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Abstract

This paper proposes an empirical method to implement the recen-
tered influence function (RIF) regression of Firpo, Fortin and Lemieux
(2009), a relevant method to study the effect of covariates on many
statistics beyond the mean. In practically relevant situations where the
influence function is not available or difficult to compute, we suggest
to use the sensitivity curve (Tukey, 1977). We illustrate the proposal
with an application to the polarization index of Duclos, Esteban and
Ray (2004).
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1 Introduction

The recentered influence function (RIF) regression, as proposed by Firpo,

Fortin and Lemieux (2009), is a powerful tool to study the impact of changes

in covariates on the unconditional distribution of a given outcome variable.

Concretely, let Y be a random variable with cumulative distribution function

F, and v(F) any ‘functional’ of interest related to F. For example, if Y is

income, v(F) can be the mean, the Gini index, a quantile, or the poverty

rate. The RIF is defined as RIF(y, v, F) = v(F) + IF(y, v, F), where IF(y, v, F)

is the influence function (IF) (Hampel, 1974) that measures the marginal

impact of a particular data point in the support of F in the value of v(F).

Influence funtions play a key role in the robust statistics literature.

Firpo et al. (2009, 2018) note that since E[RIF(Y, v, F)] = v(F), by the

law of iterated expectations EY
[
EY|XRIF(Y, v, F)

]
= v(F), and show that the

effect on v(F) that arises from shifting a scalar covariate from X to X + t,

where t ↓ 0, is given by:

∫
dE[RIF(Y, v, F)|X = x]

dx
dF(x).

Hence, by properly modelling E[RIF(Y, v, F)|X = x] in a regression fash-

ion, the effect of X on v can be recovered as an ‘average derivative’ of re-

gressing RIF(Y, v, F) on X. The implementation of the method requires to

construct RIF(Y, v, F) analytically for the functional of interest v and then
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regress it on X. In many relevant cases the influence function required to ob-

tain RIF(Y, v, F) is immediately available; Fortin, Lemieux and Firpo (2011)

present a useful ‘catalog’ that includes the mean, the quantiles, the variance

and the Gini index (see also Essama-Nssah and Lambert (2015) and Cowell

and Flachaire (2015)).

In this paper we propose a practical computation method based on the

sensitivity curve (Tukey, 1977). This procedure consists in comparing the

full sample functional v with that computed when the j−th observation is

left out; this is the influence of this particular observation on the empirical

version of v. The relevance of the proposed strategy derives from the fact

that, under general conditions, the sensitivity curve (SC) converges in prob-

ability to the IF (see Nasser and Alam (2006) for a discussion). We provide

an intuitive proof of this result.

The SC has some practical advantages over the IF. First, even when

analytically available, in many cases the estimation of the IF involves deal-

ing with the problem of selection of the meta-parameters, like bandwidths,

which may add further complications. Second, in some relevant cases the IF

may be difficult when not impossible to derive analytically. Finally, many

relevant examples where the IF can be easily derived involve additive or

quasi-additive measures that do not apply to many important situations.

This paper is organized as follows. Section 2 presents the main statistical

derivations. Section 3 discusses an empirical exercise that shows that the
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performance of the SC is close to that of the analytical IF. Then we imple-

ment the method to the case of the polarization index of Duclos, Esteban

and Ray (2004), where the analytic IF is not available.

2 Influence via sensitivity curves

Let v(F) a real-valued functional, where v : Fv → R and Fv is a class

of distribution functions such that F ∈ Fv if |v(F)| < ∞. Consider two

cummulative distribution functions, F and G, and let Ht,F,G = tG+(1−t)F,

t ∈ [0, 1]. Then, using the Von Mises (1947) expansion:

v(H) = v(F) + t∂v
(
Ht,F,G

)
/∂t |t=0 + r(t, F,G) (1)

with

∂v
(
Ht,F,G

)
/∂ t|t=0 = lim

t↓0

v
(
Ht,F,G

)
− v(F)

t

=

∫
ψ(y)d(G− F)(y).

(2)

When G = ∆y and ∆y is the CDF of a random variable with probability

mass of 1 at y, ψ(y) = ∂v
(
Ht,F,∆y

)
/∂ t|t=0 is the influence function (IF)

of the functional v, labeled as IF(y, v, F) (see Huber and Ronchetti (2009)

for a general discussion; here we are following the derivation in Firpo et al.

