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Abstract: We study individually rational rules to be used to allot, among a group of
agents, a perfectly divisible good that is freely available only in whole units. A ruleis
individually rational if, at each preference profile, each agent finds that her allotment
is at least as good as any whole unit of the good. We study and characterize two
individually rational and efficient families of rules, whenever agents’ preferences are
symmetric single-peaked on the set of possible allotments. Rules in the two families
are in addition envy-free, but they differ on wether envy-freeness is considered on
losses or on awards. Our main result states that (i) the family of constrained equal
losses rules coincides with the class of all individually rational and efficient rules
that satisfy justified envy-freeness on losses and (ii) the family of constrained equal
awards rules coincides with the class of all individually rational and efficient rules

that satisfy envy-freeness on awards.
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1 Introduction

Consider the allotment problem faced by a group of agents who may share a homogeneous
and perfectly divisible good, available only in whole units. Examples of this kind of good
are shares representing ownership of a company, bonds issued by a company to finance
its business operations, treasury bills issued by the government to finance its short term
needs, or any type of financial assets with (potentially large) face values or tickets of
a lottery. The good could also be workers, with a fixed working day schedule, to be
shared among departments or divisions of a big institution or company, with a fixed
salary budget. Agents’ risk attitudes, wealth or labor requirements and salary budgets
induce single-peaked preferences on their potential allotments of the good, the set of non-
negative real numbers. A solution of the problem is a rule that selects, for each profile
(of agents’ preferences), a non-negative integer number of units of the good to be allotted
and a vector of allotments (a list of non-negative real numbers, one for each agent) whose
sum is equal to this integer. Observe that although the good is only available in integer
amounts agents’ allotments are allowed to take non-integer values; yet, their sum has to
be an integer. Namely, in the above examples agents are able to share a financial asset or
a lottery ticket by getting portions of it or time of a worker. But, for most profiles, the
sum of agents’ best allotments will be either larger or smaller than any integer number
and hence, an endogenous rationing problem emerges, positive or negative depending on
whether the chosen integer is smaller or larger than the sum of agents’ best allotments.
Sprumont (1991) studied the problem when the amount of the good to be allotted is fixed.
He characterized the uniform rule as the unique efficient, strategy-proof and anonymous
rule on the domain of single-peaked preferences. The present paper can be seen as an
extension of Sprumont (1991)’s paper to a setting where the amount to be allotted of a
divisible good has to be an integer, which may depend on agents’ preferences.

We are interested in situations where the good is freely available to agents, but only
in whole units. Hence, an agent will not accept a proposal of an allotment that is strictly
worse than any integer amount of the good. For an agent with a (continuous) single-
peaked preference, the set of allotments that are at least as good as any integer amount of
the good (the set of individually rational allotments) is a closed interval that contains the
best allotment, that we call the peak, and at least one of the two extremes of the interval
is an integer. If preferences are symmetric, the peak is at the midpoint of the interval.

Our main concern then is to identify rules that select, for each profile of agents’
symmetric single-peaked preferences, a vector of individually rational allotments. We
call such rules individually rational. But since the set of individually rational rules is
extremely large, and some of them are arbitrary and non-interesting, we would like to
focus further on rules that are also efficient, strategy-proof, and satisfy some minimal

fairness requirement. A rule is efficient if it selects, at each profile, a Pareto optimal vector



of allotments: no other choices of (i) integer unit of the good to be allotted or (ii) vector
of allotments, or (iii) both, can make all agents better off, and at least one of them strictly
better off. We characterize the class of all individually rational and efficient rules on the
domain of symmetric single-peaked preferences by means of three properties. First, the
allotted amount of the good is the closest integer to the sum of agents’ peaks. Second, all
agents are rationed in the same direction: all receive more than their peaks, if the integer
to be allotted is larger than the sum of the peaks, or all receive less, otherwise. Third,
the rule selects a vector of allotments that belong to the agents’ individually rational
intervals. A rule is strategy-proof if it induces, at each profile, truth-telling as a weakly
dominant strategy in its associated direct revelation game. Our fairness requirements will
be related to two alternative and well-known notions of envy-freeness, that we will adapt
to our setting (justified envy-freeness on losses and envy-freeness on awards).!

We show that there is no rule that is individually rational, efficient and strategy-proof
on the domain of symmetric single-peaked preferences. We then proceed by studying
separately two subclasses of rules on the symmetric single-peaked domain; those that are
individually rational and efficient and those that are individually rational and strategy-
proof. For the first subclass, we identify the family of the constrained equal losses rules
and the family of the constrained equal awards rules as the unique families of rules that,
in addition of being individually rational and efficient, satisfy also either justified envy-
freeness on losses or envy-freeness on awards, respectively. These rules divide the efficient
integer amount of the good in such a way that all agents experience either equal losses or
equal gains, subject to the constraint that all allotments have to be individually rational.
Specifically, a constrained equal losses rule, evaluated at a profile, selects first the efficient
number of integer units (if there are two, it selects one of them). Then, to allot this
integer amount it proceeds with the rationing from the vector of peaks, by either reducing
or increasing the allotment of each agent (depending on whether the sum of the peaks is
larger or smaller than the integer amount to be allotted) until the total amount is allotted.
However, it makes sure that the extremes of agents’ individually rational intervals are not
overcome by excluding any agent from the rationing process as soon as one of the extremes
of the agent’s individually rational interval is reached, and it continues with the rest. A
constrained equal awards rule is defined similarly but instead it uses, as the starting vector
of the rationing process, either the vector of lower bounds or the vector of upper bounds
of the individually rational intervals, depending on whether the sum of the peaks is larger
or smaller than the integer amount to be allotted, but makes sure that no agent’s peak
is overcome by excluding her from the rationing process as soon as her peak is reached,
and it continues with the rest.

For the subclass of individually rational and strategy-proof rules, we show in contrast

!See Section 3 for their definitions and justifications, and Thomson (2010) for a survey on envy-freeness.



that although there are many rules satisfying the two properties simultaneously, they are
not very interesting; for instance, none of them is unanimous. A rule is unanimous if,
whenever the sum of the peaks is an integer, the rule selects this integer and it allots it
according to the agents’ peaks. We show then that individual rationality and strategy-
proofness are indeed incompatible with unanimity.

At the end of the paper we extend some of our general and possibility results to the
case where agents’ single-peaked preferences are not necessarily symmetric. Moreover, we
argue why relevant strategy-proof rules in the classical division problem (i.e., the uniform
rule and all sequential dictator rules) are not satisfactory in our setting. In particular,
we show first that extended uniform rules are efficient on the domain of all single-peaked
preference profiles but they are neither strategy-proof nor individually rational.? Finally,
we show that all sequential dictator rules are efficient on the domain of all symmetric
single-peaked preference profiles but they are neither individually rational nor strategy-
proof, even on this subdomain.?

Before finishing this Introduction we mention some of the most related papers to ours.
As we have already said, Sprumont (1991) proposed the division problem of a fixed amount
of a good among a group of agents with single-peaked preferences on their potential allot-
ments and provided two characterizations of the uniform rule, using strategy-proofness,
efficiency and either anonymity or envy-freeness. Then, a very large literature followed
Sprumont (1991) by taking at least two different paths. The first contains papers pro-
viding alternative characterizations of the uniform rule. See for instance Ching (1994),
Sonmez (1994) and Thomson (1994a, 1994b, 1995 and 1997), whose characterizations
we briefly discuss in the last section of the paper. The second group of papers pro-
posed alternative rules when the problem is modified by introducing additional features
or considering alternative domains of agents’ preferences, or both. For instance, Ching
(1992) extended the characterization of Sprumont (using envy-freeness) to the domain

of single-plateaued preference profiles and Bergantifios, Massé and Neme (2012a, 2012b

2An extended uniform rule allots, at each profile, the efficient integer amount as the uniform rule
would do it (if there are two efficient integers, it selects one of them). It is not strategy-proof because
an agent may have incentives to misreport his preferences to induce a different choice of the integer
amount, and it is not individually rational because the vector of allotments selected by the uniform rule
is not individually rational in general. However, the adapted versions proposed in Bergantifios, Massé
and Neme (2015), the constrained extended uniform rules, satisfy individual rationality, efficiency and
equal treatment of equals but they remain manipulable.

3 A sequential dictator rule, given a pre-specified order on the set of agents, proceeds by letting agents
choose sequentially their peaks, rationing only the last agent whose allotment is the remainder amount
that ensures that the sum of the allotments is equal to an efficient integer amount. Sequential dictator
rules are not strategy-proof because the agent at the end of the ordering may have incentives to misreport
her preference to induce a different amount to allot. They are not individually rational because the agent

at the end of the ordering is rationed independently of her individually rational interval.



and 2015), Manjunath (2012) and Kim, Bergantifios and Chun (2015) studied alterna-
tive ways of introducing individual rationality in the division problem. But in contrast
with the present paper they assume that the quantity of the good to be allotted is fixed.
Adachi (2010), Amor6s (2002), Anno and Sasaki (2013), Cho and Thomson (2013), Er-
lanson and Flores-Szwagrzak (2015) and Morimoto, Serizawa and Ching (2013) contain
the multi-dimensional analysis of the division problem when several commodities have to
be allotted among the same group of agents, but again the quantities of the goods to be
allotted are fixed.

The paper is organized as follows. The next section presents the problem, preliminary
notation and basic definitions. Section 3 contains the definitions of the properties of
the rules that we will be concerned with. Section 4 describes the rules and states a
preliminary result. Section 5 contains the main results of the paper for symmetric single-
peaked preferences. Section 6 contains two final remarks.

2 The problem

We study situations where each agent of a finite set N = {1,...,n} wants an amount of a
perfectly divisible good that can only be obtained in integer units, but arbitrary portions
of each unit can be freely allotted. We assume that n > 2 and denote by z; > 0 the
total amount of the good allotted to agent ¢ € N. Since all units of the good are alike,
the amount x; may come from different units. We assume that there is no limit on the
(integer) number of units that can be allotted. Hence, and once N is fixed, the set of

feasible (vector of ) allotments is
FA:{‘I:<$1’"'7$TL) ERf | Zie]vmi GNO}a

where R, = [0, 4+00) is the set of non-negative real numbers and Ny = {0,1,2,...} is the
set of non-negative integers.*

Each agent ¢ has a preference relation >;, defined on the set of potential allotments,
which is a complete and transitive binary relation on R,. That is, for all x;,y;, 2z €
R,, either x; =; y; or y; =; =z;, and x; =; y; and y; >=; z; imply x; >; z; note that
reflexivity (x; =; x; for all z; € R,) is implied by completeness. Given =;, let >=; be the
antisymmetric binary relation on R, induced by »=; (i.e., for all z;,y; € Ry, x; =; y; if
and only if y; = x; does not hold) and let ~; be the indifference relation on R, induced
by =; (i.e., for all z;,y; € Ry, x; ~; y; if and only if z; =; y; and y; =; z;). We
assume that >; is continuous (i.e., for each x; € R, the sets {y; € R, | y; =; =;} and

{y; € Ry | x; =; y;} are closed) and that >, is single-peaked on R, ; namely, there exists

4Since no confusion can arise with negative integers, we will refer to the set of non-negative integers

Ny as the set of integers.



a unique p; € R, the peak of =;, such that p; >=; z; for all z; € R, \{p;} and z; >; v;
holds for any pair of allotments z;,y; € R, such that either y; < z; < p; or p; < x; < y;.
For each i € N, let =" be an agent i’s single-peaked preference such that p; € R, is the
peak of = . We say that agent i’s single-peaked preference =; is symmetric on R, if
for all z; € [0,pi], (pi — 2i) ~i (pi + z); that is, for all z;,y; € Ry, x; =; y; if and only
if |p; — x;] < |pi — vi| . Notice two things. First, the peak of a symmetric single-peaked
preference conveys all information about the whole preference. Thus, we will often identify
a symmetric single-peaked preference >; with its peak p;. Second, for each x € R, there
exists a unique integer k, € Ny such that k, < x < k, + 1. Hence, the following notation
is well-defined:

lz] = ks
(2] = k. +1

k., when x < k, + 0.5
=] = { k,+1 when x>k, +0.5.

