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Abstract

This paper develops a first-stage linear regression representation for the instrumental
variables (IV) quantile regression (QR) model. The first-stage is analogue to the least
squares case, i.e., a conditional mean regression of the endogenous variables on the in-
struments, with the difference that for the QR case is a weighted regression. The weights
are given by the conditional density function of the innovation term in the QR structural
model, conditional on the endogeneous and exogenous covariates, and the instruments as
well, at a given quantile. The first-stage regression is a natural framework to evaluate the
validity of instruments. Thus, we are able to use the first-stage result and suggest testing
procedures to evaluate the adequacy of instruments in IVQR models by evaluating their
statistical significance. In the QR case, the instruments may be relevant at some quantiles
but not at others or at the mean. Monte Carlo experiments provide numerical evidence
that the proposed tests work as expected in terms of empirical size and power in finite
samples. An empirical application illustrates that checking for the statistical significance
of the instruments at different quantiles is important.
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1 Introduction

Instrumental variables (IV) methods are one of the main workhorses to estimate causal rela-

tionships in empirical analysis. Standard IV regression methods stress that for instruments

to be valid they must be exogenous. It is also important, however, that a second condition

for a valid instrument, instrument relevance, holds, for if the instruments are only marginally

relevant, or “weak,” then first-order asymptotics can be a poor guide to the actual sampling

distributions of conventional IV regression statistics. Several testing procedures have been

proposed to evaluate the presence of weak instruments, as well as alternative robust infer-

ence methods. The most popular test to evaluate the weak instruments problem looks at the

first-stage (i.e. a linear regression of the endogenous variable on the IV and other exogenous

covariates) F-statistics following the rule-of-thumb of Staiger and Stock (1997) and subsequent

variants as Sanderson and Windmeijer (2016), Lee et al. (2020) and others. See Stock and

Yogo (2005) for an extensive discussion.

Quantile regression (QR) is an important method of modeling heterogeneous effects. Sev-

eral IV methods have been proposed in QR to solve endogeneity when the covariates are

correlated with the error term in a regression model. Chernozhukov and Hansen (2005, 2006,

2008) (CH hereafter) develop an instrumental variables quantile regression (IVQR) procedure

that has been applied in several contexts. It is one of the most prolific approaches in terms

of subsequent work, as it provides a general procedure to use IV for endogeneity of regressors

(see, e.g., Angrist et al., 2006; Chernozhukov et al., 2009; Galvao, 2011). Other work, based

on this idea, develop the GMM counterpart constructed using moment conditions directly, see,

for instance, Kaplan and Sun (2017) and de Castro et al. (2019). We refer to Chernozhukov

et al. (2020) for an overview of IVQR.

CH comment that their method is a simple solution to a two-stage least-squares (2SLS)

analog, which has been formally established in Galvao and Montes-Rojas (2015). However, the

first-stage of the IVQR estimator has not been explicitly considered, as it is implemented as an

inverse QR estimator. The IVQR estimator contrasts to alternative procedures where the first-

stage is implemented in alternative frameworks. For instance, Amemiya (1982), Powell (1983),

Chen and Portnoy (1996), and Kim and Muller (2004) use an explicit first-stage that fits the

endogenous variable(s) as a function of exogenous covariates and IV, and this is then plugged

in a second-stage. Lee (2007) also adopts a two-step control-function approach where in first

step consists of estimation of the residuals of the reduced-form equation for the endogenous

explanatory variable. Ma and Koenker (2006) presents an estimator for a recursive structural

equation model.

This paper builds on the IVQR estimator and shows that a first-stage regression model can

be explicitly recovered from the CH IVQR estimator. The first-stage IVQR (FS-IVQR) is a

conditional mean regression of the endogenous variables on the instruments, with the difference

that the QR case is a weighted regression, that is, it has the representation of a weighted
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least squares (WLS) regression of the endogenous variable(s) on the IV and the exogenous

regressors. The weights are given by the conditional density function of the innovation term in

the QR structural model, conditional on the endogeneous and exogenous covariates together

with the instruments, at a given quantile. The derivation of the result is simple. We write the

IVQR estimator as a constrained Lagrangian optimization problem and show that one of the

restrictions that must be satisfied is the analogue of the first-stage.

The practical implementation of the FS-IVQR is as follows. First, from the IVQR one

estimates the conditional density function at a selected quantile, which produces an estimate

of the weights. The weighting factor can be estimated, for instance, using the sparsity method

(see, e.g., Koenker (2005)). Second, a standard WLS model is implemented – this is analogue

to the first-stage model used in 2SLS. We derive the asymptotic distribution of the two-step

estimator.

The first-stage regression is a natural framework to evaluate the validity of instruments since

one can test for their statistical significance, that is, how the IV impact on the endogenous

variable(s). Furthermore, it can also be used for testing procedures to assess the validity of the

IV for given quantiles.1 A Wald-type test on the coefficients of interest can be used for testing.

Provided that weights are consistently estimated, the Wald test is asymptotically Chi-squared

with the number of degrees of freedom equal to the number of coefficients tested. We highlight

that when testing for one instrument being invalid, the empirical applications are restricted

to the case with at least two instruments, with one being valid. This is because the practical

implementation of the first-stage relies on a consistent estimation of the weights in the first

step. In sum, the proposed method evaluates the relevance condition for the validity of the IV

in the IVQR framework. The procedure, thus, allows the empirical researcher to evaluate the

individual quality of the IV.

The proposed inference allows for a procedure in empirical work that is parallel to the

standard first-stage in two-stage least squares (FS-2SLS), to evaluate the degree of association

of the IV to the endogenous variable. Nevertheless, the derivation of the FS-IVQR result

illustrates that the rejection of the null hypothesis considered here is a necessary condition for

the validity of the IVQR specification to be used in practice for identification. Our procedure

should be thus evaluated in a framework where one is concerned with the first-stage relevance

of the IV in similar vein as 2SLS for estimating mean effects. It provides a clear link between

the IV evaluation in an explicit first-stage in least-squares and QR models.

One important feature of the procedure developed here is that instruments could be sta-

tistically insignificant in FS-2SLS, but they could still be related to the endogenous variable

in the IVQR set-up. The reason is that the FS-2SLS test only evaluates a mean effect, but

1There is a literature on weak identification robust inference for QR models. Without imposing additional
conditions, statistical inference for the structural quantile function can be performed using weak-identification
robust inference as described in Chernozhukov and Hansen (2008), Jun (2008), or Chernozhukov et al. (2009).
In this paper we do not pursue this avenue and leave it for future research.

3



the FS-IVQR, because of its specific weighting procedure, allows for different first-stage effects

across quantiles. As a result, the IV could be relevant at some quantiles but not for the mean

(and vice-versa), an issue that has been discussed in Chesher (2003) and subsequent literature.

The Monte Carlo experiments illustrate this issue. The test developed here thus allows infer-

ence on the validity of the IV for the exogeneity condition across quantiles, rather than only a

mean effect.