(2009, p.956)).

Consider now the last term in (1). Following Von Mises (1947):

r(t, F,G) =
t̃2

2
∂2v

(
Ht,F,∆y

)
/∂ t2

∣∣
t=0

, (3)
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for some t̃ ∈ [0, t], where

∂2v
(
Ht,F,G

)
/∂t2 |t=0 =

∫∫
φ(y, z)d(G− F)(y)d(G− F)(z) (4)

with φ(y, z) a symmetric function; again, see Von Mises (1947, p. 325) for

details. Note that if v(F) = v(cF) for all c > 0 (scale invariance) then:

(i)
∫
ψ(y)dF(y) = 0

(ii)
∫∫
φ(y, z)dF(y)dF(z) = 0

The proof of (i) and (ii) follows from Jaeckel (1972).1

The recentered influence function (RIF), is defined as RIF(y, v, F) ≡

v(F) + IF(y, v, F), where, trivially, E[IF(y, v, F)] = v(F), from property (i)

above. Firpo et al. (2009) develop a RIF-regression framework that is

similar to a standard regression except that the dependent variable, Y, is

replaced by the IF of the statistic of interest, which allows to estimate the

effects of covariates X on v(F).

Unfortunately, not all indicators have an IF with a specific analytical

form and thus the RIF-regression may not be practically feasible. Our pro-

posal consists of replacing the IF by the SC.

Let {yi}
n
i=1 be an iid sample and define vn = v(Fn) as the sample coun-

1Let G = 2F, then H(t,F,G) = (1 + t)F = cF and then by the invariance to scale

∂v (Ht,F,G) /∂ t|t=0 = lim
t↓0

v(cF) − v(F)

t
= lim
t↓0

0

t
= 0.

Moreover,
∂2v

(
Ht,F,∆y

)
/∂ t2

∣∣
t=0

= 0.
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terpart of v(F), and let v
(j)
n = v(F

(j)
n ) denote the case where j−th observation

is left out, then:

Fn(y) =
1

n

n∑
i=1

1 (yi 6 y)

F
(j)
n (y) =

1

n− 1

∑
i 6=j

1 (yi 6 y) .

The sensitivity curve (SC) is defined as

SC
(
yj, vn, Fn

)
≡ n ·

[
v (Fn) − v

(
F
(j)
n

)]
. (5)

The key property that links the IF to the SC is the following:

Proposition 1. Assume that v(F) is twice continuously differentiable with

respect to F and ψ(y) and φ(y, z) exist, and that v is invariant to scale (i.e.,

v(F) = v(cF) for c > 0). Then, SC
(
yj, vn, Fn

) p→ IF
(
yj, v, F

)
as n→∞.

Proof. See the Appendix.

Consequently, if the functional v is smooth enough, the SC can be used

instead of the analytical IF. Nasser and Alam (2006) show that Fréchet

differentiability is sufficient for consistency. Of course smoothness is a strong

requirement. For example, for the case of quantiles IF(y,Qτ, F) = (y−1[y 6

Qτ(F)])/fy(Qτ(F)), where 1[.] is an indicator function, fy(Qτ(F)) is the

density of the marginal distribution of y evaluated at the τ-quantile, and

Qτ(F) is the population τ-quantile of the unconditional distribution of y.

The indicator function makes it non twice differentiable.
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The recentered sensitivity curve (RSC) is defined as:

RSC(yj, vn, Fn) ≡ vn + SC(yj, vn, Fn)

Trivially RSC
p→ RIF. Hence, our proposal is to replace RIF with RSC.

3 Empirical illustration

This section presents empirical applications. We first compare the empirical

performance of RIF and RSC for the variance and the Gini index, for which

the IF can be obtained analytically. Then we add the DER polarization

index (Duclos, Esteban, and Ray, 2004) where an explicit analytical closed-

form solution for IF is not available.

We use an extract from the Merged Outgoing Rotation Group of the

Current Population Survey of 1983, 1984 and 1985 for males only. More

details about the data can be found in Lemieux (2006). The variable of

interest is Y, the hourly wage, and the covariates X are an indicator of whe-

hter the individual is unionized, years of education, whether he is married,

non-white, his experience and its square.