For each p = (p;)ien, we denote LZZEN piJ by p* € Np; namely,
PP Y ienDi <P+ 1L

A (division) problem is a pair (N, =) where N is the set of agents and == (>1,...,>,)
is a profile of single-peaked preferences on R, one for each agent in N. Since the set N
will remain fixed we often write = instead of (N, >) and refer to = as a problem and as
a profile, interchangeably. To emphasize agent i’s preference >=; in the profile = we often
write it as (=, =_;).

We denote by P the set of all problems and by P the set of all problems where agents’
preferences are symmetric single-peaked.

Since preferences are idiosyncratic, they have to be elicited. A rule on P is a function
f assigning to each problem =€ P a feasible allotment f (=) = (f1 (=),..., fu(>)) € FA.
We will also consider rules defined only on P°. Any rule on P can be restricted to operate
only on P%.

To study rules on P* selecting individually rational allotments, the following intervals
will play a critical role. Fix a problem =& P, with its vector of peaks (py,...,p,). For

each ¢ € N, define the associated closed interval

o) (o = 4 Pidspet (= )] i pe < [pi] 0.5
o) () { [pi — ([pi] —pi), [pel]  if pi > [pi] +0.5.

When no confusion arises we write /; instead of [;(p;) and u; instead of w; (p;) .
Allotments outside the interval [l;,u;] are strictly worse to some integer allotment

(either to |p;| or to [p;]), and they will not be acceptable to i, if agent i has free access
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to any integer amount of the good. Since each interval [l;, v;] depends only on p;, we call
it the individually rational interval of p; (Proposition 2 will show the exact relationship
between individually rational rules on P° and the individually rational intervals). Given
pi € Ry, [l;, u;] can be seen as the unique interval with the properties that p; is equidistant
to the two extremes (i.e. p; = l%), at least one of the two extremes is an integer, and
its length is at most one. For instance, the individually rational interval of p; = 1.8 is

[1.6,2] and of p; = 2.3 is [2,2.6].

3 Properties of rules

We now describe possible properties that a rule f on P (or on P?) may satisfy. Again,
the properties defined on P can be straightforwardly extended to P° by restricting their
definitions to the set of problems in P~.

We start with the property of individual rationality, the one that we found more basic
for the class of problems we are interested in, which is the main focus of this paper. Since
we are assuming that all integer units of the good are freely available, even for a single
agent, a rule is individually rational if each agent considers her allotment at least as good

as any integer number of units of the good.
Individual rationality. For all =€ P,i € N and k € Ny, f; (») =; k.

The next two properties are also appealing. Efficiency says that, for each problem,
the vector of allotments selected by the rule is Pareto undominated in the set of feasible
allotments, while a rule is strategy-proof if agents can never obtain a strictly better

allotment by misrepresenting their preferences.

Efficiency. For all =€ P, there does not exist y € F'A such that y; »=; f;(>) for alli € N
and y; >; f;(>) for at least one j € N.

Strategy-proofness. For all =€ P, i € N and single-peaked preference >,
Li (=) =i fi (=i =)

We say that agent i manipulates f at = via =, if f; (=i, =_;) =i fi (=).

We will also consider other desirable properties of rules. Participation says that agents
will not have interest in obtaining integer units of the good in addition to their received
allotments. To define it formally, we need some additional notation. For each k € Nj
and »=; with peak p; such that & < p;, let =7 i~ be the single-peaked preference on R
obtained from >, by shifting it downwards in k& units; namely, for each pair z;,y; € R,
T iffk y; if and only if k + z; =; k + y;.



Participation. For all =€ P, 1 € N and k € Ny such that k£ < p;,
fi(=) ~i k+ fz(ifiik, i)

Unanimity says that the rule selects the profile of peaks whenever it is a feasible vector
of allotments. Equal treatment of equals says that agents with the same preferences receive

equal allotments.
Unanimity. For all =& P such that Zjeij € Ny, fi(=)=p; foralli € N.
FEqual treatment of equals. For all =€ P and ¢,j € N such that =;=>;, f; (>) = f; (>).

Envy-freeness says that the rule selects a vector of allotments with the property that

no agent would strictly prefer the allotment of another agent.
Envy-freeness. For all =€ P and i,5 € N, f; (=) =; f; (>).

The next three properties are alternative versions of envy-freeness, adapted to our
context when agents have symmetric single-peaked preferences and they have free access
to any integer amount of the good. Given that, each agent is willing to accept a non-
integer allotment proposed by the rule insofar her participation in the problem helps her
to circumvent the integer restriction. Hence, envy-freeness may take as reference, not the
absolute amounts received but instead, how other agents are treated with respect to their
peaks or to their individually rational intervals. The emphasis is then on the losses or the
awards that agents’ allotments represent with respect to their peaks or to the extremes of
their individually rational intervals, respectively. First, envy-freeness on losses says that

each agent prefers her loss (with respect to her peak) to the loss of any other agent.
Envy-freeness on losses. For all =€ P° andi,j € N, fi(=) =; max {p; + (f; (=) — p;),0} .}

Second, justified envy-freeness on losses qualifies the previous property by requiring
that each agent ¢ prefers her loss (i.e., f; (>=) — p;) to the loss of any other agent j (i.e.,
fi (=) — pj), only if j’s allotment is strictly preferred by j to any integer. Since agents
can obtain freely any integer number of units of the good, it may be understood that it
is not legitimate for 7 to express envy of another agent j who is receiving an allotment
that j considers indifferent to an integer because it is as if the rule would not allot to j
any amount. Hence, i’s envy towards j is only justified if j strictly prefers her allotment

to any integer amount.

Justified envy-freeness on losses. For all =€ P and i,j € N such that f;(>) =; k for all
k€ No, fi (=) = max{p; + (f; (=) — p;),0} .

®Note that f; (=) = p; + (f; (=) — p;) always holds; hence, the condition in the definition is trivially

satisfied whenever ¢ = j. Since p; + (f; (=) —p;) < 0 may hold, we consider the max because preferences

are only defined over non negative allotments.



Envy-freeness on awards roughly says that each agent prefers her award, with respect
to her individually rational allotment, to any amount between her award and the award
of any other agent. To state it formally, let f be a rule on P°. Define, for each »& P~

and i € N, the award of ¢ (at (=, f)) with respect to i’s individually rational interval as

0 (=, f) = fi(=) =1 .iffi(i)gpi
u; — fi (=) if fi (=) > pi.

When no confusion arises we write a; instead of a; (>, f).

Envy-freeness on awards. For all =€ P% and i,j € N,

z € min{a; (=, f),a; (=, f)} ,max{a; (=, f),a; (=, f)}]
implies f; (=) =; l; + 2.5

To see why envy-freeness on awards is a desirable property consider for example the
case where a; = fi(>)—1l;, a; = f;(>)—l; and a; < x < a;. If [, +2 >=; fi(>), i may argue
that the non-integer amount received by j was too large and that there is a compromise,
T € [a;, a;], that may be used to solve the integer problem in a more fair way. Example 1

might also help to better understand this property.

Example 1 Consider the problem (N, =) € P° where N = {1,2,3}, p = (0.1,0.6,0.6)
and assume the rule f is such that f(>) = (0,0.5,0.5). Agent 1 is not envying agent 2
since 0 >; 0.5. Note that [; =0, [ = 0.2, a; = 0, and as = 0.3. Hence,

[min {a, as} ,max {ay,as}] = [0,0.3].

By setting z = 0.3 we have that fi(>) = 0 »=; 0.3 = l; + . Nevertheless, by setting
x = 0.1 we have that f;(>) =0 <; 0.1 =[; + 2, and so f would not satisfy envy-freeness
on awards. In this case agent 1 can argue that agent 2 is receiving at f(>) (compared

with the individually rational points l; = 0.2 and [; = 0) more than her (az = 0.3 versus
a; = O) ]

Again, envy-freeness is based on absolute references: it requires comparisons of allot-
ments directly. In contrast, our two notions of envy-freeness are relative: they disregard
the integer amounts allotted to the agents and compare (using losses or awards as refer-
ences) only those fractions received away from the peaks or the relevant extremes of the
individually rational intervals.

Finally, group rationality is an extension of individual rationality to groups of agents.
It says that each subset of agents receives a total allotment that is (in aggregate terms)

“at least as good as” any other total allotment they could receive only by themselves.

OFor all such z, f; (=) =; l; + z is equivalent to f; (=) =; u; — x since »=; is symmetric single-peaked

and, by the definition of the extremes of the individually rational interval, p; = HTUL



Group rationality. For all =€ P%, S C N and k € Ny,

‘Zz’espi _Ziesfi(t” < ‘Ziespi — k.

Remark 1 The following statements hold.”
(R1.1) If f is efficient on P, then f is unanimous.

(R1.2) If f is envy-free on losses on P°, then f satisfies justified envy-freeness on losses
on P7.

(R1.3) If f is group rational on P?, then f is individually rational on P.

