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Abstract

We study the problem of convergence to stability in coalition formation games
in which the strategies of each agent are coalitions in which she/he can partici-
pate and outcomes are coalition structures. Given a natural blocking dynamic, an
absorbing set is a minimum set of coalition structures that once reached is never
abandoned. The coexistence of single and non-single absorbing sets is what causes
lack of convergence to stability. To characterize games in which both types of set
are present, we first relate circularity among coalitions in preferences (rings) with
circularity among coalition structures (cycles) and show that there is a ring in pref-
erences if and only if there is a cycle in coalition structures. Then we identify a
special configuration of overlapping rings in preferences characterizing games that
lack convergence to stability. Finally, we apply our findings to the study of games
induced by sharing rules.
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1 Introduction

The allocation of resources is a core question in economics and the literature on match-
ing has recently emerged as one of the most successful and policy-relevant applica-
tions of economic theory: Understanding and management of school choice, kidney
exchange and externalities have been enhanced by the insights provided by a wide
variety of matching models. From a theoretical perspective, all these problems can
be formalized as coalition formation games. In such games, strategies for each agent
consist of the set of coalitions in which she/he may participate and the outcome is a
coalition structure, i.e. a partition of the set of agents into coalitions. Coalition forma-
tion games encompass a large array of models studied in the literature. Depending
on what coalitions are permissible, these games include one-sided problems such as
the roommate problem and two-sided problems running from the classical one-to-one
marriage problem to many-to-one matching problems with peer effects and comple-
mentarities.

In the study of coalition formation games, two different (but closely related) ques-
tions arise: a static one that seeks to predict the equilibria of the game; and a dynamic
one that analyzes the convergence to those equilibria. In answering the static question
of what coalition structures will form, the most appealing equilibrium notion for these
games is that of (core) stability. A coalition structure is stable if there is no coalition
whose members prefer it to the one that they belong to in the coalition structure. A
game with (at least) one stable coalition structure is called a stable coalition formation
game. Once stability is guaranteed, the dynamic perspective becomes salient. From
a market design point of view, this means studying a “natural” process of coalition
formation which seeks to mimic the way in which agents would form groups in an
environment without a social planner. In cases where decentralized decision making
in itself may not suffice to reach a stable outcome, a centralized coordinating process
should must be imposed in order to attain that outcome. Decentralized processes can
be formalized through (myopic) blocking dynamics among coalition structures.1 In
our dynamics, a new coalition structure is formed when a coalition blocks one or more
coalitions of a previous coalition structure, and abandoned agents remain single in the
new one. A coalition formation game exhibits convergence to stability if, starting from
any coalition structure, the blocking dynamics lead towards a stable coalition struc-
ture. Hence, identifying what games exhibit convergence to stability crucially affects
our insights on the implications of different alternatives for market design.

This paper sets out to shed light on the problem of convergence to stability in gen-
eral coalition formation games. To that end, we first introduce a sufficient condition for

1Another possibility is to consider farsightedness in the blocking dynamics, see for example Diaman-
toudi and Xue (2003) and Ray and Vohra (2015a,b) among others.
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a game to exhibit such convergence. That condition defines a class of games in which
agents’ preferences feature circularity among coalitions, or rings, and the (unique) sta-
ble coalition structure of the game is surrounded by one of those rings. Then, we char-
acterize games which lack convergence to stability in terms of unions of overlapping
rings, which we call ring components. Crucial to our findings is the concept of absorbing
set. An absorbing set is a minimal collection of coalition structures that, once entered
throughout a blocking dynamics, is never left. In this terminology, a stable coalition
structure can be identified with a trivial (singleton) absorbing set. Any coalition forma-
tion game has at least one, (possibly non-trivial) absorbing set.

Marriage problems are particular coalition formation games in which permissible
coalitions consist only of singletons and pairs, the set of agents consists of two dis-
joint subsets, and every agent in each subset prefers staying alone to being matched
with another agent in the same subset. These problems are always stable games (Gale
and Shapley, 1962) and, for the natural blocking dynamics mentioned above. Roth
and Vande Vate (1990) show that convergence to stability is satisfied for the natural
blocking dynamics mentioned above, which means that these games only present triv-
ial absorbing sets. Roommate problems can be seen as generalizations of marriage
problems with the same permissible coalitions but without the two-sided restriction
on agents. Here, the blocking dynamics can have more complicated patterns. Notably,
a roommate problem can have either trivial absorbing sets or non-trivial absorbing sets.
Tan (1991) establishes the necessary and sufficient conditions for a problem to be of one
type or the other (see also Inarra et al., 2013). For those problems in which absorbing
sets are trivial, our blocking dynamics ensure convergence to stability. For those prob-
lems in which absorbing sets are non-trivial, the profile of agents’ preferences exhibits
rings and there is no stable coalition structure.

However, for general coalition formation games, it is the coexistence of both trivial
and non-trivial absorbing sets that causes lack of convergence to stability (Proposi-
tion 1). From this perspective, our contribution consists of a characterization of those
games in which both trivial and non-trivial absorbing sets are present. To derive our
characterization result, we elaborate on the idea of circularity among coalitions. Our
first observation is that the blocking dynamics can generate cycles of coalition struc-
tures. We show –Theorem 1– that each cycle of coalition structures generates a ring
in preferences and, conversely, every ring in preferences generates a cycle of coalition
structures. However, a ring in preferences is not a robust enough notion to create a
non-trivial absorbing set. The reasons for this are two-fold: the coalitions that form the
ring may collapse into a stable coalition structure and coalition structures formed with
ring coalitions (and single agents) can be blocked by coalitions that include agents not
in the ring.

In Theorem 2, presents our main characterization. If the configuration of coalitions

3



in the profile of preferences and in the blocking dynamics allows agents in a ring com-
ponent to circulate between its coalitions, and only between those coalitions, then a
non-trivial absorbing set is obtained. Conversely, in any non-trivial absorbing set it is
possible to identify coalitions that form a ring component with such features. There-
fore, the existence of a ring component of this type, which we call effective, is equivalent
to the lack of convergence to stability.

Finally, as an application of our results, we analyze some economic environments in
which coalitions produce an output to be divided among their members according to
a pre-specified sharing rule. In such environments, the sharing rule naturally induces
a game where each agent ranks the coalitions to which she/he belongs according to
the payoffs that she/he gets. Here, the question to be answered is what rules gener-
ate stable coalition formation games in which decentralized decision-making leads to
a stable coalition structure. We focus on two types of sharing rule: Bargaining rules
and rationing rules. We show that games induced by pairwise aligned bargaining rules
(Pycia, 2012), which include the Nash bargaining rule (Nash, 1950), exhibit conver-
gence to stability (Theorem 3 ). A similar result is obtained in the context of rationing
for parametric rules (see Young, 1987; Stovall, 2014), which include several of the most
thoroughly-studied rules in the rationing literature (Theorem 4).

Related literature

In the literature on coalition formation games the papers by Banerjee et al. (2001), Bo-
gomolnaia and Jackson (2002) and Iehlé (2007) define structures of preferences that
guarantee the existence of stable coalition structures.2 Echenique and Yenmez (2007)
develop an algorithm for matching markets with preferences over colleagues to deter-
mine the existence of stable matchings. Furthermore, Pycia (2012) and Gallo and Inarra
(2018), in different contexts, study what sharing rules induce stable coalition formation
games.