Obtaining the RSC for each observation using the leave-one-out method

can be computationally intensive if n is too large since it requires a separate

calculation for each observation. Therefore, we also consider computing the

RSC by intrapolating an estimated spline using 1000 random points in the

distribution of Y (this is denoted as RSC(sp)).
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Table 1 shows results for the variance and the Gini index. Remarkably,

the differences between the RIF and RSC regressions are negligible. Inter-

estingly, the approximation obtained through the spline intrapolation seems

to be accurate, suggesting that it is a convenient computational strategy

relative to the leave-one-out method.

[ INSERT TABLE 1 HERE ]

Polarization is an important welfare concept in economics and political

science. Intuitively, it measures the tension between individuals in a soci-

ety, that depends positively on how distant individuals are between groups

(alienation) and how close they are within a group (identification). From

this perspective, a standard measure of inequality like the Gini index focuses

on just the first component. Duclos et al. (2004) provide a full axiomatic

framework that leads to a logically coherent measure of polarization. For a

detailed empirical study on polarization for the case of Latin America and

the Caribbean, see Gasparini et al. (2008).

Let y1,y2, . . . ,yn be and iid sample of incomes, ordered from lowest to

highest. Duclos et al. (2004) propose the following empirical measure of

polarization:

Pα =
1

n

n∑
i=1

f̂(yi)
αâ(yi)

where â(yi) = µ̂ + yi
(
n−1(2i− 1) − 1

)
− n−1

(
2
∑i−1
j=1 yj + yi

)
, µ̂ is the
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sample mean and f̂(yi) is an estimate of the density of incomes. The param-

eter α is set exogenously and plays a key role in characterizing polarization.

As a matter of fact, when α = 0 polarization reduces to the Gini index.

Larger values of α result in the index giving relatively more importance to

identification, that is, to how close individuals are ‘surrounded’ by others

of similar income. The axiomatic approach of Duclos et al. (1994) imposes

lower and upper bounds to the values α may take in practice.

Table 1 also shows results for the DER polarization indexes, for which

the Gini columns correspond to a particular cse (α = 0), and for proper po-

larization we set α = 0.8 following Duclos et al. (2004). We stress the fact

that the IF function is not available for this case, hence we obtain results

based on the RSC solely. Again, the computationally convenient spline ap-

proximation produces similar results than when RSC is computed directly.

Even though a detailed study of the effects on inequality and polarization

exceeds the scope of this note, we remakr that all factors reduce both mea-

sures (i.e., higher levels education predict less unconditionally inequality and

polarization), and that effects are stronger for inequality.
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Appendix

Proof of Proposition 1.

Using eq. (1) with Fn and F
(j)
n for the case of t = 1:

v (Fn) = v
(
F
(j)
n

)
+

∫
ψn(y)d

(
Fn − F

(j)
n

)
(y) + r

(
t̃, Fn, F

(j)
n

)
, (6)

for some t̃ ∈ [0, 1]. Note that ψn(y) = IF (y, v, Fn)
p→ ψ(y) by continuity of

the probability limit.

Now note that n
[
Fn − F

(j)
n

]
= 1

(
yj < y

)
+Op(1) because

Fn(y) =
1
n1
(
yj 6 y

)
+ n−1

n F
(j)
n (y),

Fn(y) − F
(j)
n (y) = 1

n1
(
yj 6 y

)
+ n−1

n F
(j)
n (y) − F

(j)
n (y),

Fn(y) − F
(j)
n (y) = 1

n1
(
yj 6 y

)
− 1
nF

(j)
n (y).

That is,

n
[
Fn(y) − F

(j)
n

]
= 1

(
yj 6 y

)
− an, (7)

with an = F
(j)
n (y)

p→ F(y) by the Law of Large Numbers.

Then,
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n ·
[
v (Fn) − v

(
F
(j)
n

)]
=
∫
ψn(y)d

(
1
(
yj 6 y

)
− an

)
(y) + n · r

(
t̃, Fn, F

(j)
n

)
n ·
[
v (Fn) − v

(
F
(j)
n

)]
=
∫
ψn(y)d

(
1
(
yj 6 y

))
(y) −

∫
ψn(y)d (an) (y) + n · r

(
t̃, Fn, F

(j)
n

)
(8)

Using the fact that 1
(
yj 6 y

)
is the Dirac function, the first term of eq.