We use a Monte Carlo exercise to evaluate the finite sample performance of the tests. The

proposed method has correct size in all cases where the structural parameters can be estimated

under the null hypothesis. We consider other cases where there is no identification under the

null with mixed performances. The developed test has excellent power properties. In particular

the experiments highlight the case where the FS-2SLS test suggest the instrument is not valid,

but the proposed procedure finds it is for some quantiles.

As an empirical illustration, we apply the FS-IVQR estimator to the Card (1995) data

on instrumenting education using college proximity. The analysis reveals heterogeneity in

the significance of the IV across quantiles. In fact, while the 2SLS analysis shows that one

instrument (proximity to 2-year college) is not statistically significant in the first-stage, it is

indeed for high quantiles.

This paper is organized as follows. Section 2 briefly reviews the CH IVQR estimator

and rewrites that estimator as a constrained minimization problem and derives the first-stage

representation for the IVQR. Section 3 discusses its empirical implementation and derives

the estimators’ asymptotic distribution. Section 4 presents the first-stage test for validity of

instruments. Section 5 provides finite sample Monte Carlo evidence. Section 6 applies the

proposed tests to empirical problems. Finally, Section 7 concludes.

2 A first-stage representation for IVQR

2.1 The IVQR estimator and its variants

Let (y, d, x, z) be random variables, where y is a scalar outcome of interest, d is a 1×r vector of

endogenous control variables, x is a 1×k vector of exogenous control variables, and z is a 1×p
vector of exogenous instrumental variables, with p ≥ r. Define w = (x, z) and s = (d, x, z).

Chernozhukov and Hansen (2006) developed estimation and inference for a generalization

of the QR model with endogenous regressors. A linear representation of the model takes the

following form

y = dα0(ud) + xβ0(ud), ud|x, z ∼ Uniform(0, 1), (1)

where ud is the nonseparable error or rank. Under some regularity conditions, CH establish

the following IV identification function

P [y ≤ dα0(τ) + xβ0(τ)|x, z] = P [ud ≤ τ |x, z] = τ. (2)
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Although each parameter and estimator is indexed by the quantile τ ∈ (0, 1), throughout the

paper we will suppress the dependence on τ .

The restriction in (2) can be used to estimate the parameters of interest. For a given

quantile τ , the population IVQR estimator for model in (1), is given by

min
α
‖γ(α)‖A,

where

(β(α), γ(α)) = argmin
β,γ

E [ρτ (y − dα− xβ − zγ)] ,

and ρτ (u) = u(τ − 1(u < 0)) is the check function, and ‖ · ‖A = ·′A· is the Euclidean distance

for any positively definite matrix A of dimension p× p.
As noted by Chernozhukov and Hansen (2006, p.501), the IVQR estimator is asymptotically

equivalent to a particular GMM estimator where the QR first order conditions are used as

moment conditions. In particular, it would involve a Z-estimator solving

E
[
x′ (1[y − dα− xβ < 0]− τ)

]
= 0k, (3)

E
[
z′ (1[y − dα− xβ < 0]− τ)

]
= 0p, , (4)

where 1(·) is the indicator function. Here 0k and 0p are null vectors with dimensions k × 1

and p× 1, respectively.

Different estimators have been proposed in the GMM framework based on identifying

the structural parameters from equations (3)–(4). Kaplan and Sun (2017) and de Castro

et al. (2019) provide general estimation procedures based on smoothing techniques of the non-

differentiable indicator function. However, the constructed estimator differs from the IVQR

one. This can be seen in the fact that the term zγ is not considered altogether from the

regression model.

2.2 The IVQR estimator as a constrained minimization problem

The IVQR estimator proposed by Chernozhukov and Hansen (2006), for a given quantile τ ,

can be written as a constrained minimization problem, where the constraints are the moment

conditions, that is,

min
(α,β,γ)

‖γ‖A, (5)

subject to

E
[
x′ (1[y − dα− xβ − zγ < 0]− τ)

]
= 0k, (6)

E
[
z′ (1[y − dα− xβ − zγ < 0]− τ)

]
= 0p. (7)
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Now we write this constrained optimization as a Lagrangian problem as

L(α, β, γ, λx, λz) = ‖γ‖A + λxE
[
x′(1[y − dα− xβ − xγ < 0]− τ)

]
(8)

+ λzE
[
z′(1[y − dα− xβ − xγ < 0]− τ)

]
,

where λx is a 1× k vector and λz is a 1× p vector. Therefore, the IVQR estimator is given by

the empirical counterpart of

argmin
(θ,λx,λz)

L(θ, λx, λz),

where θ = (α′, β′, γ′)′.

The first derivatives of the Lagrangian in equation (8) are

∂L/∂α = −
{
λxE

[
f · x′d

]
+ λzE

[
f · z′d

]}′
(9)

∂L/∂β = −
{
λxE

[
f · x′x

]
+ λzE

[
f · z′x

]}′
(10)

∂L/∂γ =
{

2γ′A− λxE
[
f · x′z

]
− λzE

[
f · z′z

]}′
(11)

∂L/∂λx = E
[
x′(1[y − dα− xβ − zγ < 0]− τ)

]′
(12)

∂L/∂λz = E
[
z′(1[y − dα− xβ − zγ < 0]− τ)

]′
, (13)

where f := fuτ (0|d, x, z) denotes the density function of uτ := y− dα0(τ)−xβ0(τ) conditional

on s = (d, x, z), evaluated at the τ -th conditional quantile, which is zero. Note that f is specific

for each quantile τ . This density function plays a central role in what follows.

The solution should have all equations above equal to zero when assuming an interior

solution as in Assumption 1 below. Thus, from equation (10),

λ′x = −
(
E[f · x′x]

)−1 (
E[f · x′z]

)′
λ′z. (14)

Then, replacing (14) in (11),

(
E[f · z′x]− E[f · z′x](E[f · x′x])−1E[f · x′z]

)′
λ′z = 2Aγ,

such that

λ′z = 2
(
E[f · z′x]− E[f · z′x](E[f · x′x])−1E[f · x′z]

)−1
Aγ. (15)

Finally, replacing (15) in (9),

E
[
f · d′x

]
λ′x + E

[
f · d′z

]
λ′z = 2

{
E
[
f · d′z

]
− E

[
f · d′x

]
(E[f · x′x])−1E[f · x′z]

}
×{

E[f · z′x]− E[f · z′x](E[f · x′x])−1E[f · x′z]
}−1

Aγ = 0r,

where 0r is a r × 1 vector of zeros.