The notion of absorbing sets has been studied in different contexts and under dif-
ferent names: By Inarra et al. (2013) for the roommate problem, by Olaizola and Valen-
ciano (2014) and Jackson and Watts (2002) in a network context, (in the latter under the
name of “closed cycles”). As far as we know, Schwartz (1970) was the first to introduce
this notion for collective decision making problems and Shenoy (1979, 1980) proposed
it under the name of “elementary dynamic solution” for n-person cooperative games.
Furthermore, the union of absorbing sets gives the “admissible set” (Kalai and Schmei-
dler, 1977), a solution defined for abstract systems and applied to various bargaining
situations. Recently, (Demuynck et al., 2019) define the “myopic stable set” in a very

2Coalition formation games were first studied by Drezé and Greenberg (1980) under the name of
hedonic games.
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general class of social environments and study its relation to other solution concepts.
Some papers have studied whether there are decentralized matching markets that

can achieve stability. The aforementioned procedure of Roth and Vande Vate (1990)
for the marriage problem was generalized by Chung (2000) for the roommate problem
with weak preferences. Later, Klaus and Klijn (2005) extend it for many-to-one match-
ing with couples and Kojima and Ünver (2008) for many-to-many matching problems.
Eriksson and Häggström (2008) show that a stable matching can be attained by means
of a decentralized market, even in cases of incomplete information in two-sided match-
ing. Following a different approach, Diamantoudi et al. (2004) analyze convergence to
stability in the stable roommate problem with strict preferences. In that paper, a stable
matching is fixed and starting from any matching a path to stability is constructed by
trying to get the pairs in the fixed matching until a stable matching (possibly another)
is reached. All the above works study the same natural blocking dynamics that we
study in this paper, in which abandoned agents are left single when a new coalition is
obtained through blocking. A different approach is taken by Tamura (1993) in the mar-
riage problem. Following Knuth (1976), he considers problems with equal numbers
of men and women, all of them mutually acceptable, in which all agents are always
matched. Unlike the standard blocking dynamics, the less realistic dynamics that he
uses assume that when a couple satisfies a blocking pair the abandoned partners also
match to each other. Knuth sets the question of whether there is convergence to sta-
bility in this model3 and Tamura gives a counter-example in which some matchings
cannot be transformed to any stable matching. The example shows the coexistence of
five absorbing sets of cardinality one and one of cardinality sixteen.

However, as far as we know, there are no published works dealing with conver-
gence to stability in the entire class of coalition formation games.4 Furthermore, our
analysis of convergence to stability differs from that of the papers mentioned. We do
not outline a specific procedure to reach stability or fix a stable matching to come after.
Instead, we study what coalition formation games lacks convergence to stability.

The rest of the paper is organized as follows. Section 2 presents the model, the no-
tion of absorbing set, and links the lack of convergence to stability with the co-existence
of trivial and non-trivial absorbing sets. Section 3 studies the relation between rings
in the profile of preferences and cycles of the coalition structures. Section 4 introduces
the class of enclosed coalition formation games in which non-convergence to stability
is guaranteed. Section 5 sets out the definition of ring component. This enables us to
establish our characterization result. Section 6 applies some previous results to study
coalition formation games induced by sharing rules. Some concluding remarks are
given in Section 7.

3This is open problem number 8 in Knuth (1976).
4There is an unpublished manuscript by Pápai (2003) that addresses this problem.
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2 Coalition formation systems and absorbing sets

In this section, we first introduce the preliminaries of the paper and then present the
notions of coalition formation system, and absorbing set.

Let N = {1, . . . , n} be a finite set of agents. A non-empty subset C of N is called a
coalition. LetK denote the set of permissible coalitions of the game. Assume that {i} ∈ K
for each i ∈ N.5 It is natural to focus only on permissible coalitions, since in most
contexts agents cannot be coerced to form all coalitions. Each agent i ∈ N has a strict,
transitive preference relation over the set of permissible coalitions of K to which she/he
belongs, denoted by �i, such that i ∈ C ∩ C′ and C �i C′ imply that agent i prefers
coalition C to C′. From now on, when we write C �i C′ it is understood that i belongs to
C′ ∩C. Throughout the paper, we assume that for each non-single coalition C ∈ K and,
for each i ∈ C, C �i {i}. A preference profile of all agents over permissible coalitions,
�N= (�i)i∈N, defines a coalition formation game which is denoted by (N,K,�N). Let
Π denote the set of partitions of N into permissible coalitions, which we call coalition
structures. A generic element of Π is denoted by π. For each π ∈ Π, π(i) denotes the
coalition in π that contains agent i. Given C ∈ K and π ∈ Π, C is said to block π if
C �i π(i) for all i ∈ C.

The main solution concept for a coalition formation game is that of core stability,
namely a coalition structure that is immune to deviation of coalitions. In such games,
a coalition structure πN ∈ Π is stable if no coalition blocks it. Hereafter, a stable coali-
tion structure is denoted by πN. Since we are interested in convergence to stability,
throughout this paper we focus only on stable coalition formation games, i.e. games with
a non-empty core.

2.1 Coalition formation systems

As just mentioned, a stable coalition structure is immune to any coalitional blocking.
But if a permissible coalition structure is not stable then its blocking by a coalition does
not specify its transformation into a new coalition structure. However, the analysis of
convergence to stability requires the definition of a blocking dynamic between coali-
tion structures. To that end, we associate a coalition formation system with a coalition
formation game. The associated system is a pair formed by the set of coalition struc-
tures that can be formed with the permissible coalitions defined in the game and a
binary relation which drives transition from one coalition structure to another. By do-
ing this, we specify the concept of (lack of) convergence to stability.

5Restricting to permissible coalitions is commonplace in game theory literature (for instance, see
Kalai et al., 1979; Myerson, 1977), and in particular in coalition formation games (see Pápai, 2003; Inal,
2015).
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The binary relation chosen is consistent with the standard blocking definition in
that all members of the blocking coalition strictly improve. However, once a coalition
structure has been blocked there is no single way to define how the new coalition struc-
ture emerges. What happens with coalitions from which one or more agents leave? Do
they become singletons or do they remain together? Hart and Kurz (1983) argue that
if a coalition is an agreement of all its members and then some agents leave, the agree-
ment breaks down and the remaining agents become singletons. In our analysis this
assumption fits well, because our modeling only considers coalitions which are per-
missible, and the coalition of abandoned agents might not be permissible once a new
coalition is formed.

Definition 1 Given coalition formation game (N,K,�N), define the blocking relation�
over Π as follows: π′ � π if and only if there is C ∈ K such that

(i) C ∈ π′ and C blocks π,

(ii) For each C′ ∈ π such that C′ ∩ C 6= ∅, π′(j) = {j} for each j ∈ C′ \ C,

(iii) For each C′ ∈ π such that C′ ∩ C = ∅, C′ ∈ π′.

The pair (Π,�) is called the coalition formation system associated with the coalition for-
mation game (N,K,�N).

Condition (i) says that each agent i of permissible coalition C improves in π′ with
respect to her/his position in π. Condition (ii) says that permissible coalitions from
which one or more agents depart break into singletons in π′. Condition (iii) says that
the permissible coalitions that do not suffer any departure in π, remain unchanged in
π′. Notice that the blocking relation� implies that agents behave myopically, in the
sense that they take the decision about blocking a coalition structure by considering
just the resulting coalition, i.e. they are unable to foresee their positions even one step
ahead.6

Remark 1 When we want to stress the role of coalition C, we say that π′� π via C.

Remark 2 The blocking relation � is irreflexive, antisymmetric and not necessarily transi-
tive.

Given�, let�T be the transitive closure of�. That is, π′ �T π if and only if there
exists a finite sequence of coalition structures π = π0, π1, . . . , πk = π′ such that, for all
i ∈ {1, ..., k}, πi � πi−1. Hereafter, we say that coalition formation game (N,K,�N)

exhibits convergence to stability if for each π ∈ Π, there is a stable coalition structure
πN ∈ Π such that πN �T π. Otherwise, we say that the game lacks convergence to
stability.

6From now on, it is understood that all coalitions considered here are permissible ones.
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2.2 Absorbing sets

Our tool for studying lack of convergence to stability is the notion of absorbing set,
which is a minimal set of coalition structures that once entered through the blocking
relation is never left. An appealing property of absorbing sets is that each coalition
formation system has at least one, although in general it may not be unique.

Definition 2 Given coalition formation game (N,K,�N), a non-empty set of coalition struc-
tures AN ⊆ Π is an absorbing set when for each π ∈ AN and each π′ ∈ Π \ {π},

π′ �T π if and only if π′ ∈ AN.

