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Abstract: For division problems with single-peaked preferences (Sprumont, 1991) we

show that all sequential allotment rules, identi�ed by Barberà, Jackson and Neme

(1997) as the class of strategy-proof, e¢ cient and replacement monotonic rules, are

also obviously strategy-proof. Although obvious strategy-proofness is in general more

restrictive than strategy-proofness, this is not the case in this setting.
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1 Introduction

We consider the class of division problems with single-peaked preferences where k indivisible
units of a good have to be allotted among a set of agents. Each agent has an ideal amount
(the top assignment) � the less, the worse; the more, the worse� inducing single-peaked
preferences over the set of agent�s assignments. Monetary transfers are not possible.
Di¤erent real-world problems can be framed within this model. Situations where a set

of agents must share a good, a bad or a task like the surplus of a joint venture, the cost of
a public good, the division of a job, or rationed goods traded at �xed prices. For example,
the agents could be investors, with di¤erent risk-preferences and wealths, and the units
of the good could be shares in a risky project. Agents�risk attitudes and wealths induce
single-peaked preferences over their assigned shares. The agents could also be workers who
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have collectively agreed to complete a project requiring a �xed number of hours paid at a
�xed wage. Agents�quasi-concave preferences over work and leisure induce single-peaked
preferences over their assigned number of working hours. Finally, the good might be a plot
of land that needs to be divided among hobby gardeners each of whom wishes to cultivate
some land, but not necessarily all.1

The question is: How should division problems be solved? What properties should a
solution have? A solution to division problems is a rule that chooses an allotment for
each pro�le of single-peaked preferences over f0; : : : ; kg. But preferences are agents�private
information and they have to be elicited. A rule is strategy-proof if, for each agent, truth-
telling is always optimal, regardless of the preferences declared by the other agents. A rule is
e¢ cient if the chosen allotment is Pareto optimal at each pro�le of single-peaked preferences.
A rule is replacement monotonic if it satis�es a weak solidarity principle requiring that if
an agent obtains a di¤erent assignment by changing the revealed preference, then all other
agents�assignments should change in the same direction.
Barberà, Jackson and Neme (1997) consider the class of division problems where agents

might begin with natural claims to minimal or maximal assignments, or might be treated
with di¤erent priorities, due for example to their seniorities, and these initial entitlements
should be attended as far as possible. They characterize the class of strategy-proof, e¢ cient
and replacement monotonic rules on the domain of single-peaked preferences as the family
of sequential allotment rules.
A sequential allotment rule may be thought of as starting from two reference allotments:

The scarcity guaranteed allotment, to be used whenever the sum of agents�tops is larger
than k, and the excess guaranteed allotment, to be used whenever the sum of agents�tops is
smaller than k: If the corresponding guaranteed allotment is not e¢ cient, the rule corrects
it to select an e¢ cient allotment. Rules within this class di¤er on the two pre-selected
guaranteed allotments and on how the e¢ cient correction takes place (the correction has
to be monotonous for the rule to satisfy replacement monotonicity). A rule is individually
rational with respect to an allotment if each agent�s assignment is always at least as good as
his/her assignment at this allotment. Barberà, Jackson and Neme (1997) also show that an
individually rational sequential allotment rule with respect to an allotment has the property
that the two reference allotments are equal to this allotment.
In this paper we ask: How might e¢ cient allotments be implemented while, at the same

time, promoting solidarity among agents who may have problems with contingent reasoning?
Speci�cally, what would happen if we demanded that the rule be obviously strategy-proof
rather than just strategy-proof? Li (2017) proposes the stronger incentive notion of obvious
strategy-proofness under which agents, in order to identify that truth-telling is an optimal
decision, do not need to reason contingently about other agents� decisions. This notion

1Division problems have been studied intensively; see for instance Thomson (1994a, 1994b and 1997),
Barberà (2011)�s survey on strategy-proofness and, more recently, Moulin (2015), Wakayama (2017) or
Juarez and You (2019). The continuous version of this model was �rst studied by Sprumont (1991). The
discrete version considered here was �rst studied by Herrero and Martínez (2011). In the �nal remarks
section we explain the di¢ culties of performing our analysis in the continuous version.
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requires that, given a rule, agents�preferences should be revealed sequentially and through
an extensive game form induces the rule and where truth-telling is obviously dominant and.
Obvious dominance means that whenever an agent has to take a decision in a node (in the
game in extensive form) he/she evaluates the consequences of truth-telling in a pessimistic
way (thinking that the worst possible assignment will follow) and the consequences of not
truth-telling in an optimistic way (thinking that the best possible assignment will follow);
moreover, the pessimistic assignment associated to truth-telling is at least as good as the
optimistic assignment associated to not truth-telling. Hence, the decision prescribed by
truth-telling at that node appears as unmistakably optimal; i.e. obviously dominant.
The di¢ culty of answering the above question is that obvious strategy-proofness of a rule

requires, at each pro�le of preferences, truthful revelation throughout an extensive game
form that results in the allotment chosen by the rule at that pro�le. But the sequential
mechanism is not given by a general revelation principle as it is for strategy-proofness in the
form of the direct revelation mechanism. The main di¢ culty lies then in identifying, for each
rule, the extensive game form that implements the rule in obviously dominant strategies.2

The result of this paper is the following: Any e¢ cient and replacement monotonic rule
that can be implemented in dominant strategies can moreover be done so in obviously
dominant strategies. That is, in the implementation we can accommodate agents who have
trouble with contingent reasoning because obvious strategy-proofness is no more restrictive
than strategy-proofness. Namely, we show that all sequential allotment rules (a quite large
class of rules) are obviously strategy-proof. Moreover, our proof is constructive: For each
sequential allotment rule we explicitly show how to construct such extensive game form.
Our construction of the class of extensive game forms has two tiers. We �rst propose

general traits of an algorithm along which agents sequentially face some choice sets consisting
of at most three adjacent assignments, one of them guaranteed (the one in the middle, if the
set has three choices): If the agent chooses it, he/she does not play again and receives it as
his/her �nal assignment. At each step, the algorithm partially leaves open the selection of
the agent that has to choose and the guaranteed assignment determining his/her choice set.
When the agent chooses for the �rst time, he/she faces three choices: either leave with the
guaranteed assignment, or ask for more and aim to get more, or ask for less and aim to get
less. If the agent asks for more, then his/her guaranteed assignment may increase further,
one unit at a time. If the agent asks for less, then his/her guaranteed assignment may
decrease further, one unit at a time. If the procedure terminates before the agent leaves,
then the agent gets his/her guaranteed assignment. Moreover, the guaranteed assignments
evolve throughout the algorithm by assuring that all proposed warranties are feasible. Since
the paths of guaranteed assignments throughout the algorithm are monotonous and agent

2Ashlagi and Gonczarowski (2018), Bade and Gonczarowski (2017), Mackenzie (2020) and Pycia and
Troyan (2020) contain results identifying general features of extensive game forms that could be used
to implement rules in obviously dominant strategies in di¤erent environments. We will follow Ashlagi
and Gonczarowski (2018) and Mackenzie (2020) to restrict ourselves to extensive game forms with perfect
information. See Mackenzie (2020) for a detailed description and discussion of the di¤erences, similarities
and nuances between the proposals of those four papers.
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speci�c, we refer to it as the Monotonous and Individualized Algorithm (MIA).
The MIA de�nes a family of extensive game forms, each named as a Monotonous and