Therefore, we can restate the IVQR estimator for (α′, β′, γ′)′ as a system of three equations
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given by

{
E
[
f · d′z

]
− E

[
f · d′x

]
(E
[
f · x′x

]
)−1E

[
f · x′z

]}
×{

E
[
f · z′z

]
− E

[
f · z′x

]
(E
[
f · x′x

]
)−1E

[
f · x′z

]}−1
Aγ = 0r (16)

E [x · (1[y − dα− xβ − zγ < 0]− τ)] = 0k (17)

E [z · (1[y − dα− xβ − zγ < 0]− τ)] = 0p. (18)

2.3 First-stage IVQR parameters

Given equations (16)–(18) above, we can see that (16) provides a first-stage representation of

the IVQR model. This can be written as

δ′Aγ = 0r, (19)

where

δ :=
{

E
[
f · z′z

]
− E

[
f · z′x

]
(E
[
f · x′x

]
)−1E

[
f · x′z

]}−1{
E
[
f · z′d

]
− E

[
f · z′x

]
(E
[
f · x′x

]
)−1E

[
f · x′d

]}
. (20)

Here δ is a p× r vector. Notice that equation (20) is a least-squares projection. In particular,

the representation in (20) is a weighted conditional mean regression, where the endogenous

variable(s), d, is(are) regressed on the IV, z, and the exogenous variables, x. This is the

analogue to the first-stage in the 2SLS case, with the difference that the QR case is a weighted

regression. The weights are given by the conditional density function of the innovation term in

the QR structural model, conditional on the endogeneous and exogenous covariates together

with the instruments.

Hence, for each endogeneous variable, say dj for j = 1, 2, ..., r, δj in equation (20) can be

recovered as the solution to the following optimization problem

µj := (ψj , δj) = argmin
ψ,δ

E
[
f · (dj − xψ − zδ)2

]
. (21)

Note that the parameter δ also depends on θ = (α′, β′, γ′)′, through the conditional den-

sity function f at quantile τ . Thus, this first-stage representation depends on the structural

(second-stage) parameters, and as such, it is different from the 2SLS case in mean regression

models.

We notice that the first-stage in equation (21) is different from those in the existing lit-

erature using two-stage regressions for conditional quantile models. Amemiya (1982), Powell

(1983), Chen and Portnoy (1996), and Kim and Muller (2004) propose different two step

procedures in which the first step fits the endogenous variable(s) as a function of exogenous
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covariates and IV, and this is then plugged in a second-stage. Nevertheless, these papers use

least squares without weighting or standard quantile regression in the first-stage. Our proce-

dure derives the first-stage from the IVQR set-up, thus confirming that a first-stage (albeit

different) is part of the model.

3 Empirical implementation and asymptotic distribution

In this section we consider the empirical implementation of the first-stage instrumental vari-

ables quantile regression (FS-IVQR) and derive the estimators’ asymptotic distribution. We

propose a two steps estimation procedure, where in the first step we estimate the density using

the IVQR model, and in the second step we use a weighted least squares (WLS) regression.

For simplicity of exposition, we develop the case of r = 1, i.e. one endogenous variable.

3.1 Estimator

The estimator requires a consistent estimator of µ in (21), which will be based on WLS based

on the estimator of f , at a given quantile of interest τ . The estimator has two steps as following:

1) In the first step we obtain θ̂ = (α̂, β̂′, γ̂′)′ from the CH estimator,

α̂ = argmin
α
‖γ̂(α)‖A,

where

(β̂(α), γ̂(α)) = argmin
β,γ

1

n

n∑
i=1

[ρτ (yi − diα− xiβ − ziγ)] .

Provided that the τth conditional quantile function of y|s is linear, as in (1), then for hn → 0

we can consistently estimate the parameters of the τ ± hn conditional quantile functions by

θ̂(τ ± hn). And the density fi := fuτ (0|d = di, x = xi, z = zi) can thus be estimated by the

difference quotient

f̂i =
2hn

si

(
θ̂(τ + hn)− θ̂(τ − hn)

) . (22)

The estimation in (22) is a natural extension of sparsity estimation methods, suggested by

Hendricks and Koenker (1992). The estimator is discussed in further details in Zhou and

Portnoy (1996) and Koenker (2005). We introduce the simplifying notation f̂i := f̂uτ (0|s =

si).
2 The bandwidth for the density estimation can be chosen heuristically as a scaled version

2We are assuming that there is only one endogenous variable, r = 1. Otherwise the analysis below should
be repeated separately for each endogenous variable as there will be a different first-stage for each one.
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of Hall and Sheather (1988):

hn = 2n−1/3Φ−1 (0.975)2/3
[

3

2
·
φ
{

Φ−1(τ)
}4

2Φ−1(τ)2 + 1

]1/3
.

2) In the second step the parameters of interest δ can be obtained from a feasible WLS as

µ̂ := (ψ̂, δ̂) = argmin
ψ,δ

1

n

n∑
i=1

[
f̂i · (di − xiψ − ziδ)2

]
. (23)

Equation (23) produces δ̂ which is the main object of interest.

Define Y , X, D and Z as the matrices formed from a random sample of {yi, di, xi, zi}ni=1.

Similarly define W = [X,Z]. Define the weighting diagonal matrix

V̂ =


f̂1

. . .

f̂n

 .
Then, the estimator in (23) above can be written in a simple matrix notation as

µ̂ = (W ′V̂ W )−1W ′V̂ D. (24)

Notice that if fi is a constant for all i, then the proposed FS-IVQR method should deliver

same estimates as FS-2SLS for the mean. This would happen, for example, in the case of

i.i.d. innovations in the second-stage structural model. Thus, there will be differences between

the two estimators only when fi varies across i, that is, when the weighting factor is not a

constant. Example 1 (location model) Appendix B shows a case where the density function

is a constant. A typical example where the weights are not constant across individuals is the

location-scale model, see Examples 2 and 3 in Appendix B.

3.2 Asymptotic distribution

In this subsection, we derive the asymptotic distribution of the proposed estimator. The

asymptotic properties of the IVQR estimator can be found in Chernozhukov and Hansen

(2006) and the assumptions therein are those required for inference. We consider Assumption

2 in Chernozhukov and Hansen (2006, pp.501–502), that we reproduce here for convenience.

It imposes conditions for θ0 to be identified and estimated.

Assumption 1. R1. Sampling. {yi, xi, di, zi} are iid defined on a probability space and take

values in a compact set.

R2. Compactness and convexity. For all τ ∈ (0, 1), (α, β, γ ∈ int(A × B × G) is compact and
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convex.

R3. Full rank and continuity. y has bounded conditional density (conditional on w), and for

θ = (α, β, γ), π = (α, β) and

Π(θ, τ) := E [(τ − 1(y < dα+ xβ + zγ) · [x, z]] ,

Jacobian matrices ∂
∂(α′,β′)Π(θ, τ) and ∂

∂(β′,γ′)Π(θ, τ) are continuous and have full rank, uni-

formly over A × B × G and the image of A × B × G under the mapping (α, β) 7→ Π(θ, τ) is

simply connected. Assume that θ0 = (α0, β
′
0, γ
′
0)
′ is the unique solution to the CH problem.

We impose additional conditions for deriving the limiting properties of the feasible first-

stage estimator in (23) using the sparsity estimation in (22).