When |AN| ≥ 3, AN is said to be a non-trivial absorbing set. Otherwise, the absorbing set
is trivial.

Notice that coalition structures inAN are symmetrically connected by the relation�T,
and that no coalition structure in AN is dominated by a coalition structure that is not
in the set. Next, we introduce a remark containing three facts about absorbing sets.

Remark 3

(i) Absorbing set AN contains no stable coalition structure if and only if |AN| ≥ 3.

(ii) Let πN be a stable coalition structure. Then, {πN} is an absorbing set.

(iii) For each non-stable coalition structure π ∈ Π, there are an absorbing set AN and a
coalition structure π′ ∈ AN such that π′ �T π.

Remark 3 (i) is implied by the antisymmetry of �. Remark 3 (ii) recalls that each
stable coalition structure is in itself an absorbing set. Remark 3 (iii) says that from any
non-stable coalition structure there is a finite sequence of such structures that reaches
a coalition structure of an absorbing set (this property is called outer stability in Kalai
and Schmeidler (1977)). This Section concludes with a proposition that relates stability
and absorbing sets.

Proposition 1 A stable coalition formation game lacks convergence to stability if and only if
its associated coalition formation system has a non-trivial absorbing set.

Proof. Let (N,K,�N) be a coalition formation game and let (Π,�) be its associated
coalition formation system.
(=⇒) Assume that (Π,�) does not have non-trivial absorbing sets. Then, by Remark
3 (ii), the only element of each absorbing set is a stable coalition structure. By Remark
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3 (iii), for each non-stable coalition structure π ∈ Π there is a stable coalition struc-
ture πN such that πN �T π. Therefore, coalition formation game (N,K,�N) exhibits
convergence to stability.
(⇐=) Assume that (Π,�) has a non-trivial absorbing set AN and let π ∈ AN. Then,
by Remark 3 (i), AN has no stable coalition structure. Therefore, by the definition of
absorbing set, there is no stable coalition structure πN such that πN �T π. This means
that coalition formation game (N,K,�N) lacks convergence to stability. �

3 Rings and cycles

This section relates the notions of rings and cycles. In this paper, “cycle” refers to the
circularity of coalition structures in a coalition formation system. First, some notation
and the definition of ring must be introduced. For each pair C, C′ ⊆ N such that
C ∩ C′ 6= ∅, C � C′ is written if and only if C �i C′ for each i ∈ C ∩ C′.

Definition 3 An ordered set of non-single coalitions (R1, . . . , Rk) ⊆ K, with k ≥ 3, is a ring
if Ri+1 � Ri for i = 1, . . . , k subscript modulo k.

For the sake of convenience, we sometimes identify a ring with the non-ordered set of
its coalitions, R = {R1, . . . , Rk}, and refer to coalitions in R as ring coalitions. Notice
that the definition of a ring requires that all agents in the intersection should improve.
There are several ways to define rings in preferences. Pycia (2012) and Inal (2015)
define cyclicity among coalitions by requiring that only one agent at the intersection of
two consecutive coalitions strictly prefer the first of them to the second. In both these
definitions, unlike ours, other members of two consecutive coalitions can oppose the
transition from one coalition to the next.

Definition 4 An ordered set of coalition structures (π1, . . . , πk) ⊂ Π, with k ≥ 3, is a cycle
if πi+1 � πi for i = 1, . . . , k subscript modulo k.

Next, we present an algorithm that constructs a ring from a cycle of coalition struc-
tures. Let C = (π1, . . . , πk) be a cycle of coalition structures, let Ci denote the
coalition that is formed in πi, i.e., πi � πi−1 via Ci, and consider the ordered set
C = (C1, . . . , Ck). To construct a ring, proceed as follows:
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Algorithm:

Step 1 Set R1 as any coalition in C.
Step t Set

Rt ≡ minj≥1{Ci+j such that Ci = Rt−1 and Ci ∩ Ci+j 6= ∅ with i + j mod k}.
IF Rt = Rs for s < t,

THEN set (Rs+1, . . . , Rt), and STOP.
ELSE continue to Step t + 1.

Notice that in each step of the algorithm a different coalition of C is selected except
in the last step, where only one of the previously selected coalitions is singled out.
Therefore, the algorithm stops in at most k + 1 steps (recall that k = |C|). The fol-
lowing lemma shows that the ordered set (Rs+1, . . . , Rt), is actually a ring. To sim-
plify notation, we rename the elements of the ordered set and write (R1, . . . , R`) =

(Rs+1, . . . , Rt).

Lemma 1 LetC be a cycle of coalition structures. Then, cycleC induces a ring.

Proof. LetC be a cycle of coalition structures. Applying the previous algorithm
results in the ordered set (R1, . . . , R`). We claim that the ordered set (R1, . . . , R`) thus
constructed is a ring, i.e. for each Ri+1 and Ri in the ordered set, Ri+1 � Ri and ` ≥ 3.
Take any coalition Ri. Coalition Ri+1 (modulo `) is the closest coalition that has non-
empty intersection with Ri (following the modular order of the coalition structures in
cycleC ), so all the coalition structures between the one in which Ri blocks and the
one in which Ri+1 blocks contain coalition Ri. Let π and π′ be the two consecutive
coalition structures inC such that π′ � π via Ri+1. Ri+1 is the blocking coalition,
so Ri+1 belongs to π′. Furthermore, since Ri belongs to π and Ri+1 ∩ Ri 6= ∅, by
Definition 1 Ri+1 � Ri. Furthermore, ` ≥ 3. This holds for the following two facts: (i)
there are at least two coalitions in the ordered set, because all the coalitions that block
in a cycle are also blocked; (ii) if there are only two coalitions, say R1 and R2, then
there is an agent i ∈ R1 ∩ R2 such that R1 �i R2 �i R1, which by transitivity implies
R1 �i R1, a contradiction. �

The following theorem, which plays a central role in our characterization result,
establishes the relationship between a ring of coalitions in the preference profile and a
cycle of coalition structures of the associated coalition formation system.

Theorem 1 A coalition formation game has a ring of coalitions if and only if its associated
coalition formation system has a cycle of coalition structures.

Proof. (⇐=) This is proven by Lemma 1.
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(=⇒) Let (R1, . . . , Rk) be a ring in the coalition formation game (N,K,�N). This ring
induces a cycle of coalition structuresC = (π1, . . . , πk) where πj is defined as follows:

πi(j) =

{
Ri for j ∈ Ri

{j} otherwise.

Note that πj is obtained from πj−1 by satisfying blocking coalition Rj for all j = 1, . . . , k.
�

The algorithm is illustrated with the following example:

Example 1 Consider the coalition formation game (N,K,�N) given by the table bellow, where
the preferences of the agents are listed in columns. This game has a ring, (13, 12, 2356), which
is represented in the figure.7

1 2 3 4 5 6

12 2356 13 45 2356 2356

123 123 123 4 45 6

13 12 2356 5

1 2 3

2356

13

12

The associated coalition formation system is represented bellow by a digraph. There is a non-
trivial absorbing set AN = {π2, π3, π4, π5, π6}. The blocking relation � between coalition
structures is represented by arrows. The black ones represent the blocking relation between
coalition structures belonging to AN.

π5

π4

π0

π6

π1

π2

π3

πN π0 = {1, 2, 3, 4, 5, 6}
π1 = {123, 4, 5, 6}
π2 = {13, 2, 4, 5, 6}
π3 = {12, 3, 4, 5, 6}
π4 = {13, 2, 45, 6}
π5 = {12, 3, 45, 6}
π6 = {1, 2356, 4}

πN = {123, 45, 6}

7To simplify notation, we omit curly brackets and commas to represent a coalition. For example,
coalition {1, 2, 3} is simply written as 123.
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Consider cycleC = (π2, π4, π5, π6). The set of blocking coalitions between coalition struc-
tures is C = (13, 45, 12, 2356). Assume that Step 1 of the previous algorithm selects coalition
45. The next steps select coalitions 2356, 13, and 12, respectively. The algorithm ends when
coalition 2356 is reached again, and ring (2356, 13, 12) is obtained. ♦

4 Enclosed coalition formation games

These games exemplify real life situations. Consider, for instance, that after an elections
no single party has attained the majority required to form a government. Each party,
even those with similar ideologies, often has different views about significant problems
such as the degree of centrality of the country, healthcare, immigration, etc. Suppose
that “the left” is fragmented into three parties and that any two of them can form a
government. However, it may happen that each party refuses to govern with one of the
others because of their antagonistic views about how to handle a particular problem.
Although the entire left is a stable coalition, in the sense that once formed it could not
be blocked by two of its parties, the situation may well end up with another election.