Individualized Game (MIG). Truthful reporting is an obviously dominant strategy for an
agent playing a MIG. Fix a node in the tree of a MIG (that corresponds to one step of
the MIA) and consider the agent with a single-peaked preference that plays at this node.
If the agent�s top is his/her guaranteed assignment (which is always an available choice),
to choose it is obviously dominant since the worst that might happen is to be assigned to
his/her top. If the agent�s top is strictly above his/her guaranteed assignment, the worst
that might happen if he/she asks for more (i.e., truth-tells) is to receive his/her guaranteed
assignment. This is because the agent might still be able to select larger assignments, up
to his/her top, along the monotonic path of guaranteed assignments towards his/her top.
In contrast, if the agent does not ask for more (i.e., does not truth-tell), the best that
might happen is to receive either the guaranteed allotment or strictly less, all worse than
the assignment obtained by truth-telling. Symmetrically, if agent�s top is strictly below
the guaranteed assignment. The key feature of the MIG is that, given the top and the
initial guaranteed assignment, the agent can choose either his/her top or to push forward
the guaranteed assignment towards his/her top, without exceeding it, by asking for more (if
the top is above) or asking for less (if the top is below). And single-peakedness guarantees
that truth-telling is obviously dominant.
The second tier consists in tailoring the MIA to each sequential allotment rule. Fix a

sequential allotment rule. At each step of the MIA, the agent that has to play and his/her
guaranteed assignment are selected in such a way that the corresponding MIG implements
in obviously dominant strategies precisely the given sequential allotment rule.
Assume �rst that the sequential allotment rule is individually rational with respect to an

allotment (comprising agents�initial guaranteed assignments). At Stage A of the MIA, each
agent is asked, sequentially and in any order, whether he/she would like more than, less
than, or exactly his/her guaranteed assignment. Agents who want exactly the guaranteed
assignment leave the game and receive it for sure. Then, at each step in Stage B of the
MIA, select an agent who wants more and an agent who wants less, and the later transfers
one unit of the good to the former. These two new assignments together with the previous
guaranteed assignments of the other agents become the new guaranteed allotment. Keep
making Pareto-improving transfers until no more are available. We show that, by using
the given sequential allocation rule to select the pair of agents in each Pareto improving
transfer, the �nal guaranteed allotment is, for any pro�le of single-peaked preferences, the
allotment that the rule would have chosen if agents had reported truthfully.
Assume now that the sequential allotment rule is not individually rational. This case is

more involved because agents cannot be o¤ered an initial guaranteed allotment as we did in
Stage A of the individually rational case. However, we can modify Stage A as follows. First,
use as initial warranties the scarcity and the excess guaranteed allotments, those selected by
the sequential allotment rule when agents either all ask for k or all ask for zero; respectively.
Second, keep updating these two allotments by evaluating the sequential allotment rule at
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less extreme pro�les of tops until both converge to a unique guaranteed allotment.3 Hence,
Stage A produces a unique reference allotment that behaves as if it were guaranteed at the
subset of single-peaked preferences that are consistent with all choices which led to it. Then,
trade from this point as in Stage B of the individually rational case.
In light of the extreme behavioral criterion used to evaluate truth-telling, it is not sur-

prising that the literature has already identi�ed settings for which just a few and very
special strategy-proof rules satisfy the stronger requirement. Li (2017) already shows that
the rule associated to the top-trading cycles algorithm in the house allocation problem of
Shapley and Scarf (1974) is not obviously strategy-proof, and Troyan (2019) identi�es a
domain of acyclic preferences that is necessary and su¢ cient for that rule to be obviously
strategy-proof. Ashlagi and Gonczarowski (2018) show that the rule associated to the de-
ferred acceptance algorithm is not obviously strategy-proof for the agents belonging to the
o¤ering side, but it is on the domain of acyclic preferences de�ned by Ergin (2002). How-
ever, some earlier possibility results can already be found in Li (2017). He characterizes the
monotone price mechanisms (generalizations of ascending auctions) as those that implement
all obviously strategy-proof rules on the domain of quasi-linear preferences. He also shows
that, for online advertising auctions, the rule induced by the mechanism that selects the
e¢ cient allocation and the Vickrey-Clarke-Groves payment is obviously strategy-proof.4

Our paper contributes to the possibility strand of this literature by showing that, despite
the fact that in many settings obvious strategy-proofness becomes signi�cantly more restric-
tive than just strategy-proofness, for the division problems with single-peaked preferences
each sequential allotment rule (i.e., each strategy-proof, e¢ cient and replacement monotonic
rule) is indeed obviously strategy-proof. And we show it by exhibiting the extensive game
form that implements each sequential allotment rule in obviously dominant strategies.
The paper is organized as follows. Section 2 contains the preliminaries. Section 3 presents

the notion of obvious strategy-proofness adapted to our setting. Section 4 contains the
description of the MIA and the statement and proof that, in any extensive game form de�ned
by the MIA, truth-telling is obviously dominant. Section 5 de�nes, for each sequential
allotment rule, the extensive game form that implements the rule in obviously dominant
strategies. Sections 6 contains the main result and an example. Section 7 contains �ve �nal
remarks. The Appendix at the end of the paper collects omitted proofs.

2 Preliminaries

Agents are the elements of a �nite set N = f1; : : : ; ng, where n � 2. They have to share
k indivisible units of a good, where k � 2 is a positive integer. An allotment is a vector

3Lemmata 1, 2 and 3, used in the proof of the Theorem 1, state that such convergences occur.
4For other partially positive or revelation principle like results see also Arribillaga, Massó and Neme

(2020), Bade and Gonczarowski (2017), Pycia and Troyan (2020) and Troyan (2019). Note that although
the �rst two papers also consider single-peaked preferences, they do so in a context of a public good (i.e.,
voting), while here the context is of private goods, and the two models are completely di¤erent.
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x = (x1; : : : ; xn) 2 f0; : : : ; kgN such that
Pn

i=1 xi = k. We refer to xi 2 f0; : : : ; kg as agent
i�s assignment. Let X be the set of allotments. Each agent i 2 N has a (weak) preference Ri
over f0; : : : ; kg, the set of i�s possible assignments. Let Pi be the strict preference associated
with Ri. The preference Ri is single-peaked if (i) it has a unique most-preferred assignment
�(Ri), the top of Ri, such that for all xi 2 f0; : : : ; kg n f�(Ri)g, �(Ri) Pi xi, and (ii) for
any pair xi; yi 2 f0; : : : ; kg, yi < xi < � (Ri) or � (Ri) < xi < yi implies xi Pi yi. We
assume that agents have single-peaked preferences. Often, only �(Ri) about Ri will be
relevant and if Ri is obvious, we will refer to its top as � i: We denote by 0, 1 and k the
vectors (0; : : : ; 0); (1; : : : ; 1); (k; : : : ; k) 2 f0; : : : ; kgN and, given S � N , by 0S; 1S and
kS the corresponding subvectors where all agents in S receive the assignment 0; 1 or k,
respectively. Given x = (x1; : : : ; xn), we denote (xi)i2S as xS and (xi � 1)i2S as (x� 1)S.
LetR be the set of all single-peaked preferences. Pro�les, denoted byR = (R1; : : : ; Rn) 2

RN , are n-tuples of single-peaked preferences. To stress the role of agent i�s or agents in S,
we will represent a pro�le R by (Ri; R�i) or by (RS; R�S), respectively.
A (discrete) division problem is a pair (k;N), where k is the number of units of the good

that have to be allotted among the agents in N with single-peaked preferences.
A solution of the division problem (k;N) is a rule � : RN ! X that selects, for each

pro�le R 2 RN , an allotment �(R) 2 X.
A desirable requirement on rules is e¢ ciency. A rule � : RN ! X is e¢ cient if, for

each R 2 RN , there is no y 2 X such that yi Pi �i(R) for all i 2 N and yj Pj �j(R) for
at least one j 2 N . It is easy to check that when coupled with single-peakedness, e¢ ciency
is equivalent to same-sidedness which requires that all agents are rationed in the same side
of the top: Below the tops when there is scarcity and above them when there is excess.
Namely, a rule � : RN ! X satis�es same-sidedness if for all R 2 RN ;P

j2N �(Rj) � k implies �i(R) � �(Ri) for all i 2 N , (1)P
j2N �(Rj) � k implies �i(R) � �(Ri) for all i 2 N: (2)

Rules require agents to report single-peaked preferences. A rule is strategy-proof if it is
always in the best interest of agents to truthfully reveal their preferences; namely, truth-
telling is a weakly dominant strategy in the game in normal form obtained from the rule at
each pro�le. A rule � : RN ! X is strategy-proof if for all R 2 RN , i 2 N and R0i 2 R;

�i(Ri; R�i) Ri �i(R
0
i; R�i):

If �i(R0i; R�i) Pi �i(Ri; R�i) we say that i manipulates � : RN ! X at R 2 RN via R0i 2 R.
Clearly, � : RN ! X is strategy-proof if no agent can manipulate it.
Replacement monotonicity is a weak solidarity property (see Thomson (2016)). It re-

quires that if an agent obtains a di¤erent assignment by changing the revealed preference,
then all other agents�assignments should change in the same direction. A rule � : RN ! X

is replacement monotonic if for all R 2 RN , i 2 N , and R0i 2 R,5

�i(Ri; R�i) � �i(R0i; R�i) implies �j(Ri; R�i) � �j(R0i; R�i) for all j 6= i:

5As Barberà, Jackson and Neme (1997) argue, the normative justi�cation for this property relies on
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Individual rationality with respect to an allotment q 2 X guarantees that each agent i
receives an assignment that is weakly preferred to qi: A rule � : RN ! X is individually
rational with respect to an allotment q 2 X if for all R 2 RN and i 2 N ,

�i(R) Ri qi:

A rule � : RN ! X is tops-only if for all R;R0 2 RN such that �(Ri) = �(R0i) for all
i 2 N; �(R) = �(R0): Abusing notation, a tops-only rule � : RN ! X can be written as
� : f0; : : : ; kgN ! X; and so we will often interchange �(� 1; : : : ; �n) and �(R1; : : : ; Rn):
For continuous division problems, Barberà, Jackson and Neme (1997) characterize the

class of all strategy-proof, e¢ cient and replacement monotonic rules as the set of all sequen-
tial allotment rules. The proof of their characterization can be adapted to discrete division
problems. In discrete division problems it also holds that if � is strategy-proof and e¢ cient,
then no agent can a¤ect his/her own assignment by changing to a new preference with the
same top. If, in addition, � is non-bossy, then none of the assignments are a¤ected. Hence,
� is tops-only and then, the proof of the characterization for discrete division problems
proceeds as in the continuous case. For further reference, we state this characterization
(and the one adding individual rationality) as Proposition 1.