4 Rules

In this section we adapt, to our setting with endogenous integer amounts, fair and well-
known rules that have already been used to solve the division problem with a fixed amount.
Since our main results will be relative to symmetric single-peaked preferences, we already
restrict the rules we consider in the next two sections to operate on P°. This is important
because the rules will allot the integer amount that is closest to the sum of the peaks,
which is always the efficient amount only if single-peaked preferences are symmetric. Since
at profiles where ZjeN p; = p* + 0.5, p* and p* + 1 are both at the same distance of 0.5
from ) jen Pj, many rules will share the same principles but they will be different only
to the extend that they select the smaller or the largest closest integer at some at those
profiles. Hence, we will be defining classes of rules. Although we will be interested only in
their constrained versions (to ensure that they are individually rational) we also present
their unconstrained versions for further reference and because they may help the reader
to understand the constrained ones. We start with the class of equal losses rules. At
any profile p, an equal losses rule selects the feasible vector of allotments by the following
egalitarian procedure. Start from the vector of peaks p and, if this is an unfeasible vector
of allotments, decrease or increase all agents’ allotments in the same amount until the
closest integer LZ ieN ij or {Z ieN pj-‘ respectively is allotted, stopping the decrease (if

this is the case) of any agent’s allotment, as soon as the zero allotment is reached.
FEqual losses. We say that f is an equal losses rule if, for all =& P~
(pi — min {o, p;})ien if 3 jenpi <p*+0.5

f(z)=9q (pi+a)ien if 3 5enpi >pt+0.5
(pi — min {e, pi})ien or (pi + a)ien if 3,y pj =p* +0.5,

"The proofs are immediate.
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where « is the unique real number for which 3~ (p; — min {a, p;}) = p*or 3y (pj + @) =
p* + 1 holds.®

Denote by FPE the set of all equal losses rules. Figure 1 represents a rule fFr ¢ FEL
at profiles =, =" and =, where [p1 + pa] = [p} +p5] < p1+p2 = pi+ph <p*+0.5 =p"+0.5
and [p1 + p2] > p1 + P2 > p* +0.5.

X2 X2

[p1 +pa] +1

D1+ p2] — 1

> T — — — —
D1 +p2]  p1+D2 D1 +p2 [P+ P2l

Fig. 1 An equal losses rule f¥~

A constrained equal losses rule proceeds by following the same egalitarian procedure
but now the increase or decrease of the allotment of agent i, starting from p;, stops as

soon as i’s allotment is equal to the relevant extreme of ¢’s individually rational interval.
Constrained equal losses. We say that f is a constrained equal losses rule if, for all =€ P,
(pi —min{a, p; — l;}),cn if Y ienpy <p*+0.5

f(=)=19 i+ min{a u —pi})cy if > ienpi >p"+0.5
(pi — min{a, p; — li});cn or (pi + min{a,w; — pi});cn D ,cypy =p" +0.5,

where @ is the unique real number for which it holds that > .y (p; — min{a,p; —;}) =
p*or ) e (pj +min{@, u; —p;}) = p*+ 1.

Denote by FEFL the set of all constrained equal losses rules.

8Corollary 1 below (that follows from Proposition 1) will establish the existence of such unique real
number «, as well as the existence of the real numbers &, 3, and 37 used to define the other three rules

below.
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Observe that for any pair f, f' € FCEL f (=) = f' (=) for all =€ P? except for those
profiles > for which 3,y p; = p*+0.5. But in this case, for alli € N, f; (=) ~; f{ (=). To
see that, assume = is such that >,y p; =p* +0.5. If f (=) = (p; — min{a,p; — l;}),cy
then

Pt = Yjen (pj —min{a,p; — [;})
= Y jenDi — D jenmin{a, p; — I}
= p"+05— ZjeN min {@, p; — [;},
which implies .y min{a,p; —;} = 0.5. If f (=) = (p; + min{0, u; — p;})ien then
pr+1 = Yien(p; +min{d, u; —p;})
= ZjeN pj + ZjeN min{d, u; — p;}
= p*+05+ ZjeN min{d, u; — p;},
which implies that >, min{g, uj —pj} = 0.5. Since p; — l; = u; — p; for all j € N, we
deduce that @ = 3. Hence, for all i € N,
pi —min{a, p; — li} ~; p; + min{a, u; — p;}.
Thus, for any pair f, f/ € FCFL, any profile =€ P and any i € N,
fi(z) ~i fi(2). (1)
Figure 2 represents arule f¢FL € FCEL at profiles = and =, where [p; + pa] < p1+ps <

p*+0.5 < p1+ P2 < [p1 + P2l

X2 X2
A A

p1+p2] +1

fCEL (i ) Uz

D1+ p2] — 1

. - T . — — — ~ T
L [p1+p2] Pt uy  p1+D2 [P1+ Do

Fig. 2 A constrained equal losses rule f¢F~

12



An equal awards rule follows the same egalitarian procedure used to define equal losses
rules, but instead of starting from the vector of peaks, it starts from the vector of relevant
extremes of the individually rational intervals and it increases (or decreases) all agents’
allotments in the same amount until the integer number of units is allotted, making sure

that no agent receives a negative allotment.
Equal awards. We say that f is an equal awards rule if, for all =¢ P,
(l1+5)zEN if ZjEij <p*+0.5

f (t) = (Uz - min{ﬁ, ui})ieN if Zjeij >p*+0.5
(ll + 6)ieN or (ul - min{ﬁ? ui})ieN if ZjeN b = p* + 057

where f3 is the unique real number for which >,y (I; + 8) = p*or >,y (u; — min{5, u;}) =
p* + 1 holds.

Denote by F¥4 the set of all equal awards rules. Figure 3 represents a rule ff4 ¢ FP4
at profiles =, =" and =, where p* +0.5 > py+p2 > [p1 + po], p"* +0.5 < py +ph < [P} + p),
p*+0.5 < p1+p2 < [pr+ P2] and [p} + pj] = [p1 + P2

(uy, up)

X2 X2
y A

fEA(E,)

T T

[p1 + po] (D1 + Do

Fig. 3 An equal awards rule f74

A constrained equal awards rule proceeds by following the same egalitarian procedure
but now the increase or decrease of the allotment of each agent 7, starting from the relevant

extreme of i’s individually rational interval, stops as soon as i’s allotment is equal to p;.
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Constrained equal awards. We say that f is a constrained equal awards rule if, for all
re P,

f(z)= (ui — min{/\ﬁ,ui — Pi})ien R if Zjeij >p*+0.5
(I; + min{ 3, p; — l;})ien or (u; — min{B,u; — p;})ien if Zjeij =p* 4+ 0.5,

where /3 is the unique real number for which ZjeN(lj—i—min{ﬁ, pi—li}) =p*or > n(u;—
min{B,u; — p;}) = p* + 1.

Denote by F¢F4 the set of all constrained equal awards rules.

Observe that for any pair f, f' € FCFA, f (=) = f' (=) for all =€ P? except for those
profiles = for which Zjeij = p* + 0.5. But in this case, for all i € N, f; (=) ~; fl (>).
To see that, assume = is such that } .y p; = p*+0.5. If f (=) = (I; + min{B, pi — li})ien
then

po= ZjEN(lj + min{/ﬁ\;pj —1;})
- Z:jeN l; + ZjeN min{B?Z?j —1;}
- Zjeij - ZjEN (pj — 1) + Z]EN min{B,pj -}
- p*+0‘5_ZjGN (pj — 1) +Zj€N min{g,pj — 1},

which implies > .y min{g,pj =Lt =2 ien i — 1) —05. IF f (=) = (u; — min{d, u; —
pi})ien, then

P41 = ZjeN(uj — min{g, uj —pj})
= DjenU — Xjen min{s, u; — p;}
= ZjeNPj + ZjeN (uj —pj) — ZjEN min{g, uj — pj}
= P 054+ en (4 —pj) = Xjen min{?, Uj = Pits

which implies that .y min{g, uj —pit = ien (uj —pj) — 0.5. Since p; — l; = u; — p;
for all j € N, we deduce that B =5, Hence, for all 1 € N,

li + min{Bypi =i} ~iui— min{B, Ui — P}
Thus, for any pair f, f/ € FC¢FA any profile =€ P and any i € N,
fi(=) ~i fi(=). (2)

Figure 4 represents a rule f¢F4 € FEE4 at profiles = and =, where [p;+ps] < p1+ps <
p* + 0.5 and [py + pa] > p1 + P2 > p* + 0.5.
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) X2

fCEA ( i)
2 A e IR .

€ T

[p1 + po] [D1 + Do

Fig. 4 A constrained equal awards rule f¢F4

The existence of the unique numbers «, @, 8 and B in each of the above definitions is

guaranteed by Proposition 1 below.

Proposition 1  For each =€ P°, the appropriate statement below holds.
(PLY) If > jenpi <p*+0.5 then Y, v 1; <p™.

(P1.2) If Zjeij > p* 4+ 0.5 then ZjeN u; > p*+ 1.

Proof Let =& P° be arbitrary. For each i € N there exists k; € Ny such that k; < [; <
p; < k; + 1. We define

t= > kit Y (k+1). (3)
j:pjgkj+0‘5 j:pj>kj+0.5

Notice that if p; < k; + 0.5, then [; = k; and u; = p; + (p; — k;) = 2p; — k;. Similarly, if
p; > k;j +0.5, then [; = p; — (k; +1 —p;) = 2p; — (k+ 1) and u; = k; + 1. Hence,

t= > L+ > u (4)
J:p;<k;+0.5 J:pj>k;+0.5

Since [; < u; for all j € N,

jEN jEN

leSQij—tSZuj (6)

JEN JEN JEN

‘We now show that
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holds as well. By (3),

2y pi—t = Y. Cp—k)+ D, (@p—k—1)

JEN J:pj<k;+0.5 j:pj>k;i+0.5
= E U]' + E lj.
J:pj<k;+0.5 J:pj>k;+0.5

Since I; < u; for all j € N, (6) holds.
To prove (P1.1), assume » jen Pj < p*+0.5 holds. We distinguish between two cases,

depending on the relationship between ¢ and p*.

Case 1: t < p*. By (5), ZjeN l[; <t and so ZjeN l; <p*

Case 2: t > p*. By definition of p* and (3), p* and ¢ are integer numbers. Hence, t > p*+1,
and so

PrAl=3enDi St= 2N Py

Since p* < ey pj < p*+ 0.5,

DienPi =P <05 <pt+1—% i \p;

holds. Thus,
2ijenDi =P St = 3 e D))
which implies 23, v p; —t <p*. By (6), >_;cnly < P
To prove (P1.2), assume ) ;.\ p; > p* +0.5 holds. We distinguish between two cases,
depending on the relationship between ¢ and p* + 1.

Case 1: p*+ 1 <t. By (5), > ;cpu; > p* + 1.
Case 2: p* + 1 > t. By definition of p* and (3), p* + 1 and ¢ are integer numbers. Hence,
p* > t, and so

Zjeij —p' < Zjeij —t.

Since p* +0.5 <> yp; <p*+1,

Pr+1=2cnp <053 vpi—p
holds. Thus,
pr+1-— Zjeij < Zjeij -1,
which implies p* +1 <23, vp; —t. By (6), p" +1 < >y uy. [

Proposition 1 implies that the real numbers «, @, S and B used to define the four
families of rules do exist and they are unique, and hence the rules are well-defined. To
see that, observe that any fFF € FFL and fOFL ¢ FOFL start allotting the good from

p in a continuous and egalitarian (or constrained egalitarian) way until the full amount
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is allotted. On the other hand, any fF4 € FF4 and f¢F4 € FOFPA gstart allotting
the good from the vector of relevant extremes of the individually rational intervals in
a continuous and egalitarian (or constrained egalitarian) way until the full amount is
allotted. Proposition 1 guarantees that the direction of the allotment process goes in the

right direction to reach the full amount, from either one of the two starting vectors. So,
Corollary 1 holds.