In these games, “enclosing” a stable coalition in a ring suffices to prevent conver-
gence to that stable coalition structure.

Definition 5 Let (N,K,�N) be a coalition formation game with a unique stable coalition
structure πN. A ringR is enclosing if the following conditions hold:

(i) For each R ∈ R there is a pair of agents i, j ∈ R who satisfy πN(i) �i R and R �j

πN(j).

(ii) For each R ∈ R and each X ∈ K \ πN, if X � R then X ∈ R.

(N,K,�N) is said to be an enclosed coalition formation game when it has an enclosing
ring.

Condition (i) requires there to be one agent in each ring coalition who prefers a
stable coalition to the ring coalition and another agent who prefers the ring coalition
to a stable coalition (possibly the same one). This implies that there is no ring coalition
that belongs to the stable partition. Condition (ii) requires that each ring coalition can
be blocked only by a ring coalition.

Proposition 2 An enclosed coalition formation game lacks convergence to stability.

Proof. Let (N,K,�N) be an enclosed coalition formation game with a unique stable
coalition structure πN and let R be its enclosing ring. Let R ∈ R, and define π as
follows:

π(i) =

{
R for i ∈ R
{i} otherwise

12



Condition (i) of Definition 5 and the fact that there is only one stable coalition structure
mean that π is not stable. Call successor of π to each coalition structure π′′ such that
π′′ �T π. First, we claim that no successor of π is stable. Since π is not stable, there
are π′ and C ∈ K such that π′ � π via C. If C ∩ R 6= ∅ then, by Condition (ii) of
Definition 5, C ∈ R. If C ∩ R = ∅, then R ∈ π′. In either case, π′ ∩R 6= ∅. Therefore,
by Condition (i) of Definition 5 and the uniqueness of the stable coalition structure, π′

is not stable. The claim is proved is the same reasoning is applied inductively. Now
we complete the proof of the proposition. Since π is not stable, by Remark 3 (iii), there
are an absorbing set AN and a coalition structure π̃ ∈ AN such that π̃ �T π. As π̃ is
a successor of π, π̃ is not stable, and therefore |AN| ≥ 3. Therefore, by Proposition 1,
this enclosed coalition formation game lacks convergence to stability. �

Admittedly, this is a restricted class of coalition formation games, but it makes it
clear that a small group of agents conforming an enclosing ring may be enough to pre-
clude convergence to stability. Furthermore, important models such as matching mod-
els with complementarities and peer effects can induce enclosed coalition formation
games. For instance, in the academic labor market universities frequently wish to hire
academics with complementary skills so as to reinforce a specific field, and otherwise
prefer to hold the offer off. On the other side of the market, for academics choosing
whom to work for is an important consideration. The following example illustrates
this situation.

Example 2 Consider three universities and three professors in the academic market for eco-
nomics. Candidate cA specializes in applied economics, candidate cB is a behaviorist and can-
didate cT is a theorist. Suppose that each academic prefers a different colleague and they would
rather be all together than with the least preferred colleague. Universities U1 and U2 can hire
two candidates while university U3 can hire all of them. Furthermore, university U1 will hire as
long as one of them is a theorist while university U2 is not interested in this profile. Otherwise,
all agents remain single. This description is consistent with the following coalition formation
game:

U1 U2 U3 cA cB cT

U1cAcT U2cAcB U3cAcBcT U1cAcT U2cAcB U1cBcT

U1cBcT U2 U3 U3cAcBcT U3cAcBcT U3cAcBcT

U1 U2cAcB U1cBcT U1cAcT

cA cB cT

The enclosing ring (U1cAcT, U2cAcB, U1cBcT) prevents convergence to the stable coali-
tion structure {U1, U2, U3cAcBcT}. Each coalition structure of the non-trivial absorbing set
contains a different ring coalition and single agents. ♦

13



Finally, the class of enclosed coalition formation games does not include but inter-
sects with the class of weak top coalition games8 (Banerjee et al., 2001) and the class of
ordinally balanced games9 (Bogomolnaia and Jackson, 2002). Although these classes
of stable coalition formation games impose some degree of commonality on agents’
preferences, guaranteeing the non-emptiness of the core, they may lack convergence
to stability.

Example 3 (see Bogomolnaia and Jackson, 2002, Section 4). Consider the following two coali-
tion formation games:

1 2 3

12 23 13

123 123 123

13 12 23

1 2 3

1 2 3

123 23 13

12 12 123

13 123 23

1 2 3

The game in the first table is ordinally balanced and the one in the second table satisfies the weak
top coalition property. In both cases coalition {123} is the unique stable coalition structure and
there is an enclosing ring: (13, 12, 23). It is not possible to reach the stable coalition structure
starting from any coalition structure which contains a two-agent coalition and a singleton.
These two games are enclosed coalition formation games and hence do not converge to stability.

If either games is modified by setting coalition 123 as the top choice of each agent, then the
resulting game is ordinally balanced and satisfies the weak top coalition property. However,
this game is not enclosed and exhibits convergence to stability. ♦

5 Effective ring component and characterization

In this section we characterize a non-trivial absorbing set in terms of effective ring com-
ponents. Subsection 5.1 defines the notion of effective ring component and illustrates
it with two numerical examples. Subsection 5.2 contains the characterization result
illustrated with two numerical examples.

8A coalition W ⊆ G ⊆ N, is a weak top coalition of G if it has an ordered coalition structure (S1, ..., Sl)

such that (i) any agent in S1 weakly prefers W to any subset of G and (ii) for any k > 1, any agent in Sk

needs cooperation of at least one agent in ∪m<kSm in order to form a strictly better coalition than W. A
game satisfies the weak top coalition property if for any coalition G ⊆ N, there exists a weak top coalition
W of G.

9A family of coalitions B ⊂ N is balanced if there is a vector of positive weights λS, such that for
each agent i ∈ N, ∑S∈B:i∈S λS = 1 (see Bondareva, 1963; Shapley, 1967). A coalition formation game is
ordinally balanced if for each balanced collection of coalitions B there is a coalition structure π such that
for each i there is S ∈ B with i ∈ S such that π(i) �i S.

14



5.1 Effective ring component

In enclosing coalition formation games we have shown how the presence of just one
enclosing ring in a preference profile induces a non-trivial absorbing set. However,
a coalition formation game may have multiple rings, some of which may overlap. A
collection of overlapping rings is a set of rings such that for each R in the collection
there is another R′ in the collection such that R ∩R′ 6= ∅. However, not all rings of
a coalition formation game form part of a non trivial absorbing set and attention must
be paid to those that do.

Definition 6 Let (N,K,�N) be a coalition formation game. A union of overlapping rings
is a ring component RC if there is a non-trivial absorbing set AN such that for each ring
coalition R ∈ RC, there are π, π′ ∈ AN with π′ � π via R. In this case, RC is said to be
embedded in AN .

Notice that for each different C, C′ ∈ RC there is a finite sequence of coalitions
C = C0, C1 . . . , Ck−1, Ck = C′ that belong toRC such that Ck � Ck−1 � . . . � C1 � C0.

Example 4 illustrates a coalition formation game with several rings some of which
are not embedded in its non-trivial absorbing set. Example 5 illustrates a coalition
formation problem with two overlapping rings embedded in its non-trivial abasorbing
set, so there is a need to introduce the notion of ring component.