Assumption 2. Let εi := di − xiψ0 − ziδ0, with E[εi|wi] = 0, and E[ε2i |wi] = σ2i . Also, let

fi := fθ0(y − sθ0|s = si) and assume that E[|f−2i wiεi|] < ∞. Let Ωfσ := E[f2i σ
2
iwiw

′
i] and

Ωf := E[fiwiw
′
i]. The limits limn→∞

1
n

∑n
i f

2
i σ

2
iwiw

′
i = Ωfσ and limn→∞

1
n

∑n
i fiwiw

′
i = Ωf

exist and are nonsingular (and hence finite).

Assumption 2 contains conditions for establishing consistency and asymptotic normality of

the proposed estimator. The next result presents an intermediate result.

Lemma 1. Under Assumptions 1–2, as n→∞, hn → 0 and nh2n →∞,

√
n (µ̂− µ0)

d→ N (0k+p, V (µ0)) , (25)

where µ0 := (ψ0, δ0) = argmin
ψ,δ

E
[
f · (d− xψ − zδ)2

]
and V (µ0) = Ω−1f ΩfσΩ−1f is the asymp-

totic covariance matrix.

Proof. In the Appendix A.

4 Testing

In this section we derive tests for the validity of the IV using the first-stage representation.

4.1 Formulation and null hypothesis

The restriction in equation (19) provides a natural framework to evaluate the relevance of the

instruments in QR models.

First, notice that the parameter δ captures the strength of the instrument in the sense it

measures the correlation between the instrument z and the endogenous variable d weighted
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by the density function f . This is the QR counterpart of the first-stage effect of z on the

endogenous variables d for the 2SLS.3 When the instrument is valid, δ 6= 0p×r.

Second, note that the instrument z does not belong in the structural quantile model (1),

hence when z is valid, γ = 0p×r can be used for identification, a key feature of the CH IVQR

estimator. Another way to see this is the following. Equation (19) also shows that when

δ = 0p×r, the value of γ is irrelevant, and therefore it cannot be used in the IVQR procedure

to solve endogeneity. As such, δ 6= 0p×r is a necessary condition for the IV to have a purpose

in the CH set-up. Therefore, a test for the validity of the instruments can then be based on

inference on δ.

Another way of gaining intuition on the test is the following. Assume that r = 1 (i.e. only

one endogenous variable), then (19) is in fact equal to 0, a scalar. If we further assume that

A = Ip, then
p∑
q=1

δqγq = 0, (26)

where δ = [δ1, . . . , δp]
′ is the column vector that has the first-stage effect of all IV on d. Note

again that if δ = 0p×1, then the vector γ could have any value and its implied restrictions

would be irrelevant.

The formulation of the test proposed in this paper is based on the condition given in

equation (16) together with the first-stage IVQR representation in equation (20). A test for

validity of the instruments for p instruments can be based on the null hypothesis

H0 : δ0 = 0p×r, (27)

against the alternative

HA : δ0 6= 0p×r. (28)

We highlight that, differently from the 2SLS, the first-stage IVQR in (21) is for a given

quantile τ . Thus, for the same variables d and instruments z, the strength of the instruments

may vary across different quantiles. This variation is captured by the weights f .

Note that the procedure works for r ≥ 1, that is for one or more than one endogenous

variable. In this case, separate tests could be applied as in 2SLS analysis where there may

be a different first-stage for each endogeneous variable. To simplify the procedures below we

assume that r = 1, that is, there is only one endogenous variable.

The expressions of the null and the alternative hypotheses in (27) and (28), respectively,

lead to the following testing procedure.

When H0 is true, under suitable regularity conditions, δ̂ converges in probability to 0p×r

3As noted by Galvao and Montes-Rojas (2015) the CH set-up is equivalent to the 2SLS in least-squares
models. In fact the CH estimator is the QR counterpart of a 2SLS estimator. The expression above also shows
that there is an implicit first-stage, similar to that in 2SLS problems. As such, this provides an analytical
expression to evaluate the relevance of the IV.
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for a given τ . On the other hand, when H1 is true, δ̂ converges in probability to δ0 6= 0p×r.

Therefore, it is reasonable to reject H0 if the magnitude of δ̂ is suitably large.

A natural choice to test H0 against H1 for the case of r = 1 is the Wald statistic as

Tn = nδ̂′{Vδ}−1δ̂, (29)

where Vδ is the asymptotic covariance matrix of
√
nδ̂ under H0. In practice, Vδ is replaced by

a suitable consistent estimate.

4.2 Asymptotic distribution

Consider a subset of the instruments, p1 < p, and consider a partition of δ = [δ′1, δ
′
2]
′ of the

corresponding first-stage parameters of interest, with dimensions p1 and p2 (with p = p1 + p2),

respectively. Consider a p1 × (k + p) matrix R = [0p1×k, Ip1 ,0p1×p2 ] where Ip1 is an identity

matrix of dimension p1 × p1. Thus, Rµ = δ1 is the subvector of interest. Let V̂ (µ̂) be a

consistent estimator of V (µ0), which can be obtained from the WLS procedure. The next

result derives the limiting distribution of the test statistic in eq. (29).

Proposition 1. Consider Assumptions 1–2, n → ∞, hn → 0 and nh2n → ∞. Furthermore,

assume that dim(z) = p > p1 ≥ 1. Then, under H0 : δ1 = 0p1 and local alternatives HA : δ1 =

ap1/
√
n

Tn = n (Rµ̂)′ {RV̂ (µ̂)R′}−1 (Rµ̂)
d→ χ2

p1(ap1). (30)

Proof. In the Appendix A.

Computation of the test statistic (29) requires a non-parametric estimator of f , the con-

ditional density of uτ |d, x, z evaluated at the specific quantile of interest τ . Given that the

weights need to be estimated, the proposed FS-IVQR has specific properties when testing un-

der the null hypothesis of an invalid instrument. The condition on the number of IV being

larger than the number of parameters tested in the null hypothesis is required for consistent

estimation of θ under the null, which in turn, is used for the consistent estimation of f .

5 Monte Carlo experiments

We analyze in this section the performance of the proposed test with finite samples through

a series of Monte Carlo simulation exercises. The data generating process (DGP) has the

following model:

yi = di + xi + (1 + cdi)ui, (31)

di = az1i + φz2i + (1 + bz1i)vi, (32)

12



where xi, z1i and z2i are three independent variables with distribution U(0, 1); ui and vi have

standard bivariate normal distribution with correlation 0.50. Equations (31)–(32) specify a

model where there could be pure location or location-scale specifications in either the first-

and/or the second-stages. Note that the parameters a and b determine the type of effect

that the instrument z1 has on the endogenous covariate d. For example, if a 6= 0 and b = 0

the instrument z1 has a pure location effect on d (pure location shift model), while if a = 0

and b 6= 0 the effect is only on the variance of the endogenous covariate (pure scale shift

model). Next the parameter c determines if the structural second-stage model is a location or

location-scale model.