Proposition 1 (Barberà, Jackson and Neme, 1997) Let (k;N) be a division problem. A
rule � : RN ! X is strategy-proof, e¢ cient and replacement monotonic if and only if �
is a sequential allotment rule. Moreover, a rule � : RN ! X is strategy-proof, e¢ cient,
replacement monotonic and individually rational with respect to q if and only if � is a
sequential allotment rule such that �(0) = �(k) = q:

Sequential allotment rules allot the k units sequentially, using guaranteed allotments for
the agents that evolve throughout the process and that are compared to their tops. We
describe the general procedure that any sequential allotment rule follows.6 The rule has to
specify two initial guaranteed allotments for the agents. The scarcity allotment q 2 X, to
be used when the sum of the tops is strictly larger than k, and the excess allotment q 2 X,
to be used when the sum of the tops is strictly smaller than k.
To de�ne a sequential allotment rule �, let q and q be respectively its excess and scarcity

guaranteed allotments, and let � = (� 1; : : : ; �n) 2 f0; : : : ; kgN be an arbitrary vector of tops.
Suppose

Pn
i=1 � i = k: Then, since � is the unique e¢ cient allotment at � , �(�) = � .

Suppose
Pn

i=1 � i > k (the case
Pn

i=1 � i < k is symmetric, using q instead of q). If � j � qj
for all j, then �(�) = q. Otherwise, each j with � j � qj receives � j and leaves the process
with � j units, while the other agents remain. The guaranteed assignments of the remaining

e¢ ciency and single-peakedness. The condition has a clear solidarity-based normative content and it is
equivalent to a weakening of the welfare version called one-sided welfare-domination under preferences
replacement (Thomson, 1997). It is a form of non-bossiness: An agent, without a¤ecting his/her assignment,
cannot transfer units among the other agents. A rule � : RN ! X is non-bossy if for all R 2 RN , i 2 N and
R0i 2 R, �i(R) = �i(R0i; R�i) implies �(R) = �(R0i; R�i). Replacement monotonicity implies non-bossiness.

6For a formal de�nition of a sequential allotment rule see Barberà, Jackson and Neme (1997). Our results
will be based on the properties characterizing the class, without explicitly using this de�nition.
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agents are weakly increased by distributing among them the not yet allotted units. Agents
with a top smaller than or equal to the new guaranteed assignment receive the top and leave
the process, while the others remain. The process proceeds this way until all units have
been already allotted, with the remaining agents receiving their last guaranteed assignment.
At the end of the process, each agent i receives either � i or i�s �nal guaranteed assignment

which has been moving towards � i throughout the process. Hence, by single-peakedness,
at all pro�les with scarcity, each agent is at least as well-o¤ as at the scarcity guaranteed
assignment, and the analogous statement holds for the excess guaranteed assignment. Note
that �(0) = q and �(k) = q. If q := q = q then, for every � and j, �j(�) lies between
� j and qj and, by single-peakedness, � is individually rational with respect to q. The
process ends with an e¢ cient allotment because, under scarcity, all agents receive less than
their tops and, under excess, all receive more. Replacement monotonicity requires that the
guaranteed assignments evolve monotonically. Since the sequential procedure depends on
the pro�le of tops, strategy-proofness imposes some restrictions on the process; for instance,
if the guaranteed assignment of an agent is smaller than his/her top, then it should remain
the same with an even larger announced top. The di¤erences in guaranteed assignments
allow the rule to treat agents di¤erently according to asymmetries that one wishes to respect.
The next example describes a sequential allotment rule � by specifying the two guaran-

teed allotments and how they evolve relative to two pro�les of tops, one with scarcity and
the other with excess.

Example 1 Let N = f1; 2; 3; 4g, k = 7, q = (4; 0; 2; 1) and q = (0; 1; 1; 5).
Consider � = (5; 1; 2; 2): Since

P4
i=1 � i > 7; the rule � �rst uses q = (0; 1; 1; 5) as

guaranteed assignments, represented in Figure 1.a by the four large circles. In Figures 1 and
2 we represent in the horizontal axes the tops and guaranteed assignments of each of the four
agents, who are represented in the vertical axes. Since � 2 = 1 = q2 and � 4 = 2 < 5 = q4,
�2(�) = 1 and �4(�) = 2; and agents 2 and 4 leave with their tops. The amount not
allotted yet is bk = 4. Suppose that the adjusted guaranteed assignments are q1 = 1 and
q3 = 3, represented in Figure 1.b by the two large circles. Since � 3 = 2 < 3 = q3 and
q1 = 1 < 5 = � 1, �3(�) = 2 and agent 3 leaves with � 3. Since only agent 1 remains and
two units have not been allotted yet, the new guaranteed assignment for agent 1 has to be
equal to 2 (strictly smaller than � 1 because

P4
i=1 � i > 7 and all other agents have received

their tops). Hence, �1(�) = 2: Therefore, �(�) = (2; 1; 2; 2):

-
0 1 2 3 4 5 6 7

= k

agents

1

2

3

4

e e
e

e

�1

�2

�3

�4

Figure 1.a

-
0 1 2 3 4 5 6 7

= bk

agents

�4(�) = 2

�2(�) = 1

q3 = 3

q1 = 1 1

2

3

4

e
e

�1

�3 �3(�) = 2

�1(�) = 2

Figure 1.b
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Consider � 0 = (1; 1; 3; 0): Since
P4

i=1 �
0
i < 7; the rule � �rst uses q = (4; 0; 2; 1) as

guaranteed assignments, represented in Figure 2.a by the small four circles. Since q
2
=

0 < 1 = � 02 and q
3
= 2 < 3 = � 03, �2(�

0) = 1 and �3(� 0) = 3, and agents 2 and 3

leave with their tops. The amount not allotted yet is bk0 = 3. Suppose that the adjusted
guaranteed assignments are q01 = 2 and q04 = 1, represented in Figure 2.b by two small
circles. Since � 01 = 1 < 2 = q01 and �

0
4 = 0 < 1 = q04 , �1(�

0) = 2 and �4(� 0) = 1: Therefore,
�(� 0) = (2; 1; 3; 1):

-
0 1 2 3 4 5 6 7

= k

agents

1

2

3

4

b
b

b
b

� 01

� 02

� 03

� 04

Figure 2.a

-
0 1 2 3 4 5 6 7

= bk0

agents

�3(� 0) = 3

�2(� 0) = 1

q04 = 1

q01 = 2 1

2

3

4

b

b

� 01

� 04 �4(� 0) = 1

�1(� 0) = 2

Figure 2.b
�

3 Obviously strategy-proof implementation

We brie�y describe the notion of obvious strategy-proofness. Li (2017) proposes this notion
with the aim of reducing the contingent reasoning that agents have to carry out to identify
that, given a rule, truth-telling is always a weakly dominant strategy. A rule � is obviously
strategy-proof if there exists an extensive game form with two properties. First, for each
pro�le R 2 RN one can identify a behavioral strategy pro�le, associated to truth-telling,
such that if agents play according to such strategy the outcome is �(R); the allotment
selected by the rule � at R; that is, the extensive game form induces �. Second, whenever
agent i with preferences Ri has to play, i evaluates the consequence of choosing the action
prescribed by i�s truth-telling strategy according to the worst possible outcome among all
outcomes that may occur as an e¤ect of later actions made by agents throughout the rest of
the game. In contrast, i evaluates the consequence of choosing an action di¤erent from the
one prescribed by i�s truth-telling strategy according to the best possible outcome among
all outcomes that may occur again as an e¤ect of later actions throughout the rest of the
game. Then, i�s truth-telling strategy is obviously dominant in the game in extensive form
if, whenever i has to play, its pessimistic outcome is at least as preferred as the optimistic
outcome associated to any other strategy. If the extensive game form induces � and for
each agent truth-telling is obviously dominant, then � is obviously strategy-proof.
For our context, two important simpli�cations related to obvious strategy-proofness have

been identi�ed in the literature that follows Li (2017). First, without loss of generality we
can assume that the extensive game form that induces the rule has perfect information (see
Ashlagi and Gonczarowski (2018) and Mackenzie (2020)). Second, the new notion of obvious