Example 4 Consider the coalition formation game (N,K,�N) given by the following table:

1 2 3 4 5 6 7

15 26 13 456 457 N N

14 23 N N N 26 457

12 N 23 14 15 456 7

N 12 3 457 456 6

13 2 4 5

1

The associated coalition formation system can be represented by the following digraph:
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π0

π1

π2

π3

π4

π5

π6π7

π8

π9

π10

π11

π12

π13π14

π15

π16

π17

π18

π19

π20

π21

πN

where the coalition structures are

π0 = {1, 2, 3, 4, 5, 6, 7} π8 = {1, 2, 3, 456, 7} π16 = {1, 23, 456, 7}
π1 = {13, 2, 4, 5, 6, 7} π9 = {13, 2, 456, 7} π17 = {14, 23, 5, 6, 7}
π2 = {12, 3, 4, 5, 6, 7} π10 = {13, 2, 457, 6} π18 = {14, 26, 3, 5, 7}
π3 = {14, 2, 3, 5, 6, 7} π11 = {13, 26, 4, 5, 7} π19 = {15, 26, 3, 4, 7}
π4 = {15, 2, 3, 4, 6, 7} π12 = {15, 23, 4, 6, 7} π20 = {1, 26, 457, 3}
π5 = {1, 23, 4, 5, 6, 7} π13 = {12, 3, 456, 7} π21 = {13, 26, 457}
π6 = {1, 26, 3, 4, 5, 7} π14 = {12, 3, 457, 6} πN = {N}
π7 = {1, 2, 3, 457, 6} π15 = {1, 23, 457, 6}

This game has {N} as the stable coalition structure and AN = {π18, π19, π20, π21} as the
non-trivial absorbing set.

12

23

13

R1

457

14

15

R2

457

456

15

R3
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The game has three rings: R1 = {12, 23, 13},R2 = {457, 14, 15}, andR3 = {457, 456, 15}.
Observe that R1 is not embedded in AN, and even though R2 and R3 overlap only R2 is a
ring component embedded in AN. ♦

Example 5 Consider the coalition formation game (N,K,�N) given by the following table:

1 2 3 4 5 6

12 234 13 234 56 56

123 23 123 45 45 6

13 123 23 4 5

1 12 234

2 3

The coalition structures and the digraph of the associated coalition formation system are the
following:

π0

π1

π2

π3

π4π5

π6π7

π8 π9π10

π11

π12 π13

π14

π15

πN

π0 = {1, 2, 3, 4, 5, 6} π1 = {13, 2, 4, 5, 6}
π2 = {12, 3, 4, 5, 6} π3 = {23, 1, 4, 5, 6}
π4 = {234, 1, 5, 6} π5 = {45, 1, 2, 3, 6}
π6 = {56, 1, 2, 3, 4} π7 = {123, 4, 5, 6}
π8 = {13, 2, 45, 6} π9 = {12, 3, 45, 6}

π10 = {23, 1, 45, 6} π11 = {123, 45, 6}
π12 = {13, 2, 4, 56} π13 = {12, 3, 4, 56}
π14 = {23, 1, 4, 56} π15 = {234, 1, 56}
πN = {123, 4, 56}

This game has πN = {123, 4, 56} as its stable coalition
structure and AN = {π12, π13, π14, π15} as the non-
trivial absorbing set. The game has two rings: R1 =

{12, 23, 13} and R2 = {13, 12, 234}. R1 and R2 are
overlapping rings, so their union is the only ring compo-
nent embedded in AN.

12

23

13

234

♦

As shown bellow, not every ring component induces a non-trivial absorbing set of
a coalition formation system. A ring component without “external” blocking is found
to do the job. Before we introduce this requirement some notation needs to be added.
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Given an absorbing set AN, let C(AN) be the set of non-single coalitions participat-
ing in AN. Formally, C(AN) = {C ∈ K : |C| > 1 and there is π ∈ AN such that C ∈
π}.

Definition 7 Let (N,K,�N) be a coalition formation game, AN a non-trivial absorbing set,
and RC a ring component embedded in AN. Coalition X ∈ C(AN) \ RC is an exit of
RC inAN if there are π, π′ ∈ AN and R ∈ RC such that:

(i) R ∈ π,

(ii) X � R, and

(iii) π′ � π via X.

Notice that an exit of a ring component could be a coalition of another ring com-
ponent. Now we are in the position to introduce the notion used to characterize a
non-trivial absorbing set.

Definition 8 Let (N,K,�N) be a coalition formation game. A ring component RC is effec-
tive if there is a non-trivial absorbing set AN such that RC is embedded and has no exit in
AN.

5.2 The characterization result

To present the characterization result, we first show that it is possible to recover the
collection of ring components embedded in the non-trivial absorbing set.

Proposition 3 A non-trivial absorbing set of a coalition formation system induces a collection
of ring components.

Proof. Let AN be a non-trivial absorbing set. Notice that, given any two different
coalition structures in AN, by Definition 2 there is a cycle of coalition structures in AN

that includes those structures. AN can therefore be seen as the union of all such cycles.
Thus, for each cycle of coalition structures in AN, the algorithm developed in Section
3 constructs a ring. By merging overlapping rings, all ring components embedded in
AN can be constructed. �

The existence of a collection of ring components in a non-trivial absorbing set sug-
gests that the relation between them should be analyzed. That relation is defined by
using the notion of a path of coalitions within a non trivial absorbing set.

Definition 9 Given a non-trivial absorbing setAN and two different coalitions C, C′ ∈ C(AN),
there is a path from C to C′ inAN if, for each i = 0, . . . , t, there are πi ∈ AN and Xi ∈ πi

such that, for each i = 0, . . . , t− 1,
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(i) πi+1 � πi,

(ii) X0 = C, Xt = C′, and Xi+1 = Xi or Xi+1 � Xi.

Observe that Condition (i) requires the blocking relation between any two consecu-
tive coalition structures of the path; and Condition (ii) requires that every pair of con-
secutive blocking coalitions in the path intersect each other. Notice that whenever
Xi+1 6= Xi, πi+1 � πi via Xi+1.

Definition 10 LetAN be a non-trivial absorbing set and letRC andRC ′ be two different ring
components embedded in AN. Define RC /RC′ if and only if there are coalitions C ∈ RC
and C′ ∈ RC ′ such that there is a path from C to C′ in AN.

The example below illustrates these two definitions.

Example 6 Consider the coalition formation game (N,K,�N) given by the following table:

1 2 3 4 5 6 7 8 9 a b c

N N N 47 56 46 N N N ab bc ac

14 23 13 14 N N 7a 89 79 N N N

12 13 23 45 45 56 47 78 89 ac ab bc

13 2 3 N 5 6 78 8 9 7a b c

1 46 79 a

4 7

In this game, the stable coalition structure is πN = {N}. The non-trivial absorbing set AN

is formed by multiple overlapping cycles of coalition structures. Each coalition structure in
AN, contains coalition ab, bc or ac, while the remaining agents are either grouped in two-agent
coalitions or are singletons. Therefore, the set of coalitions in C(AN) contains all the two-agent
coalitions of the game. If the algorithm in Section 3 is applied to each of the cycles in AN,
it is possible to construct the four rings components embedded in AN: RC1 = {12, 23, 13},
RC2 = {45, 46, 56},RC3 = {78, 89, 79}, andRC4 = {ab, bc, ac}.