In all cases we consider tests for H0 : δ1 = 0 where this is the first-stage parameter

associated with the z1 instrument defined in the previous sections. We consider two different

cases to investigate the numerical properties of the tests. In the first case, φ = 1, there is a

second instrument, z2, such that the model correctly identifies the parameters in the structural

equation (31) for all possible values of a and b, even under the case that a = b = 0. In the

second case, we set φ = 0, and therefore, under the null hypothesis the consistent estimation

of the weights f is problematic. Also, in this case, when a = b = 0, there is no valid available

instrument.

We will consider three different test statistics from different estimators. First, for com-

parison purposes, we present a Wald test for the coefficient in z1 using a simple regression

model of d on (x, z1, z2) in a standard 2SLS framework, denoted FS-2SLS. Second, we test for

H0 : δ1 = 0 using the true density function, f , as weights, that is, using the true θ0, denoted

FS-IVQR (true density). We note that this is not observed in practice, and we include these

results for comparison purposes. Our proposed test studied in the previous section is the third

one, denoted FS-IVQR (sparsity), where we use the sparsity function estimation described

above. Note that the three tests differ only in the weighting procedure used in the regression

of d on (x, z1, z2).

Tables 1–4 show the empirical size (i.e. a = b = 0) of the computed test with 2000

simulations for n = {500, 1000} and for the quantiles τ = {0.25, 0.50, 0.75}. The simulations

show correct empirical size performance in most but not all cases.

Consider first the case where there is a second instrument, φ = 1 in Tables 1 and 2. The

tests have approximately correct empirical size. As such they clearly evaluate if the instrument

z1 exerts an effect on the endogenous variable d. Note that the empirical size is improved when

we consider a location-scale model c = 1.

Now consider the case where there is no available second instrument, φ = 0, in Tables 3

and 4. In this case, the weights in the structural model cannot be estimated consistently under

the null. Since the proposed test evaluates the relationship between z1 and d, the main issue

is whether this relationship can be evaluated in other than the OLS model. Note that for the

location-only model, Table 3, the test of sparsity estimator is oversized. This is mostly due to
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the implicitly estimated sparsity function as the test with the true density function has correct

size. However, when we use a location-scale model, Table 4, the size is correct for the sparsity

estimator. This result suggests that the test can be used if there is a location-scale structure

in the second-stage, even when the structural parameters cannot be estimated under the null

(because z1 does not solve the endogeneity problem).

Table 1: Rejection rate of the null hypothesis using a = b = 0, model with c = 0 and φ = 1

τ Size n = 500 n = 1000
FS-2SLS True f Sparsity f FS-2SLS True f Sparsity f

0.25 0.10 0.100 0.100 0.147 0.104 0.104 0.139
0.05 0.052 0.048 0.089 0.054 0.051 0.079
0.01 0.014 0.013 0.038 0.008 0.008 0.024

0.50 0.10 0.100 0.095 0.128 0.096 0.097 0.099
0.05 0.056 0.053 0.072 0.056 0.054 0.059
0.01 0.011 0.010 0.022 0.011 0.010 0.015

0.75 0.10 0.097 0.094 0.137 0.102 0.101 0.133
0.05 0.047 0.046 0.081 0.054 0.053 0.085
0.01 0.011 0.010 0.032 0.009 0.009 0.025

Note: Rejection rates of 2000 Monte Carlo experiments.

Table 2: Rejection rate of the null hypothesis using a = b = 0, model with c = 1 and φ = 1

τ Size n = 500 n = 1000
FS-2SLS True f Sparsity f FS-2SLS True f Sparsity f

0.25 0.10 0.100 0.104 0.101 0.104 0.105 0.108
0.05 0.052 0.051 0.053 0.054 0.056 0.054
0.01 0.014 0.015 0.016 0.008 0.009 0.010

0.50 0.10 0.100 0.104 0.109 0.096 0.095 0.095
0.05 0.056 0.055 0.059 0.056 0.056 0.053
0.01 0.011 0.011 0.010 0.011 0.013 0.012

0.75 0.10 0.097 0.103 0.101 0.102 0.104 0.100
0.05 0.047 0.051 0.049 0.054 0.054 0.058
0.01 0.011 0.009 0.013 0.009 0.010 0.012

Note: Rejection rates of 2000 Monte Carlo experiments.

An interesting feature in Tables 3 and 4 is that, in some cases, the weighting function may

be used to evaluate the first-stage relevance of the IV, even when it is not the correct one.

This is not a general result, however, but it illustrates the role of the density function as a

weighting factor.

In order to explore this, we consider three examples in Appendix B closely related to the

DGP used in the Monte Carlo experiments. When the instrument z is available we should be

estimating the correct structural parameters and fuτ (0|d, x, z) where uτ = y − Qτ (y|d, x, z).
However, the case where, under the null, z is invalid would be equivalent to the case where there
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Table 3: Rejection rate of the null hypothesis using a = b = 0, model with c = 0 and φ = 0

τ Size n = 500 n = 1000
FS-2SLS True f Sparsity f FS-2SLS True f Sparsity f

0.25 0.10 0.110 0.109 0.228 0.093 0.092 0.265
0.05 0.057 0.054 0.163 0.054 0.052 0.200
0.01 0.013 0.013 0.073 0.013 0.013 0.108

0.50 0.10 0.107 0.102 0.235 0.097 0.094 0.238
0.05 0.059 0.055 0.171 0.049 0.049 0.175
0.01 0.017 0.018 0.101 0.010 0.008 0.094

0.75 0.10 0.101 0.100 0.240 0.102 0.101 0.274
0.05 0.049 0.048 0.171 0.054 0.051 0.198
0.01 0.010 0.011 0.093 0.008 0.008 0.102

Note: Rejection rates of 2000 Monte Carlo experiments.

Table 4: Rejection rate of the null hypothesis using a = b = 0, model with c = 1 and φ = 0

τ Size n = 500 n = 1000
FS-2SLS True f Sparsity f FS-2SLS True f Sparsity f

0.25 0.10 0.110 0.114 0.107 0.093 0.097 0.101
0.05 0.057 0.060 0.062 0.054 0.057 0.054
0.01 0.013 0.012 0.016 0.013 0.013 0.010

0.50 0.10 0.107 0.107 0.108 0.097 0.097 0.094
0.05 0.059 0.059 0.059 0.049 0.050 0.051
0.01 0.017 0.018 0.020 0.010 0.009 0.009

0.75 0.10 0.101 0.100 0.108 0.102 0.109 0.105
0.05 0.049 0.050 0.053 0.054 0.051 0.052
0.01 0.010 0.010 0.009 0.008 0.009 0.011

Note: Rejection rates of 2000 Monte Carlo experiments.
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are no instruments available. That is, we would not be able to solve the endogeneity in the

second-stage. Note that, for this case, the density function that will be implicitly used is that

of u∗τ = y −Qτ (y|d, x). The examples in Appendix B compare fu∗τ (0|d, x) with fuτ (0|d, x, z).4

The partial results suggest that if fuτ (0|d, x, z) and fu∗τ (0|d, x) are proportional to each other

when they vary with d, we could implement the first-stage test under the null of all IV being

invalid.