Corollary 1  The real numbers o, o, 3 and B, used to define respectively the families

of rules FPL, FOFL FEA gnd FCEA do exist and they are unique.

5 Results for symmetric single-peaked preferences

5.1 Individual rationality and basic impossibilities

In the next proposition we present some results related with the properties of rules, when-
ever they operate on problems where agents’ preferences are symmetric single-peaked.
The first result characterizes individually rational rules by stating that a rule is indi-
vidually rational if and only if, for all profiles, the rule selects a vector of allotments
that belong to the individually rational intervals of their associated peaks. The second
result characterizes individually rational and efficient rules. We also show that some ba-
sic incompatibilities among properties of rules hold, even when agents’ preferences are

restricted to be symmetric single-peaked.
Proposition 2  The following statements hold.
(P2.1) A rule f on P? is individually rational if and only if, for all =€ P* and i € N,
fi(=) € [liui) .
(P2.2) A rule f on P? is individually rational and efficient if and only if, for all =€ P°,
three conditions hold:
p* if Zjeij <p*+0.5
(E2.1) Y jen fi(z) =4 p+1 if Djenpi>p +05
ptorp*+1 if Zjeij =p*+0.5.
(E2.2) f; (=) < p; forall i € N or f;(>) > p; for all i € N.

(E2.3) fi (=) € [li,w;] for all i € N.
(P2.3) There is no rule on P* satisfying group rationality and efficiency.
(P2.4) There is no rule on P° satisfying individual rationality, efficiency and strategy-

proofness.

(P2.5) There is no rule on P satisfying individual rationality and envy-freeness on losses.
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(P2.6) There is no rule on P° satisfying individual rationality, efficiency, and envy-

freeness.’

Proof
(P2.1) It is obvious.

(P2.2) Let f be an individually rational and efficient rule on P*. By (P2.1) f satisfies
(E2.3).

We now prove that [ satisfies (E2.2). Suppose not. Then, there exist i, j € N such
that f; (=) > p; and f; (>) < p;. Let € be such that 0 < ¢ < min{f; (>) — pi,p; —
f; (=)}. Then, by single-peakedness, the feasible vector of allotments (f; (=) —¢, f; (=) +
&, (& (=))gengijy) Pareto dominates f (=) . Hence, f is not efficient. This proves (E2.2).

We now prove that f satisfies (E2.1).

We first show that for all =€ P*,

Djen fi(Z) € {p"p" + 1} (7)

Suppose that >,y f; (=) < p*. By (E2.2) for all i € N, fi (=) < p; and there exists
J € N such that f; (=) < p,;. Let y € FA be such that for all i € N, f; (>) < v < p;,
fi(=) <y; <pjand ), yy; = p*. Since by single-peakedness y; =; fi(=) for alli € N
and y; >; f;(>), y Pareto dominates f(>), a contradiction with the efficiency of f. If
> ien Ji (=) > p* + 1 the proof proceeds similarly.

We distinguish among three cases, depending on the relationship between ) jen D
and p* + 0.5.
Case 1: Zjeij = p* 4+ x with x < 0.5. To obtain a contradiction, suppose that
djenli(=) = p* + 1. By (E2.2), for all i € N, f;(=) > p;. By individual rational-
ity, for all i € N, f; (>) < w;. Hence, p; — (f; (=) — p;) > I; for all i € N, which means
that (2p; — fj(=)),cn € FA. Notice that fi(=) ~; (2p; — fi(=)) for all i € N. Now,

ZjeN (2p; — fi(=)) = 2 Zjeij - ZjeN fi(=)
< 2(p*+a2)—p -1
= p'+2r—1

*

< p~

Let y € F'A be such that, for alli € N, 2p; — f;(>=) < y; < p; and ZjeN y; = p*. By single-
peakedness, y; =; 2p; — fi(>) ~; fi(>) and since ZjeN y; = p* > ZjeN (2p; — fi(>))

9There are however rules on P satisfying simultaneously individual rationality and envy-freeness.

For instance, the rule f that, at each profile, assigns to each agent the closest integer to her peak. To
see that f is not efficient, consider the problem (N, =) € P where N = {1,2} and p = (0.6, 0.8). Then,
f(=) = (1,1), which is Pareto dominated by the feasible allotment (0.35,0.65). To characterize the class
of all individually rational and envy-free rules is an interesting problem, but since we want to focus here

on individually rational and either efficient or strategy-proof rules, we leave it open for further research.
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there exists j € N such that 2p; — f;(>) < y; and so y; >; 2p; — f;(>) ~; fi(>), a
contradiction with the efficiency of f.

Case 2: Zjeij = p* 4+ x with x > 0.5. To obtain a contradiction, suppose that
Yjen fi(=) = p*. By (E2.2), for all i € N, f;(=) < p;. By individual rationality,
for alli € N, f; (=) > ;. Hence, p; + (p; — fi (=)) < w; for all i € N, which means that
(2p; — fi(>))jen € FA. Notice that f;(>) ~; (2p; — fi(>)) for all i € N. Now,

ZjeN (2p; — fi(=)) = 2 Zjeij - ZjeN fi(=)
= 2(p" +1z)-p
= p"+2x
> pt 41

Let y € F'A be such that, for all i € N, 2p; — fi(>=) > y; > p; and ZjeNyj = p* +
1. By single-peakedness, y; =; 2p; — fi(>) ~; fi(>) and since ZjeN y = p+1<

> jen (2pj — fi(=)) there exists j € N such that 2p; — f;(=) > y; and so y; =; 2p; —
fj (=) ~; f; (>=), a contradiction with the efficiency of f.

Case 3: Y ..y pi =p* +x with = 0.5. By (7), it follows immediately.

We now prove the reciprocal. Let f be a rule satisfying (E2.1), (E2.2) and (E2.3). By
(P2.1) and (E2.3) we conclude that f is individually rational.
We now show that f is efficient. By (E2.1), it is enough to consider two cases, de-

pending on whether ZjGN fj (>) is equal to p* or to p* + 1.

Case 1: > ..y [i (=) =p". By (E2.2), f;(=) < p; for all : € N. Suppose f is not efficient.
Then, there exists y € F'A that Pareto dominates f (>=). Since preferences are symmetric

single-peaked,
vi € [fi (=), pi + (i — fi ()] for all © € N, and
yir € (fy (=), py + (pj — fi (=))) for some j" € N.

By (E2.1) and our assumption,

ZjeN fi(=)=p"< Zjeij <p"+0.5.

Hence,

p* = ZjeN fi (=)

< ZjeN Yj
ZjeN (pj + (pj — f;(2)))
ZjeN pj+ ZjeN pj — "
> jen i t0.5
< pitl,

A

IN
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Thus, p* < ZjeN y; < p* + 1. Since ZjeN y; € Ny, we have a contradiction.

Case 2: Z]EN fi (=) = p*+ 1. By (E2.2), fi(>) > p; for all i € N. Suppose f is not
efficient. Then, there exists y € F'A that Pareto dominates f (>=). Since preferences are

symmetric single-peaked,

vi € [pi — (fi (=) —pi), fi (5)] for all - € N, and
yy € (pjr — (fy (=) —pyr), fr (=) for some j' € N.

By (E2.1) and our assumption,

Hence,
pr+l o= Yienfi(z)
> ZjeN Yj
> D jen i — (5 (=) —py))
= Zjeij —-p -1+ ZjEij
> 05—1+4+> . ypj
= D jenPi—05
> P

Thus, p* < ZjeN y; < p* + 1. Since ZjeN y; € Ny, we have a contradiction.

(P2.3) Assume f satisfies group rationality and efficiency on P*. Consider the problem
(N, =) € P¥ where N = {1,2,3} and p = (0.8,0.4,0.4). By (R1.3), f is individually
rational on P°. By efficiency, individual rationality and (P2.2), >, y fi (=) = 2 and
fi(>) > p; forallie N.

To apply the property of group rationality Table 1 indicates for each subset of agents
with cardinality two the aggregate loss, assuming the best integer amount is allotted (i.e.,
for each S C N with |S| = 2, ]Iglé%\% ‘Zjespj — k’)

S min ‘Zjespj - k‘
{1,2} 0.2
{1,3} 0.2
{2,3} 0.2
Table 1

Observe that 0.4 = (> .cnypj — D jen [ (Z)] = Xojen (i (2) — pj) - Suppose first that
fi (=)—p; = % foralli € N. Then, for any S C N with two agents, YiesPi— 2ies fi(Z)| =
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? > 0.2 = in;l\]n ‘Z jesPi— k" . Hence, f does not satisfy group rationality. Suppose now
€No

that there exists ¢ € N such that (f; (=) —p;) < %. Then, by setting S = N\{i},
diesPi— Dies 1i (i)‘ > %8 > 02 = irellklr; ‘Zjespj — k” , again a contradiction with
group rationality of f.

(P2.4) Assume f is individually rational, efficient and strategy-proof on P°. We
evaluate f at five problems (N, =®) € P¥ where N = {1,2} and t € {1,2,3,4,5}.

Consider the profile =) where p") = (0.26,0.26) . By (P2.2) in Proposition 2, f; (=")+
fo(=W) =1 and f; (=) > 0.26 for all i € N. Let =® be such that p® = (0.26,0).
By (P2.2) in Proposmon 2, fl( (2)) + fo (>-(2) = 0. Thus, f(i@)) = (0,0). Let
»©) be such that p® = (0,0.26). Similarly, f (=®) = (0,0). By strategy-proofness,
fi (t(l)) zﬁ” fi (5(3)) = 0. Since preferences are symmetric, f; (t(l)) < 0.52. Similarly,
fo (=) <0.52. Thus, 0.48 < f; (=) < 0.52 for all i € N.

Consider the profile = where p* = (0.26,0.3) . Similarly to =), we can prove that
04 < f; (>_-(4)) < 0.52 and 048 < fo (84)) < 0.6. We now obtain a contradiction in each

of the three possible cases below.

Case 1: fo (=) > fo (=@). Since fo (=) > 0.48 > 0.26 = p(21) and preferences are
symmetric single-peaked, fs ( )) >§” fo (5(1)) , which contradicts strategy-proofness
because agent 2 manipulates f at profile =) via ig ) with p( ) =0.3.

Case 2: f2( 1)) < fg( 4) Since f, (i(l)) > 0.48 > 0.3 = pgl) and preferences are
symmetric single-peaked, fs ( 1)) >§4) fo (5(4)) , which contradicts strategy-proofness
because agent 2 manipulates f at profile =¥ via zél) with pgl) = 0.26.

Case 3: fo (=0) = fo (=@). Thus, f (=0) = f, (=@) and 0.48 < f, (=) < 0.52 for
all i € N. Consider the profile =® where p(® = (0.21,0.3). Similarly to the profile =)
we can show that 0.4 < f; (=®)) < 0.42 and 0.58 < fo (=©®)) < 0.6. Since f; (=) >
0.48 > 0.42 > fl( 5) > 0.26 = pg4) and preferences are symmetric single-peaked,
fi (>—(5)) §4) f ( ) which contradicts strategy-proofness because agent 1 manipulates
f at profile =™ via i ) with p1 ) — 0.21.