12

23

13

RC1

45

46

56

RC2

78

89

79

RC3

ab

bc

ac

RC4

Notice that coalitions 14, 47, 7a ∈ C(AN) are disregarded by the algorithm, i.e. although these
coalitions block some coalition structures of AN they do not belong to any ring component.
Observe that coalition 14 is an exit ofRC1, coalitions 14 and 47 are exits ofRC2, and coalitions
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47 and 7a are exits ofRC3. Consider the following sequence of coalition structures in AN and
its blocking coalitions:

π0 = {12, 3, 4, 56, 78, 9, ab, c}
π1 = {14, 2, 3, 56, 78, 9, ab, c}
π2 = {14, 2, 3, 56, 7, 89, ab, c}
π3 = {1, 2, 3, 47, 56, 89, ab, c}
π4 = {1, 2, 3, 47, 56, 89, a, bc}
π5 = {1, 2, 3, 4, 56, 7a, 89, bc}
π6 = {1, 2, 3, 4, 56, 7, 89, ac, b}

X0 = 12

X1 = 14

X2 = 14

X3 = 47

X4 = 47

X5 = 7a

X6 = ac

This sequence fulfills the conditions of Definition 9, so there is a path from coalition 12 of RC1

to coalition ac ofRC4, which means thatRC1 C RC4. ♦

Let CT be the transitive closure of C . Next, we show some properties of this rela-
tion.

Lemma 2 Relation CT is a strict partial order.

Proof. To prove that CT is a strict partial order, it must be shonw that it is a transitive,
irreflexive relation. By definition, transitivity holds. To show irreflexivity of CT it
suffices to prove the acyclicity of C, since this implies asymmetry of CT and, in turn,
irreflexivity of CT . Assume then that C is not acyclic. This implies that there are ring
components RC1, . . . ,RCr with r ≥ 3 embedded in AN such that RC i C RC i−1 for
i ∈ {2, . . . , r} and RC1 C RCr. This in turn implies that there is a cycle of coalition
structures in AN that generates a ring containing coalitions of these ring components.
This contradicts the definition of ring component. Thus, C is acyclic and therefore CT

is a strict partial order. �

Relation CT enables us to link the ring components to be linked, establishing a sort
of hierarchy among them, until a maximal one is found. This maximal ring component
happens to be effective. To prove this, in the following lemma we show that there is at
least one ring component which is maximal for CT.10

Lemma 3 Let (N,K,�N) be a coalition formation game. If there is a non-trivial absorbing
set AN in the associated coalition formation system, then there is a ring component embedded
in AN which is maximal for CT .

10Recall that an element is maximal for a strict partial order if it is not smaller than any other element
in the set.
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Proof. Without loss of generality, let RC1, . . . ,RCs be the finite list of ring components
embedded in AN. DefineRC?1 = RC1 and, for i ∈ {2, . . . , s}, set

RC?i =

{
RC i ifRC i−1 CT RC i

RC?i−1 otherwise

Thus, by construction, and since CT is a strict partial order by Lemma 2, RC?s is maxi-
mal for CT . �

The following lemma shows that if a ring component embedded in a non-trivial
absorbing set has an exit in that absorbing set, it is not maximal for CT .

Lemma 4 LetAN be a non-trivial absorbing set and letRC be a ring component embedded in
AN. If there is an exit ofRC inAN, then there is a ring componentRC ′ such thatRC C RC ′.

Proof. LetAN be a non-trivial absorbing set and letRC be a ring component embedded
in AN. Assume X is an exit of RC in AN. Therefore, there are π̃, π? ∈ AN and R ∈
RC such that R ∈ π̃, X � R, and π? � π̃ via X. If X belongs to a ring component
RC ′ embedded in AN, then RC C RC ′. Assume, next, that X is not part of any ring
component embedded in AN. Define the set

B = {Y ∈ C(AN) : there is a path from X to Y in AN}

and letR denote the collection of all coalitions in ring components embedded in AN.
We claim that B ∩R 6= ∅. To see this, assume otherwise that B ∩R = ∅
and take any C1 ∈ B. This implies that there is π1 ∈ AN such that C1 ∈ π1 and
π1 �T π?. Starting from partition π1, “move” within the absorbing set until a partition
π2 is reached in which C1 is no longer present. Let C2 be such that C2 ∈ π2 and C2 � C1.
Notice that C2 ∈B as well. Proceeding in the same way, it is possible to construct a
sequence in B such that Ct+1 � Ct for each t. Since B is finite, there is t? such that
Ct? = Ct′ for t′ < t?. Without loss of generality, we can choose t? to be the smallest that
fulfills this property. This implies that coalitions Ct′+1, Ct′+2, . . . , Ct? form a ring, which
contradicts the notion fact that the sequence is in B . Hence, B ∩R 6= ∅. Thus,
there are R′ ∈ B ∩R and a ring component RC ′ such that R′ ∈ RC ′. Therefore,
there is a path from X to R and, consequently,RC C RC ′. �

Lemmata 3 and 4 together with Proposition 3 make it possible to characterize stable
coalition formation games in terms of effective ring components.

Theorem 2 A stable coalition formation game lacks convergence to stability if and only if it
has an effective ring component.
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Proof. By Proposition 1, it suffices to prove that there is a non-trivial absorbing set
if and only if there is an effective ring component.
(=⇒) Let AN be a non-trivial absorbing set. By Remark 3, all ring components em-
bedded in AN can be constructed. By Lemma 3, one of them is maximal for CT, say,
RC?. Assume thatRC? has an exit inAN. Then, by Lemma 4, there is a ring component
RC ′ such that RC? C RC ′. This contradicts the maximality of RC? for CT . Therefore,
RC? has no exit in AN, and it is an effective ring component for AN.
(⇐=) Let RC be an effective ring component. Then, by the definition of ring compo-
nent, there is a non-trivial absorbing set AN. �

The following corollary follows immediately from the characterization result.

Corollary 1 A stable coalition formation game without rings in preferences exhibits conver-
gence to stability.

Observe that the preferences over coalitions of the agents of the effective ring com-
ponents, unlike those of the remaining agents, are responsible for the existence of a
non-trivial absorbing set and, as a result, for the lack of convergence to stability. Exam-
ple 6 illustrates how the non-effective ring components are related to the effective one.

Example 6 (continued) Recall that this game has four disjoint rings embedded in AN and
therefore ring components: RC1 = {12, 23, 13}, RC2 = {45, 46, 56}, RC3 = {78, 89, 79},
and RC4 = {ab, bc, ac}. Furthermore, coalition 14 is an exit of RC1, coalitions 14 and 47 are
exits ofRC2, and coalitions 47 and 7a are exits ofRC3. Hence, none of these ring components
are effective, while ring component RC4 has no exit and is therefore effective. The coalitions
disregarded by the algorithm 14, 47 and 7a connect the ring components within AN so that
RC1 CT RC4, RC2 CT RC4 and RC3 CT RC4. These relations are illustrated by the
following figure:
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RC1 RC2 RC3

RC4

14 47 7a

Notice that the set of agents {a, b, c} is responsible for the existence of the non-trivial absorbing
setAN so that if ring coalitions ab, bc and ac become non-permissible, it is easy to see that there
is convergence to πN. ♦

Lastly, recall that only stable coalition formation games are considered here. How-
ever, since the analysis cover the agents’ preferences that induce a non-trivial absorb-
ing set, the number of stable coalition structures that a game may have is irrelevant in
obtaining the characterization result.

To conclude, consider an example with multiple non-trivial absorbing sets that il-
lustrates the relation between effective ring components and non-trivial absorbing sets.

Example 7 Consider the coalition formation game (N,K,�N) given by the following table:

1 2 3 4 5 6 7

167 23 13 456 456 67 457

12 123 123 4567 4567 4567 4567

123 12 23 457 457 456 67

13 2 3 4 5 167 167

1 6 7
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π1

π2

π3

π4

π5

π6

π7

π8π9

π10

π11

π12

π13

π14

π15

π16

π17

π18

π19

π20

π21

π22

π23

π24

π25

π26

πN

AN
1

AN
2

AN
3

where the coalition structures are

π1 = {13, 2, 457, 6} π8 = {12, 3, 4, 5, 67} π15 = {123, 4, 5, 67} π21 = {1, 23, 4, 5, 6, 7}
π2 = {12, 3, 457, 6} π9 = {1, 23, 4, 5, 67} π16 = {1, 2, 3, 4, 5, 67} π22 = {12, 3, 4, 5, 6, 7}
π3 = {1, 23, 457, 6} π10 = {13, 2, 4567} π17 = {1, 2, 3, 456, 7} π23 = {13, 2, 4, 5, 6, 7}
π4 = {13, 2, 456, 7} π11 = {12, 3, 4567} π18 = {1, 2, 3, 457, 6} π24 = {1, 2, 3, 4, 5, 6, 7}
π5 = {12, 3, 456, 7} π12 = {1, 23, 4567} π19 = {123, 4, 5, 6, 7} π25 = {1, 2, 3, 4567}
π6 = {1, 23, 456, 7} π13 = {123, 457, 6} π20 = {167, 2, 3, 4, 5} π26 = {167, 2, 3, 4, 5}
π7 = {13, 2, 4, 5, 67, } π14 = {123, 456, 7} πN = {123, 4567}

This game has πN = {123, 4567} as its only stable coalition structure and three non-trivial
absorbing sets of the associated coalition formation system. There are two disjoint rings: R1 =

{12, 23, 13} andR2 = {457, 456, 67}.