To analyze the empirical power of the test, we performed 2000 simulations only for the

case with n = 1000 and we calculated the rejection rates of the proposed procedure for the

quantiles τ = {0.25, 0.50, 0.75}. As benchmark we also use the test rejection rates obtained in

the FS-2SLS method, i.e., the Wald test of an OLS regression of d on z. The results appear in

Figures 1-4. For each figure we have two blocks, (i) and (ii), where in (i) we evaluate a pure

location first-stage model of z1 on d using a = {0, 0.10, ..., 0.90, 1} and b = 0, and in (ii) we set

a = 0 and we vary b = {0, 0.10, ..., 0.90, 1} such that z1 has only a scale effect on d.

We first consider the case where the relation y|(d, x) is a pure location model, that is, c = 0,

and there is a second valid instrument φ = 1. Figure 1, block (i) pure location first-stage, shows

that the FS-IVQR power computed with true and estimated densities behaves similarly to FS-

2SLS. That is, they correctly reject as a increases. The estimated density model has slightly

less power than the one with the true density. For block (ii), scale-only first-stage, however,

FS-2SLS and FS-IVQR (true density) have no power in detecting the effect of z1 on d. The

test with the estimated sparsity function rejects the null as b increases.

We now analyze the case of location-scale in y|(d, x), i.e. c = 1, also with φ = 1. The results

of Figure 2 show that the FS-2SLS test is similar to the QRIV-based tests under pure location

model for d|z1 (block (i) of Figure 2). In particular, both using the true and the estimated

sparsity function correctly rejects when a increases. However, the results of the FS-IVQR differ

when we are in the presence of a pure-scale model for d|z1 (block (ii) of Figure 2). Note that

in this case there is no relationship between d and z1 at the mean (FS-2SLS), but it does affect

the other points of the conditional distribution. Therefore, the first-stage of 2SLS does not

find any relationship between the endogenous variable and the instrument while the FS-IVQR

estimators (both theoretical and estimated) are able to correctly detect it.

Consider now the case where we have c = 0 and φ = 0. The problems noted in the size

tables are exacerbated here since it is not possible to identify the parameters of Qτ (y|(d, x))

via the IVQR, as shown in Figure 3. Interestingly, the density estimation using the sparsity

function introduces some misspecification that allow us to evaluate the effect of z1. Note

however, that as noted in the size evaluation, this test is oversized, and therefore it cannot be

used for valid inference.

Finally, consider the last case when c = 1 and φ = 0 (Figure 4). The FS-IVQR tests work

4Let α̃ and β̃ be the parameters that result from the estimation of the biased structural model without
instruments, Qτ (y|d, x) = dα̃ + xβ̃. Note that uτ = y − Qτ (y|d, x, z) = y − dα0 − xβ0 can be written as
y − dα̃− xβ̃ − bias(d, x), where bias(d, x) = d(α0 − α̃) + x(β0 − β̃) such that uτ = u∗τ − bias(d, x).
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Figure 1: Power for H0 : δ1 = 0 (model with c = 0 and φ = 1)

in this case. In both (i) and (ii) the tests detects an association between the instrument and

the endogenous variable. In case (ii) the FS-IVQR rejects as b increases while FS-2SLS does

not. As noted in Table 4 the test works even for the case where a = b = 0 and the endogeneity

problem in the structural estimators cannot be solved.
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Figure 2: Power for H0 : δ1 = 0 (model with c = 1 and φ = 1)

Figure 3: Power for H0 : δ1 = 0 (model with c = 0 and φ = 0)
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Figure 4: Power for for H0 : δ1 = 0 (model with c = 1 and φ = 0)

6 Empirical application: Card (1995) college proximity as an

instrument for education

In this section we show an application of the proposed test in the estimation of a Mincer

equation to estimate returns to schooling. The data used are from the paper of Card (1995)

and correspond to 3010 individuals of the US National Longitudinal Survey of Young Men.5

Following the same specification of that paper, the model describes wages as a function of

the years of education and other exogenous controls such as work experience, race and a set

of geographic and regional variables. A classic problem with this model is that ability is

unobservable and therefore its omission induces a potential bias due to endogeneity of the OLS

estimator. Specification errors have analogous consequences on QR estimators, as analyzed by

Angrist et al. (2006). Card (1995) proposes to implement an IV strategy using two measures

of proximity to the university as external variables to the wage equation.

Table 5 shows the results of the first-stage to check if the IV are valid, together with the

estimated second-stage results. The first column corresponds to the conditional mean model

and the next ones are the regressions proposed for IVQR for τ ∈ {0.25, 0.50, 0.75}. The results

shows that the first instrument (lived near 2-year college in 1966) is not relevant for the low

5Downloaded from http://davidcard.berkeley.edu/data_sets/proximity.zip
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Table 5: Returns to schooling (Card, 1995)

2SLS IV Quantile Regression
τ = 0.25 τ = 0.50 τ = 0.75
First-stage estimates

Lived Near 2-year College in 1966 0.123 0.0644 0.471*** 0.154**
(0.0774) (0.129) (0.0704) (0.0709)

Lived Near 4-year College in 1966 0.321*** 0.380*** 0.298*** 0.140*
(0.0878) (0.146) (0.101) (0.0737)

Experience -0.412*** -0.450*** -0.489*** -0.494***
(0.0337) (0.0871) (0.0247) (0.0344)

Experience-Squared 0.000848 -0.000681 0.00457*** 0.00449**
(0.00165) (0.00496) (0.00122) (0.00192)

Black indicator -0.945*** -0.926*** -0.886*** -0.753***
(0.0939) (0.162) (0.113) (0.0701)

Constant 16.60*** 16.42*** 17.00*** 16.68***
(0.242) (0.393) (0.173) (0.211)

Second-stage estimates
Education 0.157*** 0.176*** 0.268*** 0.104

(0.0524) (0.0521) (0.0271) (0.0662)
Experience 0.119*** 0.120*** 0.180*** 0.0932***

(0.0227) (0.0248) (0.0140) (0.0341)
Experience-Squared -0.00236*** -0.00201*** -0.00337*** -0.00221***

(0.000347) (0.000347) (0.000352) (0.000438)
Black indicator -0.123** -0.110** -0.00925 -0.148***

(0.0520) (0.0519) (0.0342) (0.0469)
Constant 3.237*** 2.698*** 1.400*** 4.360***

(0.883) (0.870) (0.466) (1.119)
Observations 3,010 3,010 3,010 3,010

Source: Card (1995). Notes: Standard errors in parentheses. SE robust for OLS estimates. *** p < 0.01, ** p < 0.05, *
p < 0.1. Regional and geographic dummies are used but omitted.

quantiles and the mean but it is significant for middle and high quantiles. Also, note that

although the second instrument (lived near 4-year college in 1966) rejects the null hypothesis

for the conditional mean, this variable has different degree of significance across quantiles.