9



strategy-proofness can be fully captured by the classical notion of strategy-proofness applied
to games in extensive form with perfect information. This last observation follows from the
fact that the best possible outcome obtained when agent i chooses an action di¤erent from
the one prescribed by i�s truth-telling strategy and the worst possible outcome obtained when
agent i chooses the action prescribed by i�s truth-telling strategy are both obtained with only
one behavioral strategy pro�le of the other agents, because the perfect information implies
that all information sets are singleton sets (and each one belongs either to the subgame that
follows the truth-telling choice or else to the subgame that follows the alternative choice).7

Then, for easy presentation and following this literature, we will say that a rule is obviously
strategy-proof if it is implemented by an extensive game form with perfect information for
which truth-telling is a weakly dominant strategy.
Our approach is based on a general algorithm that, if tailored to a sequential allotment

rule, de�nes an extensive game form. Then, the algorithm gives precise instructions on
how to identify at each step the agent that plays and the set of actions (associated to non-
terminal nodes of the tree), and when to stop (associated to terminal nodes of the tree).
We omit here the formal de�nition of an extensive game form.
Fix a division problem given by the integer k and the set of agents N . Let G be the

class of all (�nite) extensive game forms associated to (k;N) whose results associated to
terminal nodes are allotments in X. Fix an extensive game form � 2 G and an agent i 2 N:
A (behavioral and pure) strategy of i in � is a function �i that selects at each node where
i has to play one of i�s available actions at that node. Let �i be the set of i�s strategies in
�: A strategy pro�le � = (�1; : : : ; �n) 2 �1 � � � � � �n = � is an ordered list of strategies,
one for each agent. Given i 2 N; � 2 � and �0i 2 �i we often write (�0i; ��i) to denote the
strategy pro�le where �i is replaced in � by �0i: Let g : �! X be the outcome function of
�. Hence, g(�) is the allotment assigned to the terminal node that results when agents play
� according to � 2 �; in particular,

Pn
i=1 gi(�) = k for all � 2 �.

Fix an extensive game form � 2 G and a preference pro�le R 2 RN . Let (�; R) denote
the game in extensive form where each agent i 2 N evaluates strategy pro�les in � according
to Ri. A strategy �i is weakly dominant in (�; R) if, for all ��i and all �0i,

gi(�) Ri gi(�
0
i; ��i):

We are now ready to de�ne obvious strategy-proofness in the context of division problems.

De�nition 1 Let (k;N) be given. A rule � : RN ! X is obviously strategy-proof if there
is an extensive game form � 2 G associated to (k;N) such that, for each i 2 N and Ri 2 R;
(i) there exists �Rii 2 �i such that �(R) = g(�R), where R = (R1; : : : ; Rn) and �R =

(�R11 ; : : : ; �Rnn ), and

(ii) �Rii is weakly dominant in (�; R).8

7Mackenzie (2020) proves this for a class of extensive form games with perfect information, called round
table mechanisms, but the proof can be adapted to any extensive game form with perfect information.

8Recall that by Mackenzie (2020), requiring weak dominance is equivalent to requiring obvious domi-
nance.
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When (i) holds we say that � induces �: When (i) and (ii) hold we say that � OSP-
implements � and refer to �Rii as i�s truth-telling strategy.
Our main result states that all sequential allotment rules are obviously strategy-proof.

Namely, in the two statements of Proposition 1, strategy-proofness can be replaced by obvi-
ous strategy-proofness. The proof of our result is constructive, and based on the Monotonous
and Individualized Algorithm (MIA) that we describe in the next section.

4 TheMonotonous and Individualized Algorithm (MIA)

Our aim here is to de�ne, for the division problem (k;N), a family of extensive game forms
in G, which we will refer to as Monotonous and Individualized Games (MIG), with the
properties that (i) in each � 2 MIG, truth-telling is always weakly dominant and (ii) for
each sequential allotment rule �; one can identify a � 2MIG that OSP-implements �. We
de�ne the family through the Monotonous and Individualized Algorithm (MIA).
At every step of the MIA an agent i and his/her guaranteed assignment �i are selected.

Agent i can either leave with his/her assignment �i or stay, waiting for more or less: The
�rst time that agent i is called to play has three possible actions: �i, more than �i or less
than �i: If agent i chooses the guaranteed assignment �i; then i enters the set of agents that
want to stop (Ns) and i will not be called to play anymore and will receive �i: If agent i
asks for more than �i; then i enters the set of agents that want to go up (Nu) and i might
be called to play later in the game, in which case i�s guaranteed assignment will be equal to
�i+1, and the choice of asking for less will not be available anymore. If agent i asks for less
than �i; then i enters the set of agents that want to go down (Nd) and i might be called to
play later in the game, in which case i�s guaranteed assignment will be equal to �i� 1, and
the choice of asking for more will not be available anymore. The guaranteed assignments
evolve throughout the algorithm, by making sure that all proposed warranties are feasible.
The steps of the MIA are grouped into two stages. Stage A aims to identify an allotment

q 2 X and to partition N among the sets of agents who would like more than qi (Nu), less
than qi (Nd), or exactly qi (Ns). If, at the end of Stage A, any of the sets Nu or Nd is
empty, then the algorithm stops with allotment q: If the two sets Nu and Nd are non-empty,
the algorithm moves to Stage B using as input the output of Stage A (the partition
N = Nu [ Nd [ Ns and the allotment q, the vector of guaranteed assignments). At each
step of Stage B a Pareto improvement from q is carried out by identifying agents j 2 Nu
and r 2 Nd and transferring one unit from r to j; these two new assignments, together
with the previous guaranteed ones of the other agents, become the vector of new guaranteed
assignments. Hence, all steps of the MIA use individualized guaranteed assignments that
evolve monotonically, increasing for agents in Nu and decreasing for agents in Nd.
A collection of selections of pairs (i; �i), one for each step of the MIA, de�nes an extensive

game form � 2MIG, and a strategy pro�le � in � determines a run of the MIA that delivers
the allotment g(�), where g is the outcome function of �.9

9For each sequential allotment rule �, we will later describe how to identify all pairs (i; �i) in the MIA
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When the guaranteed assignment is equal to 0 or k; the agent can neither receive strictly
less than 0 nor more than k, respectively. For this reason the following notation will be
useful. Let j 2 N and �j 2 f0; : : : ; kg: De�ne ��j = maxf�j�1; 0g and �+j = minf�j+1; kg:
Namely, ��j = 0 if �j = 0 and otherwise ��j = �j � 1; symmetrically, �+j = k if �j = k

and otherwise �+j = �j + 1. Therefore, when �j 6= k or �j 6= 0, the choice �+j or ��j can be
interpreted as j asking for more or less than �j, respectively.
Throughout the steps of the MIA we identify with the symbol (�) some properties of

�i; the guaranteed assignment to agent i who plays at the step. In Subsection 4.2 we will
explain those properties and argue why they are indeed satis�ed.

4.1 The MIA

Stage A. Step A.t (t � 1).
Input: Nu; Nd; Ns; Np (with Np = Nu [Nd [Ns) and (qi)i2Np , output of Step A.t-1 if

t >1, or Nu = Nd = Ns = Np = ; if t = 1:
Choose j =2 Ns and �j 2 f0; : : : ; kg such that

(i)
P

i2Npnfjg qi + �j � k and
P

i2Npnfjg qi + �j = k if Np [ fjg = N;(�)

(ii) �j = qj + 1 if j 2 Nu,(�)
(iii) �j = qj � 1 if j 2 Nd:(�)

Agent j has to choose an action aj from the set

Aj =

8><>:
�
��j ; �j; �

+
j

	
if j =2 Np�

�j; �
+
j

	
if j 2 Nu�

��j ; �j
	

if j 2 Nd:

Set

Nu :=

8><>:
Nu [ fjg if aj = �j + 1

Nu n fjg if aj = �j
Nu if aj = �j � 1,

Nd :=

8><>:
Nd [ fjg if aj = �j � 1
Nd n fjg if aj = �j
Nd if aj = �j + 1,

Ns :=

(
Ns [ fjg if aj = �j
Ns otherwise,

Np := Nu [Nd [Ns;

and qj := �j.