(P2.5) Assume f satisfies individual rationality and envy-freeness on losses on P?.
Consider the problem (N, =) € P° where N = {1,2} and p = (1,0.7). By individual
rationality, fi (=) = 1. Thus, fo(>) € {0,1,2,...} which means that agent 2 envies the
zero loss (f1 (=) —p1 = 0) of agent 1.

(P2.6) Assume f satisfies individual rationality, efficiency, and envy-freeness on P.
Consider the problem (N, =) € P° where N = {1,2} and p = (0.2,0.35) . By individual
rationality, 0 < f; (=) < 0.4 and 0 < f, (>) < 0.7. By efficiency and (P2.2) in Proposition
2, fi(=)+ f2(>)=1. Thus, 0.3 < f; (») < 0.4 and 0.6 < f5 (=) < 0.7. Then, f; (>) =2
f2 (>=), which contradicts envy-freeness. |

Our main objective in this paper is to identify individually rational rules to be used
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to solve the division problem when the integer number of units is endogenous and agents’
preferences are symmetric single-peaked. Part (P2.1) in Proposition 2 characterizes the
class of all individually rational rules. Since this class is large, it is natural to ask
whether individual rationality is compatible with other additional properties. Efficiency
and strategy-proofness emerge as two of the most basic and desirable properties. How-
ever, (P2.4) in Proposition 2 says that no rule satisfies individual rationality, efficiency
and strategy-proofness simultaneously. In the next two subsections we study rules that
are individually rational and efficient (Subsection 5.2) and rules that are individually ra-
tional and strategy-proof (Subsection 5.3). For the first case, we identify the family of
constrained equal losses rules and the family of constrained equal awards rules as the
unique ones that in addition of being individually rational and efficient satisfy also either
justified envy-freeness on losses or envy-freeness on awards, respectively (Theorem 1). In
contrast, in Subsection 5.3 we first show that although there are individually rational
and strategy-proof rules, they are not very interesting. For instance, we show in Proposi-
tion 4 that individually rationality and strategy-proofness are indeed incompatible with

unanimity.

5.2 Individual rationality and efficiency

Let =€ P° be a problem. Denote by IRE (=) the set of feasible vectors of allotments
satisfying individual rationality and efficiency. It is easy to see that, by using similar
arguments to the ones used to check that (P2.1) and (P2.2) in Proposition 2 hold, this

set can be written as

IRE (=) ={zeRY | Y, vz €{p"p"+1}and, forallie N,
li <x; <p; when ) .y z; =p* and
pi < z; < u; when Zjeij =p*+1}.

By Proposition 1, the set ITRE(>) is non-empty. Hence, a rule f satisfies individual
rationality and efficiency if and only if, for each =€ P°, f (=) € IRE (=).

However, individual rationality and efficiency are properties of rules that apply only to
each problem separately. They do not impose conditions on how the rule should behave
across problems. Thus, and given two different criteria compatible with individual ratio-
nality and efficiency, a rule can choose, in an arbitrary way, at problem > an allocation in
IRE(>), following one criterion, while choosing at problem >’ an allocation in /RE(*'),
following the other criterion. For instance the rule f that selects f € FPL (=) when p*
is odd and f € FF4 (=) when p* is even satisfies individual rationality and efficiency.'”
Thus, it seems appropriate to require that the rule satisfies an additional property in order

to eliminate this kind of arbitrariness. We will focus on two alternative properties related

10Proposition 3 below will guarantee it.
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to envy-freeness: justified envy-freeness on losses and envy-freeness on awards. But then,
the consequence of requiring that rules (in addition of being individually rational and
efficient) satisfy either one of these two forms of non-envyness is that only one family of
rules is left, either the family of constrained equal losses rules or the family of constrained
equal awards rules, respectively. Theorem 1, the main result of the paper, characterizes

axiomatically the two families on the domain of symmetric single-peaked preferences.

Theorem 1 The following two characterizations hold.

(T1.1) A rule f on P° satisfies individual rationality, efficiency, and justified envy-
freeness on losses if and only if [ is a constrained equal losses rule.

(T1.2) A rule f on P? satisfies individual rationality, efficiency, and envy-freeness on

awards if and only if [ is a constrained equal awards rule.

Before proving Theorem 1, we provide in Proposition 3 preliminary results on the two

families of rules that will be useful along the proof of Theorem 1 and in the sequel.

Proposition 3

(P3.1) Let f be a constrained equal losses rule on P°. Then, f satisfies individual ra-
tionality, efficiency, justified envy-freeness on losses, participation, unanimity and equal
treatment of equals.

(P3.2) Let f be a constrained equal losses Tule on P°. Then, f does not satisfy strategy-
proofness, group rationality, envy-freeness, envy-freeness on losses, and envy-freeness on
awards.

(P3.3) Let f be a constrained equal awards rule on P°. Then, f satisfies individual ratio-
nality, efficiency, envy-freeness on awards, participation, unanimity and equal treatment
of equals.

(P3.4) Let f be a constrained equal awards rule on P°. Then, f does not satisfy strategy-
proofness, group rationality, envy-freeness, envy-freeness on losses, and justified envy-

freeness on losses.

Proof of Proposition 3

(P3.1) That f satisfies unanimity and equal treatment of equals follows directly from

its definition. Now, we show that f satisfies the other properties.
Individual rationality. By its definition, for all =€ P° andi € N, f; (=) € [l;,u;] . By
(P2.1) in Proposition 2, f is individually rational.

Efficiency. By its definition, f satisfies conditions (E2.1), (E2.2) and (E2.3) in Propo-
sition 2. Hence, by (P2.2), f is efficient.

Justified envy-freeness on losses. Let j € N be such that
fj (i) >‘j kfor all k € No. (8)
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We want to show that for all i € N, f; (=) =; max{p; + (f; (=) — p;),0}.

We distinguish among three cases, depending on the relationship between ng N Dj
and p* + 0.5.
Case 1: Zjeij < p* + 0.5. By definition, f;(>) = p; — min{a,p; —[;} for all j € N. If
p; —l; <@, then f;(>) = [;, which contradicts (8) because f; (>) ~; l; ~ u; and either
l; or u; is an integer. Hence,

fi(z) =p; —a. (9)

Let ¢ € N be arbitrary. We distinguish between two cases, depending on the relationship
between & and p; — ;. First, @ < p; — ;. Then, by (9), fi(=) =pi—a = p;+ (f; (=) —pj),
which means that f; (=) = max{p;+ (f; (>)—p;),0}. Hence, f; (>=) =; max{p;+(f; (>)—
p;),0}. Second, @ > p; — l;. Then, by definition, f; (=) = ;. Since, by (9),

pi+ (fi(=)—pj) =pi—a <l <ps

single-peakedness implies that f; (=) =; max{p;, + (f; (=) — p;),0}.
Case 2: >y p; > p* +0.5. By definition, f;(=) = p; + min{a, u; — p;} for all j € N. If
u; — p; < @, then f;(>) = u;, which contradicts (8) because f; (=) ~; [; ~ u; and either
[; or u; is an integer. Hence,

filz) =pj+a (10)
Let ¢ € N be arbitrary. We distinguish between two cases, depending on the relationship
between a and u; —p;. First, @ < u;—p;. Then, by (10), fi(=) = pi+a = pi+(f; (=) —p;),
which means that f; (=) = max{p; + (f; (=) —p;),0}. Hence, f; (=) =; max{p;, + (f; (>=)—
p;),0}. Second, @ > u; — p;. Then, by definition, f; (=) = u,. Since, by (10),

pi+ (fj (=) —pj) = pi + Q> uy,

single-peakedness implies that f; (=) =; max{p; + (f; (=) — p;),0}.

Case 3: >,y pj = p*+ 0.5. Two cases are possible, >,y f;j(=) = p* or >,y fi(=) =
p* 4+ 1. The former is similar to Case 1 and the latter is similar to Case 2.

Participation. Let =€ P°, i € N and k € Ny be such that k& < p;. We want to show

i—k i—k

that f; (=) ~; k+ fi(=07", =), Set ='= (=77, =_;) and p' = (p; — k, (pj)_jeN\{i})' We
distinguish between two cases, depending on whether »° jen fi (>) is equal to p* or to
p*+ 1.
Case 1: >,y fi(=) = p". Since (as we have already proved) f is individually rational
and efficient, we can use (P2.2) and assert that Zjeij < p* + 0.5. Then, f; (=) =
pi — min{@,p; — [;} where a satisfies >, f; (=) = p*. Since p; = p; — k and k is an
integer, p* = p*—k. We distinguish between two subcases, depending on whether » jeN v

is strictly smaller than or equal to p™ + 0.5.
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Subcase 1: > ..y p; < p™ + 0.5. Now, f; (=) = p; — min{a’, p, — I;} where @’ satisfies
Yjen fi (=) =p™. Since [; = l; =k and I, = [; for all j € N\ {i}, we deduce that a =a.
Then,

fi(¥) = pi—k—min{a,p;—k— (l; - k)}
= p;,—min{a,p; —;} — k
= f@ (t) — k,

which implies that f; (=) ~; k + f; (=).

Subcase 2: ZjeN p; = p"+0.5. Again two subcases are possible. First, ZJEN i (") =p™.
Then, using the same argument to the one used in Subcase 1, f; (=) ~; k + f; (=) holds.
Second, > ien fi (2') = ™ +1. Then, consider any f € FCF with -\ f(>=') = p™. By
(1), f;(>") ~; f;(*') and, by an argument similar to the one used in the first subcase, we
conclude that f; (=) ~; k+ f; (=)

Case 2: )y fi (=) = p"+ 1. Since (as we have already proved) f is individually rational
and efficient, we can use (P2.2) and assert that >, yp; > p* + 0.5. Then, f;(=) =
pi + min{a, u; — p;} where @ satisfies >y f; (=) = p* + 1. Since p; = p; — k and k is
an integer, p”* = p* — k. We distinguish between two subcases, depending on whether
> jen P 1s strictly larger than or equal to p™ + 0.5.

Subcase 1: .y p; > p™ + 0.5. Now, f; (=) = p; + min{a’, v} — p;} where @' satisfies
> jen fi (=) = p™ 4 1. Since uj = u; — k and uj = u; for all j € N\ {i}, we deduce that

-~/

a = a. Then,

fi(=") = pi—k+min{a,u; —k— (p; — k)}

which implies that f; (=) ~; k + f; (=).
Subcase 2: Z]EN p; = p" + 0.5. Again two subcases are possible. First, ZjeN i (=)
p* + 1. Then, using the same argument to the one used in Subcase 1, f; (=) ~; k+ fi (=
holds. Second, /ZjeN f; (=") = p". Then, consider any f c FCEL with ZjeN ]?(t')
p* + 1. By (1), fi(>") ~; fi(*') and, by an argument similar to the one used on the first
subcase, we conclude that f; (=) ~; k+ f; (>').
(P3.2) We show that f does not satisfy the following properties on P*.
Strategy-proofness. Consider the problems (NN, >) and (V,>') where N = {1,2},
p = (0.4,0.8) and p’ = (0.4,0.9). Then, f(>) = (0.3,0.7) and f (>') = (0.2,0.8). Since
0.8 =2 0.7, f does not satisfy strategy-proofness because agent 2 manipulates f at profile

= via =5 .