In particular, this is for τ = 0.75 where the instrument is relevant only at 10% significance.

These results are very important since although the proximity to the university seems to be a

strong instrument to identify the causal effect of education on the conditional mean, our test

also indicates a certain limitation when the object of study is to evaluate the impact on the

lower part of conditional distribution of wages. Therefore, this alerts for the quality of the

asymptotic properties of the IVQR estimates in the presence of invalid instruments.

7 Conclusions

This paper proposes a first-stage model and inference procedures to evaluate the degree of

association between the IV and the endogenous regressor(s) in the IVQR estimator. The

procedure developed here allows to evaluate instruments in a similar vein to that in 2SLS

models for the conditional average, that is, by looking at the statistical significance of the

instruments in the first-stage regression. In turn, this will allow to investigate IV validity for

specific quantiles. Monte Carlo experiments clearly illustrate that one may encounter cases

where the IV are not valid for the mean, but are still valid for some quantiles. The same issue
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appears in the empirical application.

The analysis may be extended in the following two directions. First, this approach can

be used to identify local treatment effects, where an IV estimate being significant at some

quantiles corresponds to a particular effect of a treatment. Second, the procedure outlined

here could be combined with the second-stage inference to produce statistics similar to the

Staiger and Stock (1997) F-statistics rule-of-thumb. In particular, to study weak-instruments

issues in QR models.
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Appendix A: Proofs

Proof of Lemma 1. First, consider an estimator of the parameter µ using the true weighting

matrix V as

V =


f1

. . .

fn

 , (33)

that is given by the following

µ̃ = (W ′VW )−1W ′V D,

where W = [X,Z]. Replacing D by (Wµ0 + ε) in the definition of µ̃ we have that

√
n(µ̃− µ) =

(
W ′VW

n

)−1 W ′V ε√
n
.

By the Slutsky’s Theorem, the proof of the lemma requires showing that

W ′VW

n

p→ Ωf , (34)

and
W ′V ε√

n

d→ N(0,Ωfσ). (35)

To show (34), its left side has the (j, k) element given by

1

n

n∑
i=1

fiwijwik
p→ E [fiwijwik] ,

by the Law of Large Numbers and Assumption 2. To show (35), first note that

E
[
W ′V ε

]
= E

[
W ′V E[ε|W ]

]
= 0,

by Assumption 2. Furthermore, W ′V ε is a sum of i.i.d. random vectors fθ0(si) · wi · εi with

common covariance matrix having the (j, k) element

Cov (fiwijεi, fiwikεi) = E
[
f2i wijwikε

2
i

]
= E

[
f2i wijwikE[ε2i |wi]

]
= E

[
f2i wijwikσ

2
i

]
.

Thus, each vector fi ·wi · εi has covariance matrix Ωfσ. Therefore, by the Multivariate Central

Limit Theorem, (35) holds.

Finally, we have to show that using estimated weights does not affect the liming distribution.
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To establish that consider the estimator with the estimated weights as following

µ̂ = (W ′V̂ W )−1W ′V̂ D,

such that
√
n(µ̂− µ) =

(
W ′V̂ W

n

)
W ′V̂ ε√

n
. (36)

First, we show that
W ′V̂ ε√

n
− W ′V ε√

n

p→ 0. (37)

Note that
W ′(V̂ − V )ε√

n
= n−1/2

n∑
i=1

wiεi

(
f̂i − fi

)
. (38)

We want to show that the right hand side of (38) is op(1). Using the sparsity function

estimator in (22) along with some calculations, we have that

f̂i = fi +
2hn
f2i

si(θ̂ − θ) + op((nh
2)−2/3).

We refer the reader to Ota, Kato, and Hara (2019) for details on the remainder term.

Hence, using the previous equation, the jth component of the right hand side of equation

(38) can be written as
√
n(θ̂j − θ0,j)2hn

1

n

n∑
i=1

1

f2i
wijεi.

The first factor
√
n(θ̂j − θ0,j) = op(1) by Assumption 1 and CH. Moreover, note that

the average of the i.i.d. variables f−2i wiεi obeys the Law of Large Numbers by the moment

restrictions in Assumption 2, and the result follows.

Next, we show that
W ′V̂ W

n
− W ′VW

n

p→ 0, (39)

which follows from the same argument as above.

The convergences (37) and (39) are enough to show that the right-hand side of (36) satisfies(
W ′V̂ W

n

)
W ′V̂ ε√

n
−
(
W ′VW

n

)
W ′V ε√

n

p→ 0

just by making simple use of the equality

âb̂− ab = â(b̂− b) + (â− a)b.

Finally, Slutsky’s theorem yields the result.
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Proof of Proposition 1. The proof of this result is simple. It follows from observing that by

Lemma 1,
√
n(µ̂− µ0)

d→ N (0, V (µ0)) .

Notice that Rµ = δ1, hence under the null hypothesis,

√
n(Rµ̂− 0)

d→ N
(
0, RV (µ0)R

′) .
Let V̂ (µ̂) be a consistent estimator of V (µ0), and Vδ1 := RV (µ0)R

′, then by the Slutsky’s

theorem,

Tn = n
(
δ̂1

)′
{Vδ1}−1

(
δ̂1

)
d→ χ2

p1(ap1).

Appendix B: Examples of weighting factors

1. Location model

Consider a pure location model, using two equations

y = d+ u,

d = az + v,

with (u, v) ∼ N(0, 0, 1, 1, ρ) a bivariate normal with zero mean, unit variance and correlation

parameter ρ and z ∼ N(0, 1). Then, it follows that d ∼ N(0, 1 +a2) and y ∼ N(0, 2 +a2 + 2ρ).

Consider now the model where we condition on both (d, z). For this case, u|d, z ∼ N(ρv, (1−
ρ2)) by the marginal of the bivariate normal density. Then,

Qτ (u|d, z) = ρv +
√

1− ρ2Φ−1(τ).

Then, uτ = y−Qτ (y|d, z) = u−Qτ (u|d, z). Note that E(uτ |d, z) = E(uτ |d, z)−Qτ (u|d, z) =

−
√

1− ρ2Φ−1(τ). Thus, the density is

fuτ (U |d, z) =
1√

1− ρ2
φ

(
U +

√
1− ρ2Φ−1(τ)√
1− ρ2

)
,

where φ() is the density function of a standard normal. If we evaluate it at 0,

fuτ (0|d, z) =
1√

1− ρ2
φ
(
Φ−1(τ)

)
.
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Now consider the joint density of (u, d) ∼ N(0, 0, 1, 1 + a2, κ), where κ = ρ√
1+a2

. Then, it

follows that u|d ∼ N(E(u|d), V ar(u|d)), where E(u|d) = κd and V ar(u|d) = (1− κ2).
As such, we can obtain the quantiles of interest,

Qτ (y|d) = d+ κd+ Φ−1(τ)(1− κ2)1/2.

Note that without endogeneity, i.e. ρ = 0, then κ = 0, and the correct τ -quantile model

should be

Qτ (y|d, ρ = 0) = d+ Φ−1(τ).