Output: Subsets Nu; Nd; Ns; Np and q = (qi)i2Np :

If Np 6= N; go to Step A.t+1.
If Np = N , stop.

The output of Stage A is the partition Nu; Nd; Ns and q = (qi)i2N :
If Nu 6= ; and Nd 6= ;, go to Stage B, with input Nu; Nd; Ns and q.
If Nu = ; or Nd = ;, stop, and the outcome of the MIA is the allotment q.

that de�ne the extensive game form �� 2MIG that OSP-implements �.
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Stage B. Step B.t (t � 1).
Input: Partition Nu; Nd; Ns and q, output of Stage A if t = 1, or Stage B.t-1 if t > 1.

Choose agents j 2 Nu and r 2 Nd:
Set �j = qj + 1 and �r = qr � 1:(�)

Step B.t.a. Agent j 2 Nu has to choose an action aj from the set Aj = f�j; �+j g:
Step B.t.b. Agent r 2 Nd has to choose an action ar from the set Ar = f��r ; �rg:
Set

Nu :=

(
Nu n fjg if aj = �j
Nu if aj = �j + 1,

Nd :=

(
Nd n frg if ar = �r
Nd if aj = �r � 1,

Ns :=

8>>><>>>:
Ns [ fjg if aj = �j and ar = �r � 1
Ns [ frg if aj = �j + 1 and ar = �r
Ns [ fj; rg if aj = �j and ar = �r
Ns if aj = �j + 1 and ar = �r � 1;

qj := �j and qr := �r.

Output: The partition Nu; Nd; Ns and q = (qi)i2N :
If Nu 6= ; and Nd 6= ;, go to Step B.t+1.
If Nu = ; or Nd = ;, stop, and the outcome of the MIA is the allotment q.

Denote by MIG the family of all extensive game forms de�ned by the MIA once, at
each step, a pair (i; �i) is selected out of all those satisfying the constraints imposed by the
MIA. Let � 2 MIG and let � be a strategy in �. We will refer to the partition Nu; Nd; Ns
and q = (qi)i2N , output of either Stage A or B, as the output of the run of the MIA when
agents play � according to �. Observe that q = g(�), where g is the outcome function of �.

4.2 General remarks on the MIA

1. On the properties of �j, the guaranteed assignment to agent j who plays at some step
of the MIA.

(1.i) Condition (i) in Step A.t says that the guaranteed assignment �j is feasible
together with (qi)i2Npnfjg, the assignments assigned provisionally to agents other
than j who have already played at earlier steps. And in particular, if j is the only
agent that has not played yet, �j is equal to the remaining units to be allotted.

(1.ii) If j 2 Nu in Step A.t or B.t, then �j = qj+1. We argue that �j � k: Note �rst

that j 2 Nu means that j has played at some earlier step. Let bAj � fb��j ; b�j; b�+j g
be the set of actions available to j the last time j was called to play. As j 2 Nu;
j chose baj = b�+j , where b�+j = b�j + 1 � k. Now, by the de�nition of the MIA,bqj = b�j = qj. Hence, qj + 1 � k.
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(1.iii) If i 2 Nd in Step A.t or B.t, then �i = qi� 1. We argue that �i � 0: Note �rst
that i 2 Nd means that i has played at some earlier step. Let bAi � fb��i ; b�i; b�+i g
tbe he set of actions available to i the last time i was called to play. As i 2 Nd;
i chose bai = b��i , where b��i = b�i � 1 � 0. Now, by the de�nition of the MIA,bqi = b�i = qi. Hence, qi � 1 � 0.

2. Whenever agent i has to choose an action throughout the MIA, each choice can be
identi�ed with a subset of R: action �i with fRi 2 R j �(Ri) = �ig, action �+i with
fRi 2 R j �(Ri) > �ig and action ��i with fRi 2 R j �(Ri) < �ig:

(2.i) If i =2 Np (at some Step A.t), Ai can be seen as a partition of R.

(2.ii) If i 2 Np, Ai can be seen as a partition of the subset of preferences induced by
i�s last previous choice.10

3. The evolution of the subsets Nu, Nd and Ns throughout the algorithm is as follows.

(3.i) Once agent i enters the subset Ns at some step, i remains in Ns at all further
steps and, accordingly, i is not called to play again.

(3.ii) Once agent i enters the subset Nu at some step, i can only move to Ns or remain
in Nu at further steps.

(3.iii) Once agent i enters the subset Nd at some step, i can only move to Ns or remain
in Nd at further steps.

4.3 Truth-telling is weakly dominant

Let � 2MIG be the extensive game form de�ned by the MIA once, in each of its steps, the
required agent j and his/her guaranteed assignment �j are speci�ed. Recall that a strategy
�i for agent i in � selects a choice ai in each of the action sets Ai that i may have the
chance to choose from in �. For i 2 N and Ri 2 R, the truth-telling strategy �Rii (relative
to Ri) is the strategy where, whenever agent i is called to play, i chooses the best action
in Ai according to Ri. Denote this choice by maxRi Ai: By single-peakedness, i selects �i if
�(Ri) = �i, �

+
i if �(Ri) > �i and �

+
i 2 Ai, and ��i if �(Ri) < �i and �

�
i 2 Ai.11

Remark 1 Let Nu; Nd; Ns and q be the output of the run of the MIA when agents play the
game in extensive form (�; R) according to �R:

10As a consequence of (2.i) and (2.ii), each � 2MIG is a round table mechanism (see Mackenzie (2020))
because its sets of actions are non-empty subsets of preferences and (a) the set of actions at any node are
disjoint subsets of preferences, (b) when a player has to play for the �rst time the set of actions is a partition
of R, and (c) later, at a node �, the union of actions is the intersection of the actions taken by the agent
assigned to � at all predecessor nodes that lead to �.
11Each � 2 MIG is a menu mechanism (see Mackenzie and Zhou (2020)) because agents select from a

menu of possible assignments (identi�ed with a corresponding set of actions) and truth-telling requires to
choose the most-preferred one.
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(R1.1) If i 2 Ns; then �(Ri) = qi. To see that (R1.1) holds, let i 2 Ns: First, by the de�nition
of Ns; the last time that i was called to play i has chosen the guaranteed assignment �i 2 Ai
and entered the set Ns: By (3.i) in Subsection 4.2, i remains in Ns until the end of the MIA
and, accordingly, i is not called to play anymore and qi = �i. Second, by de�nition of �

Ri
i ,

�(Ri) = �i: Hence, �(Ri) = qi.

(R1.2) If i 2 Nu; then �(Ri) > qi. To see that (R1.2) holds, let i 2 Nu: First, by the
de�nition of Nu; the last time that i was called to play i has chosen �i+1 2 Ai and qi = �i.
Second, by de�nition of �Rii , �(Ri) � �i + 1. Hence, �(Ri) > qi:

(R1.3) If i 2 Nd; then �(Ri) < qi. To see that (R1.3) holds, let i 2 Nd: First, by the
de�nition of Nd, the last time that i was called to play i has chosen �i� 1 2 Ai and qi = �i.
Second, by de�nition of �Rii , �(Ri) � �i � 1: Hence, �(Ri) < qi. �
Fix � 2 MIG and R 2 RN . We now argue why, according to Li (2017)�s original

de�nition, truth-telling is obviously dominant in (�; R). Consider agent i with guaranteed
assignment �i who plays in (�; R) and has to chose an action from the set Ai �

�
��i ; �i; �

+
i

	
,

where �i 2 Ai. If �(Ri) = �i, the truth-telling choice �i in Ai is obviously dominant since
in this case i�s worst assignment will be �(Ri), the unique possible one. If �(Ri) > �i,
the set of i�s possible assignments induced by the truth-telling choice �+i is f�i; : : : ; �(Ri)g
(i will choose �(Ri) whenever �(Ri) becomes i�s guaranteed assignment) and, by single-
peakedness, �i is the worst one according to Ri. However, the best possible assignment of a
non truth-telling choice (�i or �

�
i ) is �i. Hence, truth-telling is obviously dominant in this

case. Symmetrically if �(Ri) < �i. We now enunciate and formally prove that truth-telling
is weakly dominant in (�; R).12

Proposition 2 Let � 2 MIG be an extensive game form de�ned by the MIA and let
R 2 RN be a pro�le. Then, for each agent i, the strategy �Rii is weakly dominant in the
game in extensive form (�; R).

