘:1 txle‘l, with 0 < o < 1, 2;‘:1 oy = 1 and
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ul =p u? =p ... = uF. Since ur =r ! = pw foreachl =1,...,k, then for f € F we
have that

k k
XL = oclx”F) =) u xE >
== L (L) < Lo £

]'ifw jtfw = jifw

k yl k ]/tl

Y| Yoxpi =) [ Laxpi) =) %
=1 ]tfw ]tfw =1 ]tfw

for all w € W. Then xHr a8
To prove that X > f xHw,

> Fri= ) (Z“!’%) = i“z (jZ x’},lj) >

jzfw jzfw

k k
I — K — I
L (Z xfy) =L (2“19%,?) = L v
forall w € W. Then x g xhw,
A similar argument proves that x#W =, X =, x/F. O

Lemma 8 Let (F,W, P, q) be a many-to-one matching market. Let y € S(P), and PV the
reduced preference profile. Let X be a stable fractional matching for a many-to-one matching
market (F,W,P,q). If  is a strongly stable fractional matching for a many-to-one match-
ing market (F,W,P¥,q), then X is a strongly stable fractional matching for a many-to-one
matching market (F,W, P, q).

Proof. Let (F,W, P, q) be a many-to-one matching market. Let u € S(P), and P* be
the reduced preference profile. Let X be a stable fractional matching for a many-to-
one matching market (F, W, P, q). Let ¥ be a strongly stable fractional matching for a
many-to-one matching market (F, W, P¥, q), that is:

9= ) %pil -

j>lw

1-— Z fi,w] =0,

i>h

for all (f,w) € A(PH).
We need to prove that, for all (f,w) € A(P), x fulfils

[qf - ) ff,j] :

jzfw

1-—- Z fi,w] = 0.

imwf

We consider the following two cases:
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. Let (f,w) € A(P#). Thatis, (f, w) was not eliminated in P*. So,

D Erp= )
jzgw >

holds, since for each firm f, there are more workers in the original preference list
than in the reduced preference list.

Hence,
9= Y Xpi<dar— ), %
jzfw j>lw

With a similar argument we have that

1— ) % <1— ) Xy

i of i>hf
By hypothesis, and linear inequalities (1) and (2) of PC,
B S [N SR R
]>_fw itwf
Then, for (f,w) € A(P*), we have that
[qu — Z Iff’]'] . [1 — Z xi,w] =0.
]ifw itwf

. Let (f,w) € A(P) — A(P¥). Letw; € p(f) such thatw; ¢ w' foreachw’ € p(f).
Notice that w # w;. Then, we analyse two sub-cases:

i) w>rw.
We have that x# > ¥, then

Y %4 < fo]_o. (18)

]>fw ]>fw

Since, X is a stable fractional matching, ¥ satisty inequality (5) of SPC, i.e.

Y Tpitar ) Tiwtar¥e > 45

]>-fw l>—wf
Then, by condition (18)
ar Y Fiw > 4qp,
itwf
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and for alli =4 f, X;, = 1. Hence,

Z Xiw >1,

itwf

and by linear inequality (2), we have that

Z xi,w = 1/

itwf

then we have that

ii) w1

{qf - ) ff,j] : [1 - faw] =0.

]ifw itwf

~r w. We analyse two sub-cases, if the firm f does or does not fill its

quota.

a)

If the firm f does not fill its quota, by Theorem RHT, the firm f is as-
signed to the same set of workers in every stable matching. Assume
that u(f) = {ws,...,wp} with p < q. Recall that wy ¢ w, then

0< ) %<4y
jfw

Assume that 0 < } ;. Friw <1, then ) ; <of Xiw > 0. Since X is a
strongly stable fractional matching for the reduced preference profile
P¥, then by Theorem 1 there are stable matchings y?, ..., u*in (F, W, P¥, q)
and real numbers ay, ..., a;, such that ¥ = Zé‘zl txlxﬂl, with 0 < a; <1,
YK jay = Tand ' =p p? = ... =p p*. Since Yizof Fiw > 0, then
there is a stable matching y' for some ! = 1,.. .,k such that ¥ Zof xﬁf ;] =
1. Given that (f,w) € A(P), the firm f does not fill its quota, and
Yizof xf.f;) = 1, then p!(w) <4 f. Hence, (f,w) is a blocking pair for
yl forsome ! =1,...,k, and this is a contradiction, then } ;. FRiw = 1.
Therefore, x fulfils condition (6).
If the firm f fill its quota. Without loss of generality, we assume that
u(f) = {wl,...,wqf}, uw(f) = {wi,...,w;f}, w; =f wiq and w; =
wy,q, forl =1,...,q5 — 1. Notice that, u(f) N pw(f) is not necessarily
empty.
We analyse the following 3 sub-cases:
bl) w1 >-f w >-f wqf.

Hence, ) .- x;l’ i <ar Since each stable matching fulfils condition

(6), then ;s cxt = 1.
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Since % is a stable fractional matching in P¥, then x# >r %. By
Lemma 7, we have that ¥ > x#. Thus,

1= fofwé Z-’Ei,wgl-
izwf izwf

Hence,

Z fi,w = 11

iiwf

which implies that

qf — Z xf,j] . [1 - Z xi,w] = 0.
fifw imwf

bs) Way mFW g w;f.
Since (f,w) ¢ A(P"), then f was eliminated from the worker w’s
preference list P¥. Then, for the worker w we have that f >, pw(w)
or u(w) > f. If f >4 uw, then the pair (f, w) blocks the matching
uw, then u(w) =4 f. Therefore, by Lemma (7) we have that ¥ =y

x". Hence,
= Bo_ K _
Z Xiw = Z X = Xy(w)w = 1.
imwf i=wf
Since X satisfies linear inequality (2), we have that } ;. Friw =1
Then,
I]f— Z ff’]' . [1— Z xi,w] = 0.
]ifw itwf
b3) w;f ~Fw.

By Lemma (7) we have ¥ = x*¥. Hence,

Y, x> ), =qy.

jzfw j=fw

Since X satisfies linear inequality (1), we have that
Ejtfw Xr; = qs. Then,

{qf - L xf,j] | [1 - L fz',w] =0.

]ifw Z'iwf

From cases 1 and 2, we conclude that ¥ is a strongly stable fractional matching for the
many-to-one matching market (F, W, P, q). O
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