Now, u∗τ = y−Qτ (y|d) = d+u− (d+κd+Φ−1(τ)(1−κ2)1/2) = u−κd−Φ−1(τ)(1−κ2)1/2.
Then, E(u∗τ |d) = −Φ−1(τ)(1− κ2)1/2, and V ar(u∗τ |d) = V ar(u|d) = (1− κ2).

Then,

fu∗τ (U |d) =
1√

(1− κ2)
φ

(
U − E(u∗τ |d)√
V ar(u∗τ |d)

)
,

such that,

fu∗τ (0|d) =
1√

(1− κ2)
φ
(
Φ−1(τ)

)
.

In all cases, fu∗τ (0|d) and fuτ (0|d, z) are constant that do not change with d or z. It is

interesting to evaluate when a = 0, such that (1 − κ2) = (1 − ρ2). Note that in this case,

fu∗τ (0|d) = fuτ (0|d, z).

2. Location-scale model 1

Now consider a location-scale model of the form

y = d+ (1 + cd)u,

d = az + v,

where a and c are parameters. As in the previous case (u, v) ∼ N(0, 0, 1, 1, ρ). Then, u|(d, z) ∼
u|v ∼ N(ρv, 1 − ρ2). Thus, Qτ (u|d, z) = ρv +

√
1− ρ2Φ−1(τ). Note that it does not depend

on z.

In this case, Qτ (y|d, z) = d + (1 + cd)Qτ (u|d, z), and then, uτ = y − Qτ (y|d, z) = (1 +

cd)(u−Qτ (u|d, z)).
As such, we can obtain,

fuτ (U |d, z) =
1

|1 + cd|
√

1− ρ2
φ

(
U + (1 + cd)

√
1− ρ2Φ−1(τ)

(1 + cd)
√

1− ρ2

)
.
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If we evaluate it at 0,

fuτ (0|d, z) =
1

|1 + cd|
√

1− ρ2
φ
(
Φ−1(τ)

)
.

Note that this depends d, and then, the weights are not uniform.

Now, consider the of u|d. Consider first the joint distribution of (u, d) ∼ N(0, 0, 1, 1+a2, κ)

where κ = ρ/
√

1 + a2. Now, u|d ∼ N(κd, (1−κ2)), then E(u|d) = κd and V ar(u|d) = (1−κ2).
For this case let u∗τ = y−Qτ (y|d) = d+(1+cd)u−d−(1+cd)Qτ (u|d) = (1+cd)(u−Qτ (u|d)).

Since u|d is Gaussian then (1 + cd)(u − κd − Φ−1(τ)(1 − κ2)1/2). Then, E(u∗τ |d) = (1 +

cd)(−Φ−1(τ)(1− κ2)1/2) and V ar(u∗τ |d) = (1 + cd)2(1− κ2). As such, we can obtain,

fu∗τ (U |d) =
1

|1 + cd|
√

1− κ2
φ

(
U + (1 + cd)(1− κ2)1/2Φ−1(τ)

(1 + cd)(1− κ2)1/2

)
.

If we evaluate it at 0,

fu∗τ (0|d) =
1

|1 + cd|
√

1− κ2
φ
(
Φ−1(τ)

)
.

Note that both fuτ (0|d, z) and fu∗τ (0|d) share the same relationship with d. In fact, the

weighting procedure will be equivalent, as they are proportional to each other.

3. Location-scale model 2

Now consider a location-scale model where both the first and second stage are affected in the

variance component,

y = d+ (1 + cd)u,

d = az + (1 + bz)v,

where a, b, and c are parameters. As in the previous case (u, v) ∼ N(0, 0, 1, 1, ρ). Define w =

(1+bz)v and note that (u,w|z) ∼ N(0, 0, 1, (1+bz)2, ρ). Then, u|d, z ∼ u|w, z ∼ N(ρv, 1−ρ2).
Thus, Qτ (u|d, z) = ρv +

√
1− ρ2Φ−1(τ). Note that it does not depend on b.

In this case, Qτ (y|d, z) = d + (1 + cd)Qτ (u|d, z), and then, uτ = y − Qτ (y|d, z) = (1 +

cd)(u−Qτ (u|d, z)).
As such, we can obtain,

fuτ (U |d, z) =
1

|1 + cd|
√

1− ρ2
φ

(
U + (1 + cd)

√
1− ρ2Φ−1(τ)

(1 + cd)
√

1− ρ2

)
.

If we evaluate it at 0,

fuτ (0|d, z) =
1

|1 + cd|
√

1− ρ2
φ
(
Φ−1(τ)

)
.

Note that this depends d, and then, the weights are not uniform.
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Now, it is not standard to obtain the distribution of u|d. To exemplify this, suppose

z = {0, 1} is a simple binary variable with p = Pr(z = 1) and independent of (u, v). Then,

the joint density is f(u, v, z) = φρ(u, v)pz(1− p)1−z and using the Jacobian transformation we

obtain:

f(u, d, z) =
1

|1 + bz|
φρ

(
u,
d− az
1 + bz

)
pz(1− p)1−z

Therefore,

f(u, d) = φρ (u, d) (1− p) +
1

|1 + b|
φρ

(
u,
d− a
1 + b

)
p

and

f(d) = φ(d)(1− p) +
1

|1 + b|
φ

(
d− a
1 + b

)
p

Putting all that together, the conditional density is

f(u|d) =
φρ (u, d) (1− p) + 1

|1+b|φρ

(
u, d−a1+b

)
p

φ(d)(1− p) + 1
|1+b|φ

(
d−a
1+b

)
p

.

If we assume that p = |1+b|
1+|1+b| this expression simplifies to

f(u|d) =
φρ (u, d) + φρ

(
u, d−a1+b

)
φ(d) + φ

(
d−a
1+b

) .

We can rewrite this as a function of standard normal densities noting that φρ(u, d) =

φρ(u|d)φ(d) with φρ(u|d) = 1√
1−ρ2

φ

(
u−ρd√
1−ρ2

)
, then

f(u|d) =
1√

1− ρ2
φ

(
u− ρd√

1− ρ2

)
ω(d) +

1√
1− ρ2

φ

(
u− ρd−a1+b√

1− ρ2

)
(1− ω(d)),

where ω(d) = φ(d)

φ(d)+φ( d−a1+b )
. Therefore, conditional on d this density is a Gaussian mixture

of two distributions with different means. Two particular cases are: (i) ρ = 0 (exogeneity)

where f(u|d) = φ(u); (ii) a = b = 0 (d and z unrelated) which reduces to f(u|d) = φρ(u|d).

Obviously, in the rest of the cases Qτ (u|d) does not have an explicit analytical solution and

therefore neither u∗τ = y −Qτ (y|d) = (1 + cd)(u−Qτ (u|d)).

The interesting feature to notice is that in all cases, the distribution of u∗τ depends basically

on d, and (1 + cd) should be used to standardize its density function in a similar way to uτ .
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