Proof Let � be de�ned by the MIA. Fix arbitrary i 2 N , Ri 2 R and ��i, and consider
any �0i 6= �Rii . Let Nu; Nd; Ns and (qi)i2N be the output of the run of the MIA when agents
play according to (�Rii ; ��i) and let N

0
u; N

0
d; N

0
s and (q

0
i)i2N be the output of the run of the

MIA when agents play according to (�0i; ��i). We verify that qi Ri q
0
i. Assume �rst that

i 2 Ns: Then, by (R1.1) in Remark 1, �(Ri) = qi and, accordingly, qi Ri q0i. Assume now
that qi 6= q0i: There exists a step at which for the �rst time �

Ri
i and �0i select di¤erent actions,

say ai and a0i, and qi follows after ai and q
0
i after a

0
i: We distinguish between two symmetric

cases.

Case 1: i 2 Nu: Then, by (R1.2) in Remark 1, �(Ri) > qi. By the de�nition of �Rii ,
ai = maxRi Ai � �(Ri). Since i 2 Nu, the guaranteed assignment has weakly increased from
ai � 1 (the guaranteed assignment at the step where i could choose a0i as well) to qi until
the end of the MIA. Hence, ai � 1 � qi and

maxRi Ai � 1 � qi < �(Ri): (3)
12Recall again that, according to Mackenzie (2020), being obviously dominant in (�; R) is equivalent to

being weakly dominant in (�; R).
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Similarly, and as ai 6= a0i,
a0i � maxRi Ai � 1: (4)

By (4), i 2 N 0
d [ N 0

s, and the guaranteed assignment has weakly decreased from a0i to q
0
i

until the end of the MIA. Hence, q0i � a0i and, together with (3) and (4), q
0
i � qi < �(Ri):

By single-peakedness, qi Ri q0i:

Case 2: i 2 Nd: Then, by (R1.3) in Remark 1, �(Ri) < qi. By the de�nition of �Rii ,
�(Ri) � ai = maxRi Ai. Since i 2 Nd, the guaranteed assignment has weakly decreased
from ai + 1 (the guaranteed assignment at the step where i could choose a0i as well) to qi
until the end of the MIA. Hence, qi � ai + 1 and

�(Ri) < qi � maxRi Ai + 1: (5)

Similarly, and as ai 6= a0i,
maxRi Ai + 1 � a0i: (6)

By (6), i 2 N 0
u[N 0

s, and the guaranteed assignment has weakly increased from a0i to q
0
i until

the end of the MIA. Hence, a0i � q0i and, together with (5) and (6), �(Ri) < qi � q0i: By
single-peakedness, qi Ri q0i.

Hence, for all ��i and �0i; gi(�
Ri
i ; ��i) Ri gi(�

0
i; ��i); which means that �

Ri
i is weakly

dominant in (�; R). �

5 From a sequential allotment rule to the extensive
game form de�ned by the MIA

Our objective here is to exhibit, for each sequential allotment rule �, an extensive game
form �� 2 MIG that OSP-implements �. The extensive game form �� de�ned by the
MIA uses � to select the agents who have to move and their guaranteed assignments. In
what follows we apply the MIA, but we only specify the required selections of agents and
guaranteed assignments (everything else is as it has been speci�ed in the general de�nition
of the MIA in Subsection 4.1).
The excess and scarcity allotments play an important role on determining those selec-

tions. For a given sequential allotment rule �, they are

q := �(0) and q := �(k):

We distinguish between two cases, depending on whether q = q or q 6= q. The �rst case
corresponds to the subclass of individually rational sequential allotment rules.

5.1 The individually rational case q = q

Stage A. Step A.t (t � 1), choose j = t and �j = q
j
.

Observe that Stage A �nishes at Step A.n, when Np = N with q := q = q.
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Stage B. Step B.t (t � 1), choose agents j 2 Nu and r 2 Nd among those for which

�j(kNu ; (q � 1)Nd ; qNs ) � qj + 1 and �r(qj + 1;0Nd ; q�(Nd[fjg)) � qr � 1:

This extensive game form de�ned by the MIA obtained from � is denoted by ��.
Throughout Stage A, all agents are classi�ed into subsets according to whether each j

prefers to receive the guaranteed assignment qj (Ns), strictly more (Nu) or strictly less (Nd).
If the algorithm goes into Stage B is because Nu 6= ; and Nd 6= ; in the output of Stage
A. But this means that q is not e¢ cient. At each Step B.t, agents j 2 Nu and r 2 Nd
are chosen to carry out a Pareto improvement upon q, input of this step, by increasing j�s
guaranteed assignment by one unit and decreasing r�s guaranteed assignment by one unit.
Agents j and r are sequentially identi�ed by looking at the image of � at two somehow
extreme pro�les, both with all agents in Ns having their top at qNs . First, j is one of the
agents in Nu whose assignment is larger or equal to qj + 1 at pro�le (kNu ; (q � 1)Nd ; qNs),
whose sum of the components is larger or equal to k. Therefore, by (1) in the de�nition of
same-sidedness, agents in Nd [ Ns receive at most their tops and, by feasibility of q, one
agent j in Nu has to receive at least qj + 1. Once j is identi�ed, r is one of the agents in
Nd whose assignment is smaller or equal to qj � 1 at pro�le (qj + 1;0Nd ; q�(Nd[fjg)), whose
sum of the components is smaller or equal to k. Therefore, by (2) in the de�nition of same-
sidedness, agents in Nu [Ns receive at least their tops and, by feasibility of q, one agent r
in Nd has to receive at most qr � 1. We now enunciate and formally prove that �� is well
de�ned.

Proposition 3 For each individually rational sequential allotment rule �, �� is well
de�ned.

Proof We only have to show that at each Step B.t, agents j 2 Nu and r 2 Nd are well
de�ned. Let Nu, Nd; Ns and q be the input of Step B.t, which means that Nu 6= ; and
Nd 6= ;.
By (1.iii) in Subsection 4.2, i 2 Nd implies 0 < qi. Therefore, the pro�le x = (kNu ; (q �

1)Nd ; qNs ) is well de�ned and
P

i2N xi � k: Hence, by (1) in the de�nition of same-sidedness,P
i=2Nu

�i(kNu ; (q � 1)Nd ; qNs) �
P
i2Nd

(qi � 1) +
P
i2Ns

qi <
P
i=2Nu

qi:

By feasibility of q; P
i2Nu

�i(kNu ; (q � 1)Nd ; qNs) >
P
i2Nu

qi:

Hence, there exists j 2 Nu such that �j(kNu ; (q � 1)Nd ; qNs ) � qj + 1:

By (1.ii) in Subsection 4.2, j0 2 Nu implies qj0 < k: Therefore, the pro�le y = (qj +

1;0Nd ; q�(Nd[fjg)); where j is the agent identi�ed just above and the one selected to play, is
well de�ned and

P
i2N yi � k. Hence, by (2) in the de�nition of same-sidedness,P

i=2Nd
�i(qj + 1;0Nd ; q�(Nd[fjg)) � qj + 1 +

P
i=2Nd

qi >
P
i=2Nd

qi:
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By feasibility of q; P
i2Nd

�i(qj + 1;0Nd ; q�(Nd[fjg)) <
P
i2Nd

qi:

Hence, there exists r 2 Nd such that �r(qj + 1;0Nd ; q�(Nd[fjg)) � qr � 1. �

5.2 The non-individually rational case q 6= q

The biggest di¢ culty in this case is that the rule does not provide a unique allotment q,
whose components could be sequentially o¤ered to agents as guaranteed assignments in
order to classify them according to whether each i wants exactly qi, more than qi or less
than qi. To overcome it, we construct a sequence of pairs, each consisting of an agent and
his/her provisionally guaranteed assignment, that ends in an allotment q and a partition of
the set of agents classifying them according to their wills with respect to q.
In the individually rational case (i.e., when q := �(0) = �(k)) the sequence of pairs is

trivially (1; q
1
); (2; q

2
); : : : ; (n; q

n
), where (i) each agent j appears only once in the sequence

and (ii) j�s guaranteed assignment q
j
does not depend on the choices made by the previous

agents in the sequence. These two properties greatly simplify Stage A of the individually
rational case. To deal with the general case, agents could appear now more than once in
the sequence and their guaranteed assignments could depend on the choices made by the
previous agents.
The selection of the pair (j; �j) at each step of Stage A is as follows. Speci�cally, at

Step A.1 start computing the scarcity and excess allotments q = �(k) and q = �(0).
Select agent j among those for whom q

j
< qj (note that q; q 2 X and q 6= q assure that

such j does exist) and select j�s guaranteed assignment as �j = q
j
. The pair (j; q

j
) is the

�rst element of the sequence.
The choice of agent j playing at Step A.t with t > 1 and input Nu; Nd; Ns; Np and

(qi)i2Np is more involved. De�ne adjusted scarcity and excess allotments by setting

q := �(0�(Ns[Nu); qNs[Nu) and q := �(k�(Ns[Nd); qNs[Nd):

In the two pro�les of tops agents in Ns ask for their guaranteed assignments qNs . In the
pro�le of tops used to obtain the adjusted scarcity allotment agents in Nd also ask for
their provisionally guaranteed assignments qNd (upper bounds of their �nally guaranteed
assignments), while agents in Nu and those that have not played yet are asking for all.
Symmetrically, in the pro�le of tops used to obtain the adjusted excess allotment agents in
Nu also ask for their provisionally guaranteed assignments qNu (lower bounds of their �nally
guaranteed assignments), while agents in Nd and those that have not played yet are asking
for nothing at all.13 We distinguish between two cases. In Case 1, when q 6= q, proceed as
in Step A.1 by selecting j as one agent among those for whom q

j
< qj and setting �j = q

j
.