12

23

13

R1

457

456

67

R2
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RingR1 is the only (effective) ring component embedded in the absorbing setAN
1 . RingR2

is the only (effective) ring component embedded in the absorbing set AN
2 . To see this, consider

eitherR1 with the stable coalition 4567 orR2 with the stable coalition 123. However, bothR1

andR2 are embedded in AN
3 and have no exit, so both are effective.

♦

6 Coalition formation games and sharing rules

As mentioned in the Introduction, the configuration of coalition formation games may
depend on how the output produced by each coalition is distributed among its mem-
bers. Indeed, the sharing rule chosen to divide up each coalitional output is crucial for
the existence of stability and convergence to stability. Subsections 6.1 and 6.2 analyze
whether the main sharing rules considered in Pycia (2012) and Gallo and Inarra (2018)
induce coalition formation games that exhibit convergence to stability.

6.1 Coalition formation games and bargaining solutions

Pycia (2012) presents a model in which there is a set of agents, each endowed with
a utility function, who form coalitions that produce outputs to be distributed among
its members. He shows that under a rich domain of preferences and some restric-
tions on coalitions there is a stable coalition structure for each preference profile if and
only if agents’ preferences satisfy pairwise alignment. Agents’ preferences are pairwise
aligned if any two agents rank coalitions that contain both of them in the same way.
Formally, in our setting of strict preferences, a preference profile �N over coalitions is
pairwise aligned if for all i, j,∈ C ∩ C′ it holds that C �i C′ if and only if C �j C′.

Given a set of agents N and a set of coalitions K ⊆ 2N \ {∅}, a coalitional bargaining
problem is a tuple (UN, y(C)C∈K) where UN = (Ui)i∈N is a vector of utility functions
Ui : R+ −→ R+ and, for each C ∈ K, y(C) is the output produced by coalition C.
When agent i ∈ C gets the share x of output y(C) her/his utility gives her/him Ui(x).
Given C ∈ K, the bargaining problem for C is (UC, y(C)) where UC = (Ui)i∈C is the
utility vector of agents in C and y(C) is the output of coalition C.11 An allocation for the
bargaining problem for C, is a vector x = (xi)i∈C ∈ RC

+ such that ∑i∈C xi = y(C). A
bargaining rule is a mapping that associates an allocation with each bargaining problem.

Given a coalitional bargaining problem (UN, y(C)C∈K), a bargaining rule F induces
a coalition formation game (N,K,�N) in the following way: for each i ∈ N and each
pair C, C′ ∈ K with i ∈ C ∩ C′, if Fi(UC, y(C)) > Fi(UC′ , y(C′)) then C �i C′. Note that
for the game to be well-defined, no pair of bargaining problems should allocate the

11We normalize all bargaining problems so that the disagreement point is equal to the origin.
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same amount to agent i. A bargaining rule is pairwise aligned if the coalition formation
game induced is pairwise aligned for each bargaining problem.

Theorem 3 Any coalition formation game induced by a pairwise aligned bargaining rule ex-
hibits convergence to stability.

Proof. Let (N,K,�N) be a coalition formation game induced by a pairwise aligned
bargaining rule. Pycia (2012) guarantees that (N,K,�N) is a stable coalition formation
game with no rings.12 By Corollary 1, (N,K,�N) exhibits convergence to stability. �

Unlike the Kalai-Smorondinsky bargaining rule (Kalai and Smorodinsky, 1975), the
Nash bargaining rule (Nash, 1950) is included in the class of pairwise aligned bar-
gaining rules (see Pycia, 2012, p.331) and therefore guarantees stability. However,
even if one considers only stable coalition formation games induced by the Kalai-
Smorodinsky solution, it is found that they may lack convergence to stability. Below,
we define these two rules and illustrate their behavior when inducing coalition for-
mation games. Given C ∈ K, the Nash bargaining rule for problem (UC, y(C)) is
determined by solving:

max
xi≥0

∏
i∈C

Ui(x) subject to ∑
i∈C

xi = y(C).

Given C ∈ K, the Kalai-Smorodinsky bargaining rule for problem (UC, y(C)) is
determined by solving:

Ui(xi)

Ui(y(C))
=

Uj(xj)

Uj(y(C))
for all i, j ∈ C subject to ∑i∈C xi = y(C).

Example 8 Consider a risk-averse firm f and a risk-neutral firm g that can employ either one
or two risk-averse workers w1, w2 whose utilities are given by

U f (x) = x1/4, Ug = x, Uw1(x) = x1/6, Uw2(x) = x1/2.

The following table gives the coalitions and the allocations given by the Nash and the Kalai-
Smorodinsky (K-S) bargaining solutions:

Coalitions f w1w2 g w1w2 f w1 f w2 g w1 g w2

Outputs 43 83 20 37 1 1

Nash (11.7, 7.8, 23.5) (49.8, 8.3, 24.9) (12, 8) (12.3, 24.7) (0.8, 0.2) (0.7, 0.3)

K-S (12.7, 6.9, 23.4) (49.6, 3.8, 29.6) (11.4, 8.6) (14.1, 22.9) (0.8, 0.2) (0.6, 0.4)

12Pycia (2012) shows that each pairwise aligned bargaining rule induces a stable coalition formation
game (Corollary 1 in Pycia (2012)) with a rich domain of preferences. Lemmata 3 and 4 in Pycia (2012)
state that a coalition formation game with rich domain and pairwise aligned preferences has no “n-cycles
in preferences”. The non-existence of “n-cycles in preferences” in his setting implies the non-existence
of rings in our setting.
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The coalition formation game induced by Nash bargaining is:

f g w1 w2

f w2 g w1w2 g w1w2 g w1w2

f w1 g w1 f w1 f w2

f w1w2 g w2 f w1w2 f w1w2

f g g w1 g w2

w1 w2

Observe that the stable coalition structure is πN = { f , g w1w2}, the preference profile is
pairwise aligned and there is no ring in preferences. Therefore, the game induced by Nash
bargaining exhibits convergence to stability.