~—
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Group rationality. 1t follows from (P3.1) and (P2.4).

Envy-freeness. Consider the problem (N, >) where N = {1,2} and p = (0.40,0.46) .
Then, f(>) = (0.47,0.53), which contradicts envy-freeness because agent 2 strictly
prefers 0.47 to 0.53.

Envy-freeness on losses. If follows from (P3.1) and (P2.5).

Envy-freeness on awards. Consider the problem (N,>) where N = {1,2} and p =
(0.4,0.46) . Then, f(>) = (0.47,0.53). Therefore, a; = 0.8 — 0.47 = 0.33 and ay =
0.92 — 0.53 = 0.39. For 0.38 € [0.33,0.39], we have that f,(=) = 0.47 <, 0.38. Thus, f

does not satisfy envy-freeness on awards.

(P3.3) That f satisfies unanimity and equal treatment of equals follows directly from
its definition. Now, we show that f satisfies the other properties.

Individual rationality. By its definition, for all =€ P¥ and i € N, f; (=) € [l;,w;] . By
(P2.1) in Proposition 2, f is individually rational.

Efficiency. By its definition, f satisfies conditions (E2.1), (E2.2) and (E2.2) in Propo-
sition 2. Hence, by (P2.2), f is efficient.

Envy-freeness on awards. We distinguish among three cases, depending on the rela-
tionship between ) jen Py and p* +0.5.
Case 1: >,y pj < p*+0.5. By definition, f; (=) <p; for all i € N. Suppose that f does

not satisfy envy-freeness on awards. Then, there exist ¢, 7 € N and
x € [min{a;, qa;}, max{a;, a;}|

such that
Hence, f; (=) is not the peak of =; and so f; (=) < p;. Since f; (=) = ; + min{5, p; — ;},
B < p; — l; and hence
Thus, a; = B We distinguish between two subcases.
Subcase 1: min{B,pj -1} = B Since a; = f; (=) —1; = B, it must be the case that z = ﬁ
Hence, by (11),

Li+B=li+a= fi(=)=1L+5,
which is a contradiction.
Subcase 2: min{B,pj —lit=p; -1 < B By definition, f; (=) =pj and a; = f; (>=)—1; =
p; — ;. Thus, x € [p; — lj,B] and

li—i*ISli—i‘E:fi(i)Spi;

26



where the equality follows from (12). By single-peakedness, f; (>=) =; l;+z, a contradiction
with (11).
Case 2: ZjeN p; > p* + 0.5. By definition, f; (>) > p; for all i € N. Suppose that f does

not satisfy envy-freeness on awards. Then, there exist 7,7 € N and
x € [min{a;, a;}, max{a;, a;}|

such that

u; —x = fi (=), (13)
Hence, f; (=) is not the peak of >=; and so f; (>=) > p;. Since f; (=) = u; — min{B, u; —pit,
B < u; — p; and hence

fi(z) =ui— 8. (14)
Thus, a; = B We distinguish between two subcases.
Subcase 1: min{g, u; —p;t = B Since a; = u; — f; (=) = B, it must be the case that
z = 3. Hence, by (13),

Ui—gzui—$>ifi(i)zui—g7

which is a contradiction.
Subcase 2: min{g, uj—pj} = uj—p; < B By definition, f; (=) =p; and a; = u;—f; (>) =
u; — p;. Thus, x € [u; — pj, B] and

w—x>u —f=fi(>)>p

where the equality follows from (14). By single-peakedness, f; (>) =; u; — x, a contradic-
tion with (13).

Case 3: 3,y pj = p*+0.5. Two subcases are possible, > fi(=) =p or Y .y f; (=) =
p* + 1. Subcase Y.y fi(>=) = p* is similar to Case 1 and subcase >,y f;(=) = p* + 1
is similar to Case 2.

Participation. Let =€ P°, i € N and k € Ny be such that k < p;. We want to show
that fi (=) ~i b+ fi(=0", =) Set ='= (=P7%, =) and p' = (9 = k, (1)) jenn iy We
distinguish between two cases, depending on whether »° jen Ji (>) is equal to p* or to
p* 4+ 1.

Case 1: » .y fi (=) = p*. Since (as we have already proved) f is individually rational
and efficient, we can use (P2.2) and assert that >, yp; < p* + 0.5. Then, f;(=) =
pi — min{ 3, p; — [;} where [ satisfies ZjeN fi (=) = p*. Since p; = p; — k and k is an
integer, p* = p*—k. We distinguish between two subcases, depending on whether » jeN 2

is strictly smaller than or equal to p™ + 0.5.
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Subcase 1: >y pj < p™ +0.5. Now, f; (=) = [} + min{@l,p; — I} where /B, satisfies
S ien £ (=) = p*. Since I = l; —k and I} = I; for all j € N\ {i}, we deduce that 5 = 3.
Then,

(=) = li—k+min{B,p, —k— (I, — k)}
= i+ min{B,p — L} —k
= fi(>)—k,

which implies that f;(>) ~; &+ f;(>').

Subcase 2: ZJEN p; = p" + 0.5. Again two cases are possible. First, ZjeN i (=) =p™
Then, using the same argument to the one used in Subcase 1, f; (=) ~; k + f; (>') holds.
SAecond, > jen fi (7') = p™ + 1. Consider any f € FOEA with dien E (=" =p"™. By (7),
fi(=") ~; fi(¥') and, by an argument similar to the one used in the first subcase, we
conclude that f;(>=) ~; k+ fi(>').

Case 2: ).y fi (=) = p"+ 1. Since (as we have already proved) f is individually rational
and efﬁcieilt, we can use (PA2.2) and assert that >..yp; > p* + 0.5. Then, f; (=) =
w; — min{f, u; — p;}, where [ satisfies ZJEN fi(=) =p*+ 1. Since p, = p; — k and k is
an integer, p”* = p* — k. We distinguish between two subcases, depending on whether
> jen D 18 strictly larger than or equal to p™ + 0.5,

Subcase 1: > ..y p; > p™ + 0.5. Now, f; (=') = I; — min{g/,u; — pi} where EI satisfies
Yjen fi (=) = p™. Since uj = u; — k and uj = u; for all j € N\ {i}, we deduce that

-~

5, = B Then,

fi(=) = wi—k—min{B,u—k— (p; — k)}
= u; — min{B, w —pi} —k
= fi(=) -k,

which implies that f;(>) ~; k+ fi(>').
Subcase 2: >y p; = p™ + 0.5. Again two subcases are possible. First, .y f; (=') =
p* 4 1. Then, the same argument used in Subcase 1 shows that f;(>) ~; k+ f;(>') holds.
Second, /ZjeN f; (=") = p*+1. Then, consider any f € FOPA with > jeN fj (=) =p*+1.
By (2), fi (') ~; fi (') and, by an argument similar to the one used in the first subcase,
we conclude that f;(=) ~; k+ fi(=').
(P3.4) We show that f does not satisfy the following properties on P*.
Strategy-proofness. Consider the problems (N, >) and (N, >’) where N = {1,2},
p = (0.4,0.8) and p’ = (0.6,0.8). Then, f(>) = (0.2,0.8) and f (=') = (0.3,0.7) . Since
0.3 =1 0.2, f does not satisfy strategy-proofness because agent 1 manipulates f at profile
>~ via > .
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Group rationality. It follows from (P3.3) and (P2.4).

Envy-freeness. Consider the problem (N, >) where N = {1,2} and p = (0.6,0.8).
Then, f(>) = (0.3,0.7), which means that f is not envy-free because agent 1 strictly
prefers 0.7 to 0.3.

Envy-freeness on losses. It follows from (P3.3) and (P2.5).

Justified envy-freeness on losses. Consider the problem (N, >) where N = {1,2} and
p = (0.6,0.8). Then, f(>) = (0.3,0.7), which means that f does not satisfy justified
envy-freeness on losses because agent 1 strictly prefers 0.6 4+ (0.7 —0.8) = 0.5 t0 0.3. N

Proof of Theorem 1

(T1.1) Let f be a constrained equal losses rule. By Proposition 3, f satisfies individual
rationality, efficiency and justified envy-freeness on losses.

Let f be a rule satisfying individual rationality, efficiency, and justified envy-freeness
on losses. Let =€ P* be a problem. By (7), it is sufficient to distinguish between two

cases.

Case 1: » ..y fi (=) =p". By (E2.2) in (P2.2) of Proposition 2, for all i € N,

fi (=) < pi. (15)

By (P2.1) in Proposition 2, f; (=) > ; for all i € N. By (15), for each i € N, f; (=) =
p; — x;, where x; > 0. By individual rationality, x; < p; — [;. Assume first that z; = x
for all i € N. Then, setting @ = x, we have f;(>) =p; —a and a < p; — [; for all i € N.
Hence, for all i € N, f;(>) = p; — min{a, p; — [;} . Thus, at profile =, f coincides with a
constrained equal losses rule. Assume now that x; < z; for some pair 7, j € N. By single

peakedness, p; — z; >=; p; — x;. Since
fi(=) =pi— i =i pi — 25 = pi + (f; (=) — pj)

holds, by justified envy-freeness on losses, there must exist y; € Ny such that f; (=) <, y;.
By individual rationality,

fi(z) =1 (16)
Let S be the set of agents with the largest loss from the peak. Namely, S = {i/ € N |
xy > xy for all 7/ € N}. Since N is finite, S # (). Moreover, our assumption that z; < z;
for some pair 7,7 € N implies S C N. For each ; € S, set @ = x; and observe that
(=) = p; —a@ > 5. Hence, f;(=) = p; — min{@, p; — 5} For each j' ¢ S, there exists
i' € S such that z; < zy. By (16), f; (=) = ly. Since fy(>) = l;y = pj — x5 and
a>xy =py—Lly, fy(>)=py —min{a, p;y — l;}. Thus, at profile >, f coincides with a
constrained equal losses rule.