In Case 2, when q = q, proceed as in the individually rational case as if the set of agents
were N nNp, those that have not played yet; that is, each agent j 2 N nNp plays only once
13Lemma 1 in the Appendix states that (i) the sum of the components of (qi)i2Np is smaller or equal to

k, (ii) qi = q
i
= qi for all i 2 Ns, (iii) qi = q

i
� qi for all i 2 Nu, and (iv) qi � qi = qi for all i 2 Nd.
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(in the remaining steps of Stage A) in any order and j�s guaranteed assignment is q
j
: The

need to distinguish between the two cases above (under which agent j is selected to play
throughout Stage A) is due to the fact that the algorithm has reached two situations that
have to be treated di¤erently.14

Finally, any Step B.t proceeds as in the individually rational case.
We now formally de�ne how the MIA is tailored to a sequential allotment rule � that is

not individually rational.

Stage A. Step A.t (t � 1), with input Nd; Nu; Ns (and Np = Nd [ Nu [ Ns 6= N) and
(qi)i2Np , j and �j are chosen by looking at the allotments

q := �(0�(Ns[Nu); qNs[Nu) and q := �(k�(Ns[Nd); qNs[Nd):

We distinguish between two mutually exclusive cases.

Case 1: There exists i =2 Ns such that qi < qi. One of such agents is the chosen j. If j =2 Np;
choose �j = q

j
. If j 2 Np, choose �j according to either (ii) or (iii) in the general de�nition

of the MIA.

Case 2: For all i =2 Ns, qi � qi: Among those, choose j 2 N nNp and �j = q
j
:

Stage B. Step B.t. Agents j 2 Nu and r 2 Nd are identi�ed as in the individually rational
case (in Subsection 5.1).

The extensive game form de�ned by the MIA obtained from � is denoted by �� and, as
stated by Proposition 4, it is well de�ned.

Proposition 4 For each sequential allotment rule �, �� is well de�ned.

To prove that �� is well de�ned we only have to show that the de�nition of the guaranteed
assignment �j at each Step A.t satis�es the feasibility condition (i). This proof is relegated
to the Appendix and it uses Lemmata 2 and 3, whose formal statements and proofs can also
be found in the Appendix.
To gain insight as to why �� induces � when agents truth-tell, consider any Step A.t

or Step B.t and denote its input by Nu; Nd; Ns; Np and (qi)i2Np . Let j be the agent that
is called to play at this step and let �j be his/her proposed guaranteed assignment. Fix a
preference pro�le � . Since agents have been truth-telling up to this step, we have that (i)
� i = qi for all i 2 Ns, (ii) � i < qi for all i 2 Nd, and (iii) � i > qi for all i 2 Nu. A preliminary
key property is that �j is the outcome of � for agent j when � j = �j; i.e.,

if � j = �j then �j(�) = �j. (7)

The whole proof of (7) proceeds by induction on t. It requires a precise and detailed ar-
gumentation collected in the lemmata that can be found in the Appendix. However, we

14Although, to keep the formal description of the algorithm compact, the allotments q and q are still
computed once Case 2 takes over, but then q = q holds thereafter. In particular, Claim 4 in the proof of
Lemma 1 shows that the two updated guaranteed allotments are equal, and conditions (27) and (29) ensure
that they remain constant.
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present here the main intuition for the �rst step in the induction; i.e., the �rst time that
j is called to play (so at some Step A.t). Assume � j = �j. By de�nition, �j = q

j
=

�j(0�(Ns[Nu); qNs[Nu) and, by strategy-proofness, �j = �j(0�(Ns[Nu[fjg); qNs[Nu ; � j): Since
all agents have been truth-telling according to � until Step A.t, (0�(Ns[Nu[fjg); qNs[Nu) �
��j: Then, by strategy-proofness and replacement monotonicity, �j(�) � �j: On the other
hand, �j = q

j
� qj = �j(k�(Ns[Nd); qNs[Nd):

15 Then, by strategy-proofness and single
peakedness, �j � �j(k�(Ns[Nd[fjg); qNs[Nd ; � j): Since all agents have been truth-telling ac-
cording to � until Step A.t, ��j � (k�(Ns[Nd[fjg); qNs[Nd): Then, by strategy-proofness
and replacement monotonicity, �j � �j(�): Hence, (7) holds.16 Now, let Nu; Nd; Ns and
q be the output of the MIA obtained from � when agents truth-tell according to � . We
argue that �(�) = q. As Nu; Nd; Ns is part of the output of the MIA, Nu = ; or Nd = ;:
Assume that Nu = ; (if Nd = ;, use a symmetric argument). Consider an arbitrary agent
i 2 Ns [Nd = N , and let Step A.t or Step B.t be the last step where i is called to play,
with �i as his/her proposed guaranteed assignment. Since i 2 Ns [ Nd; and i has been
truth-telling according to � i; � i � �i: Then, by (7) and strategy-proofness, �i(�) � �i = qi.
Since i was arbitrarily chosen and q is feasible, �(�) = q:

6 Main result and example

Theorem 1 All sequential allotment rules are obviously strategy-proof.

We have already proved some building blocks of the proof of Theorem 1. Namely, for
all �, Propositions 3 and 4 state that �� is well de�ned and Proposition 2 states that, for
all R 2 RN , truth-telling is weakly dominant in (��; R). The Appendix contains the rest,
those blocks of a more technical nature. As we have already mentioned, Lemma 1 says that
the sequences of q�s, q�s and q�s generated by a non-individually rational � in Stage A are
monotonous (in the right direction) and the sum of the components of each (qi)i2Np in the
sequence is smaller or equal to k. Lemmata 2 and 3 say respectively that, at the end of
Stage A, q = q = q and �(0Nd ; qNs ; qNu) = �(kNu ; qNs ; qNd) = q hold. Both imply that q
is a feasible allotment and the former says that the process somehow converges, while the
latter is an intermediate result for the proof of Lemma 4 about Stage B. In turn, Lemma
4 is required to prove Lemma 5, a result used (and explicitly stated) along the proof of
Theorem 1, presented below.

Proof of Theorem 1 Let � be a sequential allotment rule. Consider the extensive game
form �� de�ned by the MIA obtained from � and let R 2 RN be a pro�le. By Proposition
2, �R is a weakly dominant strategy in the game in extensive form (��; R): We now prove
that �� induces �. Let Nu; Nd; Ns and q be the output of the run of the MIA when agents

15We have already argued that q
j
� qj , regardless of whether j has been selected under Case 1 or Case 2.

16If j has already played before, a similar argument can be used to show (7). If this happened in Step
A.t, appealing now to Lemma 1, if t is not the last step of Stage A, and to Lemma 2, otherwise. If this
happened in Step B.t, appealing now to Lemma 4.
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play �� according to �R: This means that q = g(�R). We show that �(R) = q holds by
distinguishing between two cases.