(8) is

∫
ψn(y)d

(
1
(
yj 6 y

))
(y) = ψn

(
yj
) p→ ψ

(
yj
)

.

Noting that an
p→ F(y) and ψn(y)

p→ ψ(y), by continuity of the proba-

bility limit, the second term of (8) becomes

plim

∫
ψn(y)d (an) (y) =

∫
ψ(y)dF(y) = 0,

because of property (i). Then,

plim

∫
ψ(y)d

(
1
(
yj 6 y

)
+ an

)
(y) =

∫
ψ(y)d

(
1
(
yj 6 y

))
(y) = ψ(y).

It remains to study the third term in (8). From (3),

n · r
(
t̃, Fn, F

(j)
n

)
= n · t̃22

∫∫
ψ(y, z)d

(
Fn − F

(j)
n

)
(y)d

(
Fn − F

(j)
n

)
(z)

n · r
(
t̃, Fn, F

(j)
n

)
= 1
n ·

t̃2

2

∫∫
ψ(y, z)d

[
n
(
Fn − F

(j)
n

)]
(y)d

[
n
(
Fn − F

(j)
n

)]
(z)

for some t̃ ∈ [0, 1]. Then using (7) and property (ii),

plim

∫∫
φ(y, z)d

[
n
(
Fn − F

(j)
n

)]
(y)d

[
n
(
Fn − F

(j)
n

)]
(z) = φ

(
yj,yj

)
.
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Then it follows that

plim
{
n · r

(
t̃, Fn, F

(j)
n

)}
=

(
plim

1

n

)
· t̃

2

2
φ
(
yj,yj

)
= 0.

Then, the result follows,

plim
v (Fn) − v

(
F
(j)
n

)
1/n

= ψ
(
yj
)
= IF

(
yj, v, F

)
. QED
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Table 1: Wage inequality and polarization

Variance Gini DER(α = 0) DER(α = 0.80)
RIF RSC RSC(sp) RIF RSC RSC(sp) RSC RSC(sp)

Union -14.95*** -14.95*** -15.76*** -6.22*** -6.22*** -6.45*** -1.43*** -1.47***
(0.190) (0.163) (0.158) (0.055) (0.046) (0.046) (0.011) (0.011)

Education 1.67*** 1.67*** 1.45*** -0.35*** -0.34*** -0.41*** -0.12*** -0.16***
(0.031) (0.037) (0.036) (0.009) (0.010) (0.010) (0.002) (0.002)

Experience -0.56*** -0.56*** -0.75*** -0.62*** -0.62*** -0.66*** -0.15*** -0.17***
(0.025) (0.024) (0.024) (0.007) (0.008) (0.008) (0.002) (0.002)

Experience2 0.02*** 0.02*** 0.02*** 0.01*** 0.01*** 0.01*** 0.00*** 0.00***
(0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Married -8.41*** -8.41*** -8.96*** -4.00*** -3.99*** -4.12*** -0.89*** -0.94***
(0.198) (0.194) (0.189) (0.058) (0.059) (0.059) (0.013) (0.013)

Non-white 1.23*** 1.23*** 1.70*** 1.75*** 1.75*** 1.88*** 0.46*** 0.51***
(0.262) (0.248) (0.245) (0.076) (0.079) (0.079) (0.017) (0.017)

Constant 21.90*** 21.90*** 27.06*** 31.71*** 30.83*** 32.98*** 17.95*** 18.65***
(0.434) (0.529) (0.514) (0.126) (0.152) (0.150) (0.028) (0.028)

Observations 266,956 266,956 266,956 266,956 266,953 266,956 266,953 266,956
Source: Extract from the Merged Outgoing Rotation Group of the Current Population Survey of

1983, 1984 and 1985. Notes: Standard errors in parentheses; *** p < 0.01, ** p < 0.05, *
p < 0.1; (sp) indicates that the RSC was estimated using a Spline with a random subsample of

1000 points; all estimates are multiplied by 100.
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