Case 2: 3y fj (=) =p*+ 1. By (E2.2) in (P2.2) of Proposition 2, for all i € N
fi(z) = pi. (17)
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By (P2.1) in Proposition 2, f; (=) < u; for all i € N. By (17), for each i € N, f; (>) =
p; + x;, where z; > 0. By individual rationality, z; < u; — p;. Assume first that z; = «
for all i € N. Then, setting @ = =, we have f;(>) =p; + @ and @ < u; — p; for all i € N.
Hence, for all i € N, f;(>) = p; + min {a, u; — p;} . Thus,at profile =, f coincides with a
constrained equal losses rule. Assume now that x; < x; for some pair ¢, j € N. By single

peakedness, p; + x; =; p; + ;. Since
fi(=)=pi+ i <ipi + x5 = pi+ (f; (=) — pj)

holds, by justified envy-freeness on losses, there must exist y; € Ny such that f; (=) <, y;.
By individual rationality,

fi (2) = u;. (18)
Let S and @ be defined as in Case 1. Then, for each j € S, H(=)=p+a < u
Hence, f3(=) = p; + min{@, u; — p;}. For each j' ¢ S, there exists i’ € S such that
zjy < xy. By (18), fi (=) = u;. Since fj(>=) = ujy = py +xy and @ > xj = uj — py,
fi7(=) = pj + min{a, u;y — p;}. Thus, at profile >, f coincides with a constrained equal

losses rule.

(T1.2) Let f be a constrained equal awards rule. By Proposition 3, f satisfies indi-
vidual rationality, efficiency and envy-freeness on awards.

Let f be a rule satisfying individual rationality, efficiency, and envy-freeness on awards.
Let =€ P° be a problem. By (7), it is sufficient to distinguish between two cases.
Case 1: Z]EN fi (=) =p*. By (15), for each i € N, f; (>) = l;+a;, where 0 < a; < p; — ;.
We first prove that if a; < a; for some pair 7,5 € N, then a; = p; — [;. Assume not;
then, there exist 7,7 € N such that a; < a; and a; < p; — [;. Let x € R, be such that
z € (a;,min{a;,p; — l;}]. Since f; (=) = l; + a; < l; + © < p;, single-peakedness implies
that I; +a >; f; (=) where = € (a;, a;], contradicting envy-freeness on awards. Let S be
the set of agents with the largest award from the peak. Namely, S = {i/ € N | ay > a;
for all j/ € N}. Since N is finite, S # (). We consider two subcases.
Subcase 1: S = N. Then, there exists a such that a € [0,p; — ;] and f;(>=) = [; + a for
all i € N. Set B = a. Hence, fi(=)=1;+ min{B,pi — 1;}. Thus, at profile >, f coincides
with a constrained equal awards rule.
Subcase 2: S C N. Then, for all j,j' € S, a; = a;. Set B = a; with j € S. For each
i€ S, fil>x) =1 —|—B < p; and so fi(=) = l; + min{B,pi — 1;}. For each i ¢ S there
exists j € S such that a; > a;. Then, a; = p; — ;. Since p; — l; = a; < a; = 3,
fit=)=lL+a =10+ min{B, pi — l;}. Thus, at profile =, f coincides with a constrained
equal awards rule.
Case 2: > .y fi (=) =p"+ 1. By (17), for each i € N, f; (=) > p; and f; (=) = w; — a;
and 0 < a; < u; —p;. We first prove that if a; < a; for some pair 7, j € N, then a; = u; —p;.
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Assume not; then, there exist 7,j € N such that a;, < a; and a; < u; — p;. Let x € Ry
be such that © € (a;, min{a;,u; —p;}]. Since p; < w; —x < u; —a; = f; (=), single-
peakedness implies that u; — x >; f; (>=) where = € (a;, a;], contradicting envy-freeness
on awards. Let S be the set of agents with the largest award from the peak. Namely,
S ={i'" € N|ay>aj forall j/ € N}. Since N is finite, S # (). We consider two subcases.

Subcase 1: S = N. Then there exists a such that a € [0,u; — p;] and f;(>) = u; — a for
all i € N. Set 3 = a. Hence, fi(=) =w; — min{B, u; — p; }. Thus, at profile =, f coincides
with a constrained equal awards rule.

Subcase 2: S C N. then, for all j,j' € S, a; = aj. Set B = a; with j € S. For each
i €8, fi(=) =w —B > p; and so f;(=) = l; — min{B3,u; — p;}. For each i ¢ S there
exists j € S such that a; > a;. Then, a; = u; — p;. Since v; —p;, = a; < a; = B,
fi(=)=u;—a; =u;— min{B, u; —p;} . Thus, at profile =, f coincides with a constrained

equal awards rule. [ |

Remark 2 The two sets of properties used in the two characterizations of Theorem 1

are independent.

(R2.1) The rule f defined by assigning to each agent ¢ € N her most preferred integer,

satisfies individual rationality and justified envy-freeness on losses but it is not efficient.

(R2.2) Any rule f € FPL satisfies efficiency and justified envy-freeness on losses but is

not individually rational.

(R2.3) Any rule f € FOFA gatisfies individual rationality and efficiency but it does not
satisfy justified envy-freeness on losses.

(R2.4) The rule f defined in (R2.1) satisfies individual rationality and envy-freeness on
awards but it is not efficient.

(R2.5) Any rule f € FF4 satisfies efficiency and envy-freeness on awards but it is not

individually rational.

(R2.6) Any rule f € FCYFL gatisfies individual rationality and efficiency but it is not

envy-freeness on awards.

5.3 Individual rationality and strategy-proofness

We now study the set of rules satisfying individual rationality and strategy-proofness on
the set of symmetric single-peaked preferences. There are many rules satisfying both
properties. For instance, the rule that selects f (=) = ([ps]);cy for all =€ P* is individ-
ually rational and strategy-proof. But there are many more, yet some of them are very
difficult to justify as reasonable solutions to the problem. Consider the following family of
rules. For each vector x € Rﬂ\r] satisfying >,y #; € Ny, define f* as the rule that when z

is at least as good as ([p;]),.y for each i € N, f* selects x. Otherwise f* selects ([pi]);c -
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Formally, fix x € RY satisfying Y,y 2; € Np. For each problem =& PS, set

x if z; =; [p;] for alli € N
F(x) = Ipi
([pi));ey otherwise.

It is easy to see that each rule in the family {f* | z € RY and Y, yz; € No} is
individually rational and strategy-proof. However, this family contains many arbitrary
and non-interesting rules.!! Thus, we ask whether it is possible to identify a subset of
individually rational and strategy-proof rules satisfying additionally a basic, weak and
desirable property. We interpret Proposition 4 below as giving a negative answer to
this question: individual rationality and strategy-proofness are not compatible even with

unanimity, a very weak form of efficiency.

Proposition 4  There is no rule on P° satisfying individual rationality, strategy-proofness

and unanimity.

Proof To obtain a contradiction, assume that f is a rule satisfying individual ra-
tionality, strategy-proofness and unanimity. Consider the problem (N, >) € P° where
N ={1,2} and p = (0.2,0.8). By unanimity, f (0.2,0.8) = (0.2,0.8).
Claim: f5(0.2,0.5) = 0.8.
Proof: Suppose f> (0.2,0.5) > 0.8; then, agent 2 manipulates f at profile (0.2,0.5) via 0.8.
This contradicts strategy-proofness of f. Hence, f5(0.2,0.5) < 0.8.

Suppose f5(0.2,0.5) < 0.8. Thus, f(0.2,0.5) = (0.2 + 2,0.8 — z) where 0 < z < 0.8.
By individual rationality of agent 1, 0 < 0.2 + 2 < 0.4, which means that x < 0.2. Thus,
0 <2 <0.2. Let y > 0 be such that

02—z <y<0.2. (19)

Thus, f (y,0.5) < 0.2+ x (otherwise agent 1 manipulates f at profile (y,0.5) via 0.2). To
show that indeed f; (y,0.5) = 0.2 + x we distinguish between two different cases.

Case 1: 0.2 —z < f1(y,0.5) < 0.2 4+ z. Then, since f1(0.2,0.5) = 0.2 + =, agent 1
manipulates f at profile (0.2,0.5) via y. This contradicts strategy-proofness of f.

Case 2: f1 (y,0.5) < 0.2 —z. Since f satisfies individual rationality two subcases are
possible.

Subcase 1: fi (y,0.5)+f2 (y,0.5) = 1. Then, f> (y,0.5) > 0.84x. By unanimity, f> (y,1 —y) =
1—y. From (19), y < 0.2 which is equivalent to —1+y < —1+0.2 and to 1—y > 0.8. Hence,

1 —y > 0.5. From (19) again, 0.2 — = < y, which is equivalent to —14+ 0.2 —x < —1+y

Tndeed, some rules in this family are bossy (see Thomson (2016) for a survey on non-bossiness) while
the previous rule selecting ([p;])icn is non-bossy. It would be interesting to identify inside the class of
individually rational and strategy-proof rules those that are also non-bossy (and satisfy additionally some

other desirable property as equal treatment of equals), but we leave this analysis for further research.
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and to 0.8 +x > 1 — y. Therefore, 0.5 < 1 —y < 0.8 + z, and so agent 2 manipulates f
at profile (y,0.5) via 1 — y. This contradicts strategy-proofness of f.

Subcase 2: fi (y,0.5) + f2 (y,0.5) = 0. Then, f5(y,0.5) = 0. Again, agent 2 manipulates
f at profile (y,0.5) via 1 —y since 0.5 < 1 — y < 1,where the first inequality follows from
(19) and the second from y > 0. This contradicts strategy-proofness of f.

Hence, fi (y,0.5) = 0.2 4 2. We show now that f1(0.2 —x,0.5) = 0.2 4+ z. If f1(0.2 —
x,0.5) > 0.2 + z then 1 manipulates f at profile (0.2 — x,0.5) via y. Suppose z :=
f1(0.2—2,0.5) < 0.2+=z. If 2 = y, then agent 1 manipulates f at profile (y,0.5) via 0.2 — .
If 2 > y, then agent 1 manipulates f at (y,0.5) via 0.2—xz, because |y — z| < |y — (0.2 4+ z)|
since 2z —y < 024 2 —y if and only if 2 < 0.2 + x. Let 2 < y and assume first that
x = 0.2. Then, and since y < 0.2, 2y — (0.2 + x) = 2y — 0.4 < 0. Then, 0 < z < y and
ly — z| < |y — (0.2 + )|, and hence agent 1 manipulates f at (y,0.5) via 0.2 — x since
f1(0.2 —2,0.5) = 2 =Y 0.2+ 2 = fi(y,0.5). Assume now that z < 0.2. We distinguish
between two cases.

Case 1: 2y — (0.2 +z) < z < y. Then, f1(0.2 — ,0.5) =Y fi1(y,0.5), which contradicts
strategy-proofness.

Case 2: z < 2y — (0.2 + x). Since f satisfies individual rationality, two subcases are
possible.

Subcase 1: f1(0.2—xz,0.5)+ f2(0.2—x,0.5) = 1. Then, f5(0.2—x,0.5) > 1—(2y—(0.24+x)) >
0.8+z. Hence, f5(0.2—z,0.8+x) = 0.8+z =3° f2(0.2—z,0.5), which contradicts strategy-
proofness.

Subcase 2: f1(0.2 — z,0.5) + f5(0.2 — x,0.5) = 0. Then, f>(0.2 — 2,0.5) = 0. Hence,
f2(0.2 — 2,084+ x) =08+ z =95 f5(0.2 — z,0.5), which contradicts strategy-proofness.