The coalition formation game induced by Kalai-Smorodinsky bargaining is:

f g w1 w2

f w2 g w1w2 f w1 g w1w2

f w1w2 g w1 f w1w2 f w1w2

f w1 g w2 g w1w2 f w2

f g g w1 g w2

w1 w2

Observe that the stable coalition structure is πN = { f w1w2, g}, the preference profile is not
pairwise aligned and there is a ring in preferences { f w1, f w2, g w1w2} which is enclosing.
Therefore, by Proposition 2, this stable game induced by Kalai-Smorodinsky bargaining lacks
convergence to stability. The non-trivial absorbing set is formed by the coalition structures
{{ f w1, g w2}, {g, f w2, w1}, { f w2, g w1}, { f , g w1w2}, {g, f w1, w2}}. ♦

6.2 Coalition formation games and rationing rules

In the model considered by Gallo and Inarra (2018), there is a set of agents with claims
and each coalition of agents produces an output which is insufficient to meet the claims
of its members. Formally, given set of agents N and a set of coalitions K ⊆ 2N \ {∅},
a coalitional rationing problem is a tuple (dN, y(C)C∈K) where dN = (di)i∈N ∈ RN

+ is
a claims vector, y(C) ∈ R+ is the output of coalition C and ∑i∈C di ≥ y(C) for each
C ∈ K. Given C ∈ K, the rationing problem for C is (dC, y(C)) where dC = (di)i∈C is the
claims’ vector of agents in C and y(C) is the output of coalition C. An allocation for the
rationing problem (dC, y(C)) is a vector x = (xi)i∈C ∈ RC

+ such that ∑i∈C xi = y(C). A
rationing rule is a mapping that associates an allocation with each rationing problem.
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Given a coalitional rationing problem (dN, y(C)C∈K), a rationing rule F induces a
coalition formation game (N,K,�N) in the following way: for each i ∈ N and each
pair C, C′ ∈ K with i ∈ C ∩ C′, if Fi(dC, y(C)) > Fi(dC′ , y(C′)) then C �i C′. Note that
for the game to be well-defined, no pair of rationing problems should allocate the same
amount to agent i.

One of the most important classes of rules for rationing problems is the class of
parametric rules (see Young, 1987; Stovall, 2014). The proportional, constrained equal
awards, constrained equal losses, and the Talmud and reverse Talmud rules are sym-
metric parametric rules while the sequential priority rule is an asymmetric parametric
rule.

Let f be a collection of functions { fi}i∈N,13 where each fi : R+ × [a, b] −→ R+ is
continuous and weakly increasing in λ, λ ∈ [a, b],−∞ ≤ a < b ≤ ∞ and for each i ∈ N
and di ∈ R+, fi(di, a) = 0 and fi(di, b) = di. Given f , a parametric (rationing) rule F is
defined as follows. For each problem (d, y) and each i ∈ N,

Fi(d, y) = fi(di, λ) where λ is chosen so that ∑i∈N fi(di, λ) = y.14

Theorem 4 Any coalition formation game induced by a parametric rule exhibits convergence
to stability.

Proof. Let (N,K,�N) be a coalition formation game induced by a parametric rule.
Gallo and Inarra (2018) guarantees that (N,K,�N) is a stable coalition formation game
with no rings.15 By Corollary 1, (N,K,�N) exhibits convergence to stability. �

Gallo and Inarra (2018) characterize the class of rules that have stable coalition
structures (see their Theorem 2). The random arrival rule (O’Neill, 1982) fails to guar-
antee stability. Moreover, focusing only on stable coalition formation games induced
by the random arrival rule, we find that they lack convergence to stability. The follow-
ing example illustrates the different behavior of the proportional rule and the random
arrival rule when inducing coalition formation games.16

13When the rule is symmetric, fi is the same for all agents.
14In the literature, f is said to be a parametric representation of F.
15Gallo and Inarra (2018) show that each parametric rationing rule induces a stable coalition formation

game with no rings in preferences (Proposition 1 in Gallo and Inarra (2018)). The non-existence of rings
in preferences in their setting implies the non-existence of rings in our setting.

16 For each C ∈ K, each (dC, y(C)), and each i ∈ C,
Proportional rule, Prop:

Propi(dC, y(C)) =
di

∑j∈C dj
y(C).

Random arrival rule, RA:

RAi(dC, y(C)) =
1
|C|!

(
∑

l∈OC

min

{
di, max

{
y(C)− ∑

j∈C, jli
dj, 0

}})
,
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Example 9 Assume that there is a call to finance research projects and that a number of re-
searchers are ready to submit a project. Each researcher has an aspiration, which depends on
her/his CV, as to how much the money she/he deserves. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9} be the
set of researchers with the following aspirations:

c1 = c2 = c5 = c7 = c8 = c9 = 50, c3 = c4 = c6 = 10.

Researches can form various teams but participate in only one. Funding depends on the quality
of the project, which in turn depends on team composition, and there is not enough money
to meet the aspirations of all possible teams. Assume that the money to be assigned to each
potential team is distributed according to the random arrival rule and to the proportional rule.
The table below gives the coalitions, the outputs, and the distribution of the outputs given by
these two rules.

Coalitions {15} {45} {123} {34} {68} {78} {679} {26}

Outputs 34 20 53 9 9 34 53 20

RA (17, 17) (5, 15)
( 73

3 , 73
3 , 13

3

) ( 9
2 , 9

2

) ( 9
2 , 9

2

)
(17, 17)

( 13
3 , 73

3 , 73
3

)
(15, 5)

Prop (17, 17) ( 10
3 , 50

3 )
( 265

11 , 265
11 , 53

11

) ( 9
2 , 9

2

) ( 3
2 , 15

2

)
(17, 17)

( 53
11 , 265

11 , 265
11

)
( 50

3 , 10
3 )

The coalition formation game induced by random arrival rationing is:

1 2 3 4 5 6 7 8 9

123 123 34 45 15 26 679 78 679

15 26 123 34 45 68 78 68 9

1 2 3 4 5 679 7 8

6

In this game the stable coalition structure is {15, 26, 34, 78, 9} and the ring is {679, 68, 78}.
Note that this ring together with coalitions 123 and 45 generates lack of convergence to stability
forming the nontrivial absorbing set {{123, 45, 679, 8}, {123, 45, 68, 7, 9}, {123, 45, 6, 78, 9}}.

The coalition formation game induced by proportional rationing is:

1 2 3 4 5 6 7 8 9

123 123 123 34 15 26 679 78 679

15 26 34 45 45 679 78 68 9

1 2 3 4 5 68 7 8

6

where OC denote the class of strict orders on C, with a generic element l.
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In this game the stable coalition structure is {123, 45, 679, 8} and there are no rings. Therefore,
the game exhibits convergence to the stable coalition structure. ♦

7 Concluding remarks

In conclusion, we first discuss our results considering the general class (stable and
unstable) of coalition formation games and then mention some further research.

We claim that our characterization result (Theorem 2) goes beyond the analysis
of convergence to stability. Our approach is certainly focused on determining what
structures of preferences over coalitions generate a non-trivial absorbing set. We con-
clude that it is the presence of at least one effective ring component that precludes
convergence to stability. Thus, our analysis is independent of whether there is a sta-
ble coalition structure: if such a structure exists then the presence of an effective ring
component precludes convergence to stability. Otherwise, the problem of convergence
to stability is vacuous. However, the characterization provided identifies the agents
that generate effective ring components. These agents show their dissatisfaction by
blocking the ring coalitions of the effective ring component one after the other. Hence,
if convergence to stability is the goal pursued then some of the coalitions formed by
the dissatisfied agents must be neutralized by transforming them into non-permissible
coalitions.

We claim that absorbing sets stand out as the solution for coalition formation games
as they always exist and show the dynamic property of outer stability. Thus, for sta-
ble coalition formation games the solution gives trivial (stable coalition structures) and
non-trivial absorbing sets. The coexistence of the two shows a lack of convergence to
stability. For unstable coalition formation games the dissatisfied agents of each coali-
tion structure in a non-trivial absorbing set make any coalition structure unpredictable,
but these coalition structures dominate those not in the set, so the latter are discarded
as plausible outcomes.

Finally, Ballester (2004) studies the complexity of coalition formation games and
shows that the computation of stable coalition structures is NP-complete. It is impor-
tant to note that the size of a coalition formation game, understood as the size of the
input of the program, is the size of the set of the coalition structures formed by the
permissible coalitions, |Π|. NP-completeness implies that the time needed to solve
a coalition formation game is likely to be exponential in |Π| (and, of course in |N|).
Specifically, a look at the proofs for coalition formation games in Ballester (2004) revels
that the complexity of finding the core is simply the complexity of finding the coalition
structures of N inside a set of permissible coalitions. So even if the set of permissible
coalitions is restricted, the number of possible coalition structures is still exponential
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and hardness is unlikely to be overcome. Furthermore, the computation for finding
a ring component seems to be NP-complete since its definition depends on whether
there is a non-trivial absorbing set.
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