Hence, f1(0.2—z,0.5) = 0.24x. Now, by individual rationality of agent 1, |0.2 — x — 0] >
0.2 —2—0.2—2x|,s00.2— x> 2x, or equivalently, z < %2.

Consider now the profile (0.2 — z,0.5) instead of (0.2,0.5). We now show that

f1(02—=2,05)=02+2x=02—x+2x.

We have proved for profile (0.2,0.5) that if f; (0.2,0.5) = 0.2+ z, then f; (0.2 — 2,0.5) =
0.2 + . We now apply to profile (0.2 — z,0.5) the same argument used for the pro-
file (0.2,0.5). Since f; (0.2 —2,0.5) = 0.2+ 2 = 0.2 — x + 2z we can conclude that
f1(0.2—=32,05) = 0.2 + 2.2 By individual rationality of agent 1, |0.2 — 3z — 0| >
|0.2 —3x — 0.2 — x|, so 0.2 — 3x > 4x, or equivalently, x < %.

Since x > 0 is fixed, repeating this process several times we will eventually find a
contradiction with individual rationality of agent 1. Then, f (0.2,0.5) = (0.2,0.8), which

proves the claim. l

2The expresion 2x plays now the same role for the profile (0.2 — z,0,5) than the role played by z for
the profile (0.2,0.5).
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Consider now the profile (0.2,0.39) . We distinguish among three different cases.

Case 1: f;(0.2,0.39)+ f» (0.2,0.39) > 2. By individual rationality, f; (0.2,0.39) < 0.4 and
f2(0.2,0.39) < 0.78, which is a contradiction.

Case 2: f1(0.2,0.39)+f5(0.2,0.39) = 1. By individual rationality of agent 1, f; (0.2,0.39) <
0.4, and so 0.6 < f5(0.2,0.39) . By individual rationality of agent 2, f5(0.2,0.39) < 0.78.
Thus, agent 2 manipulates f at profile (0.2,0.5) via 0.39. This contradicts strategy-

proofness.

Case 3: f1(0.2,0.39) + f»(0.2,0.39) = 0. Then, f;(0.2,0.39) = f,(0.2,0.39) = 0. By
Claim 1, f(0.2,0.5) = (0.2,0.8). Using arguments similar to those used in the proof of
Claim 1 we can prove that f(0.38,0.39) = (0.38,0.62). Thus, agent 1 manipulates f at
profile (0.2,0.39) via 0.38. This contradicts strategy-proofness.

Since we have obtained a contradiction in each of the possible cases, there does not
exist a rule satisfying simultaneously the properties of individual rationality, strategy-

proofness and unanimity:. [ |

6 Final remarks

Before finishing the paper we deal with two natural questions. First, are our results
generalizable to rules defined on P, the set of problems where agents have single-peaked
preferences? Second, how do well-known rules, used to solve the division problem with a
fixed amount of the good, behave when the number of units to allot is endogenous? We

partially answer the two questions separately in each of the next two subsections.

6.1 Results for general single-peaked preferences

Obviously, all the impossibility results we have obtained for rules operating on the domain
of symmetric single-peaked preferences also hold when they operate on the larger domain.

Proposition 5 contains some results on rules operating on the full domain of single-
peaked preferences. But before stating it, we need some additional notation to refer to
the extremes of the individually rational intervals for those preferences. Let >; be a

single-peaked preference with peak p;. Define

b { i) if Lpi) =[] (20)

[p;] otherwise.

By continuity and single-peakedness, there are two numbers l:-,ﬁi € R, satisfying the
following conditions: (i) b; € {;,@;}: (ii) ; ~ @y; (iii) for each y; € [I;, W], y; = bi; and

(iv) for all y; & [I;, @], b; = ;.
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Proposition 5 The following statements hold.
(P5.1) A rule f on P is individually rational if and only if, for all =€ P and i € N,

fi () € [ @)
(P5.2) If a rule f on P is efficient, then
(B5.1) Syen f5 (=) € {| Sen s - [Syenmi |}
(E5.2) for all i € N, fi (=) < p; when Y ;cnpj > D ey [7 (=) and fi (=) > pi when
djenPi < 2jen fi(Z)-
(P5.3) There exist rules on P satisfying individual rationality and efficiency.

(P5.4) There exist rules on P satisfying individual rationality and strategy-proofness.

Proof (P5.1) It is obvious.
(P5.2) It is similar to the proof of (P2.2) in Proposition 2, and hence we omit it.

(P5.3) It is enough to prove that for each =€ P there is an allotment y in F'A sat-
isfying individual rationality. If y belongs to the Pareto frontier of F'A, the statement
follows. Otherwise, each allotment in F'A that Pareto dominates y satisfies both prop-
erties. Consider now b; defined as in (20). Then (b;),.y € FA and satisfies individual

rationality.

(P5.4) Consider the rule f that, for each =€ P and each i € N, f; (=) = b;, where b; is
defined as in (20). It is immediate to see that f is individually rational and strategy-proof.
|

Example 2 below shows that the rules in FEFL and FEF4 are not efficient on the

larger domain of single-peaked preferences.

Example 2 Consider the problem (N, =) € P where N = {1,2,3} and p = (0.15,0.5,0.65) .
Thus, for any f € FCEL f(=) = (0.05,0.4,0.55) and, for any f € FCEA f(=) =
(0.15,0.275,0.575) . Consider y = (0.15,0.9,0.95) and = such that 0.9 >5 0.4 and 0.95 >3
0.575. Hence, f and anre not efficient. 0

6.2 Other rules

In the classical division problem, where a fixed amount of the good has to be allotted, the
uniform rule emerges as the one that satisfies many desirable properties. For instance,
Sprumont (1991) shows that it is the unique rule satisfying strategy-proofness, efficiency
and anonymity. Sprumont (1991) also shows that in this characterization anonymity can
be replaced by non-envyness and Ching (1994) shows that in fact anonymity can be re-
placed by the weaker requirement of equal treatment of equals. Sénmez (1994) shows
that the uniform rule is the unique one satisfying consistency, monotonicity and indi-
vidual rationality from equal division. Thomson (1994a, 1994b, 1995 and 1997) contains
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alternative characterizations of the uniform rule using the properties of one sided resource-
monotonicity, converse consistency, weak population-monotonicity and replication invari-
ance, respectively. On the other hand, if one is concerned mostly with incentives and
efficiency issues (and leaves aside any equity principle), sequential dictator rules emerge
as natural ways of solving the classical division problem, since they are strategy-proof and
efficient. However, we briefly argue below that the natural adaptations of all these rules
to our setting with endogenous integer units of the good are far from being desirable since

they are neither individually rational nor strategy-proof even on P?.

6.2.1 Uniform rule

We adapt the uniform rule to our setting. As before, there will be many extensions of the
uniform rule. At profiles =& P° where either Z]EN pj < p*+0.5or ZJEN pj > p*+0.5all
extensions coincide and allot the efficient units of the good. However, at profiles =& P~
where Zje yPj = p*+ 0.5, there are two efficient integers that could be allotted. The

family of extended uniform rules contains all these extensions.

Extended uniform. We say that f is an extended uniform rule if, for all =€ P*,

(min {p;, n})ien if 3 ienpi <p*+0.5
f(=)=1< (max{pi,n})ien if Yoy p; > P +05
(min {p;, n})ien or (max{pi,n})ien if >°;cyp; =p"+0.5,

where 7 is the unique real number for which it holds that »_,_\ min{p;,n} = p* or
> jeymax{p;,nt =p*+1.
Denote by FEU the set of all extended uniform rules.

Proposition 6 Let f be an extended uniform rule. Then, f is efficient on P° but it is

neither individually rational nor strategy-proof on P3.

Proof Let f € FPV. The same argument used to prove (E2.1) and (E2.2) in (P2.2)
shows that f is efficient on P°. To see that f is neither individually rational nor strategy-
proof on P* consider the problem (N, =) € P where N = {1,2,3} and p = (0.2,0.2,0.9) ..
Then f(>) = (0.2,0.2,0.6) . Since agent 3 strictly prefers 1 to 0.6, f is not individually
rational. To see that f is not strategy-proof consider the symmetric single-peaked pref-
erence 45 with py = 1.12. Then, f (=}, =_3) = (0.44,0.44,1.12) . Since 3 strictly prefers
(according to =3) 1.12 to 0.6, agent 3 manipulates f at profile > via =% . [ |

Following Bergantifios, Mass6 and Neme (2015) we could also adapt the uniform rule

to this setting by making sure that allotments are individually rational as follows.

Constrained extended uniform. We say that f is a constrained extended uniform rule if,
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for all =€ P%,

(min {p;, max{l;, v} })ien if Y ienpy <p*+0.5
f(=)=19 (max{p;, min{u;,v}})ien if > ienpi >p"+0.5
(min {p;, max{l;, 7} })ien or (max {p;, min{w;,v}})ien if ZjeN pj =p* +0.5,

where 7 is the unique real number for which it holds that }._y min {p;, max{l;,v}} = p*
or ZjeN max {p;, min{u;,v}} = p* + 1.

In contrast to Bergantifios, Massé and Neme (2015), constrained extended uniform
rules are not strategy-proof in this new setting. Nevertheless, they are still appealing

because they belong to the class of individually rational and efficient rules, and moreover,

they satisfy equal treatment of equals.

6.2.2 Sequential dictator

We adapt the sequential dictator rule to the setting where the integer number of units
to be allotted is endogenous. Fix an ordering on the set of agents and let them select
sequentially, following the ordering, the amount they want (their peak) among the set
of all efficient allocations. Formally, let o : N — {1,...,n} be a one-to-one mapping
defining an ordering on the set of agents N; namely, for ¢,j € N, 0(i) < o(j) means that

i goes before j in the ordering o.

Sequential dictator. We say that f°P7 is the sequential dictator rule relative to the
ordering o if, for all =€ P and i € N,

min{p;, max{[ > pi] — 3 pj, 0} if o(i) < o(j) for some j
kEN {j'eSlo(j")<o(i)}
fiSDG (=)=
max{[ > px] — > pjr, 0} otherwise.
keN {5’€Slo(j")<a(i)}

Proposition 7 Let o be an ordering. Then, f°P7 is efficient on P° but it is neither

individually rational nor strategy-proof on P=.

Proof The prove that, for any fixed ordering o, f°P7 is efficient on P° follows the
same argument used to prove (E2.1) and (E2.2) in (P2.2). To see that f°P7 is neither
individually rational nor strategy-proof on P consider the problem (N, >=) € P° where
N = {1,2} and p = (0.26, 0.26). Without loss of generality, let (i) =i for i = 1,2. Then,
3P (=) = (0.26,0.74). Since uy = 0.52, f5P7 is not individually rational. Moreover,
since f9P7 (=1, =4) = (0,0), where p}, = 0, agent 2 manipulates f5P7 at profile = via =}, .

Hence, %P7 is not strategy-proof. [ |
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