Case 1: Nu = ;: Statement (L5.1) in Lemma 5 (whose enunciate and proof can be found
in the Appendix) says that �(0Nd ; qNs) = q. By (R1.1) in Remark 1, and with the
abuse of notation of mixing a pro�le of preferences and a pro�le of tops, �(0Nd ; RNs) =
q. Let i 2 Nd: By (R1.3) in Remark 1, �(Ri) < qi: By strategy-proofness and single-
peakedness, �i(0Ndnfig; RNs[fig) = qi = �i(0Nd ; RNs): Since � is replacement monotonic,
�(0Ndnfig; RNs[fig) = q = �(0Nd ; RNs): Successively using the same argument for the re-
maining agents in Nd n fig; we obtain that �(R) = q = �(RNd ; RNs):

Case 2: Nu 6= ;: Statement (L5.2) in Lemma 5 (whose enunciate and proof can be found
in the Appendix) says that Nd = ; and �(kNu ; qNs) = q. By (R1.1) in Remark 1, and
again with an abuse of notation, � (kNu ; RNs) = q: Let i 2 Nu. By (R1.2) in Remark 1,
�(Ri) > qi: Therefore, by an argument symmetric to the one already used in Case 1 applied
now to agents in Nu instead of Nd, we obtain that �(R) = q = �(RNu ; RNs) : �
We return to Example 1 to describe, given a sequential allotment rule � and two pro�les

of tops, � with scarcity and � 0 with excess, two runs of the MIA obtained from � when
agents play the extensive game form �� according to the truth-telling strategies �� and ��

0
,

respectively. Note that each path of the extensive game form �� can be obtained by letting
players to play �� according to a pro�le of behavioral strategies �.

Example 1 (continued) Let N = f1; 2; 3; 4g, k = 7, �(0; 0; 0; 0) = q = (4; 0; 2; 1) and
�(7; 7; 7; 7) = q = (0; 1; 1; 5) : Let � be the non-individually rational sequential allotment
rule, partially studied in Example 1 and described in Table 1 below. Observe that Table
1, which will be used in what follows, is consistent with the existence of a rule satisfying
strategy-proofness, e¢ ciency and replacement monotonicity, and with the description of a
sequential allotment rule made in Section 2.P4

i=1 � i < 7
P4

i=1 � i � 7
�(0; 0; 0; 0) = (4; 0; 2; 1) �(7; 7; 7; 7) = (0; 1; 1; 5)

�(0; 1; 0; 0) = (3; 1; 2; 1) �(7; 1; 7; 7) = (0; 1; 1; 5)

�(0; 1; 0; 1) = (3; 1; 2; 1) �(7; 1; 7; 2) = (2; 1; 2; 2)

�(0; 1; 0; 2) = (2; 1; 2; 2) �(7; 1; 7; 1) = (3; 1; 2; 1)

�(2; 1; 0; 2) = (2; 1; 2; 2) �(3; 1; 7; 1) = (3; 1; 2; 1)

�(0; 1; 3; 0) = (2; 1; 3; 1) �(2; 1; 7; 0) = (2; 1; 4; 0)

�(1; 1; 3; 0) = (2; 1; 3; 1) �(5; 1; 2; 2) = (2; 1; 2; 2)

Table 1

Consider �rst the pro�le of tops � = (5; 1; 2; 2). We run the MIA obtained from � when
agents play �� according to the truth-tell strategy �� . We represent below the six steps of
this run of the MIA in Figures 3.a, 3.b and 3.c (using similar conventions to those already
used in Figures 1 and 2 in Example 1) and the path of �� when agents play it according to
�� in Figure 4.
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Stage A: Set t = 1 and go to Step A.1.

Step A.1: Input: Subsets of agents Nu = Nd = Ns = Np = ;: Set

q = �(0; 0; 0; 0) = (4; 0; 2; 1) and q = �(7; 7; 7; 7) = (0; 1; 1; 5) : (8)

Then, fi =2 Ns j qi < qig = f2; 4g.17 Choose j = 2 and, since 2 =2 Np, set �2 = q
2
= 0 and

A2 = f0; 1g: Agent 2 chooses a2 = 1 because � 2 = 1. Output: Nu = Np = f2g, Nd = Ns = ;
and q2 = 0. Go to Step A.2.

Step A.2: Input: The output of Step A.1. Set

q = �(0; 0; 0; 0) = (4; 0; 2; 1) and q = �(7; 7; 7; 7) = (0; 1; 1; 5) :

Then, fi =2 Ns j qi < qig = f2; 4g: Choose j = 2 and, since 2 2 Nu, set �2 = q2 + 1 = 1 and
A2 = f1; 2g: Agent 2 chooses a2 = 1 because � 2 = 1. Output: Nu = Nd = ;; Ns = Np = f2g
and q2 = 1. Go to Step A.3.

Step A.3: Input: The output of Step A.2. Set

q = �(0; 1; 0; 0) = (3; 1; 2; 1) and q = �(7; 1; 7; 7) = (0; 1; 1; 5) :

Then, fi =2 Ns j qi < qig = f4g. Choose j = 4 and, since 4 =2 Np, set �4 = q
4
= 1 and

and A4 = f0; 1; 2g: Agent 4 chooses a4 = 2 because � 4 = 2. Output: Nu = f4g; Nd = ;;
Ns = f2g, Np = f2; 4g, q2 = 1 and q4 = 1. Go to Step A.4.
Step A.4: Input: The output of Step A.3. Set

q = �(0; 1; 0; 1) = (3; 1; 2; 1) and q = �(7; 1; 7; 7) = (0; 1; 1; 5) :

Then, fi =2 Ns j qi < qig = f4g. Choose j = 4 and, since 4 2 Nu, set �4 = q4 + 1 = 2

and A4 = f2; 3g: Agent 4 chooses a4 = 2 because � 4 = 2. Output: Nu = Nd = ;;
Ns = Np = f2; 4g, q2 = 1 and q4 = 2. Go to Step A.5.
Step A.5: Input: The output of Step A.4. Set

q = �(0; 1; 0; 2) = (2; 1; 2; 2) and q = �(7; 1; 7; 2) = (2; 1; 2; 2):

Then, fi =2 Ns j qi < qig is empty (indeed, q = q and j is selected under Case 2). Since
N n Np = f1; 3g; choose j = 1 and set �1 = q

1
= 2 and A1 = f1; 2; 3g: Agent 1 chooses

a1 = 3 because � 1 = 5. Output: Nu = f1g, Nd = ;, Ns = f2; 4g, Np = f1; 2; 4g, q1 = 2,
q2 = 1 and q4 = 2.

Step A.6: Input: The output of Step A.5. Set

q = �(2; 1; 0; 2) = (2; 1; 2; 2) and q = �(7; 1; 7; 2) = (2; 1; 2; 2):

Then, fi =2 Ns j qi < qig is empty (indeed, q = q and j is selected under Case 2). Since
N nNp = f3g; choose j = 3 and set �3 = q

3
= 2 and A3 = f1; 2; 3g: Agent 3 chooses a3 = 2

17Whenever there is more than one player that can be chosen to play, we select the player with the
smallest index. The outcome is always independent of this choice.
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because � 3 = 2. Output: Nu = f1g, Nd = ;, Ns = f2; 3; 4g, Np = N , q1 = 2, q2 = 1, q3 = 2
and q4 = 2:

Since Np = N and Nd = ; stop. The allotment q = (2; 1; 2; 2) is the outcome of the
extensive game form �� 2 MIG de�ned by the MIA obtained from � when agents play it
according to the truth-telling strategy pro�le �� .
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Figure 3.b: Steps A.3 and A.4

- k
0 1 2 3 4 5

agents

1

2

3

4

ee
e
e

bb
b
b

�1

�2

�3

�4

Figure 3.c: Steps A.5 and A.6
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Figure 4: The path of �� when agents play it according to �� , where agents are in bold numbers

Consider now the pro�le of tops � 0 = (1; 1; 3; 0). We run the MIA obtained from � when
agents play �� according to the truth-tell strategy ��

0
. We represent below the last four

steps of this run of the MIA in Figures 5.a, 5.b and 5.c and the path of �� when agents
play it according to ��

0
in Figure 6.

Step A.1 and Step A.2 are as in previous case. Output: Nu = Nd = ;; Ns = Np = f2g
and q2 = 1. Go to Step A.3.

Step A.3: Input: The output of Step A.2. Set

q = �(0; 1; 0; 0) = (3; 1; 2; 1) and q = �(7; 1; 7; 7) = (0; 1; 1; 5) :

Then, fi =2 Ns j qi < qig = f4g. Choose j = 4 and, since 4 =2 Np, set �4 = q
4
= 1

and A4 = f0; 1; 2g: Agent 4 chooses a4 = 0 because � 04 = 0. Output: Nu = ;; Nd = f4g;
Ns = f2g, Np = f2; 4g, q2 = 1 and q4 = 1. Go to Step A.4.
Step A.4: Input: The output of Step A.3. Set

q = �(0; 1; 0; 0) = (3; 1; 2; 1) and q = �(7; 1; 7; 1) = (3; 1; 2; 1):
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Then, fi =2 Ns j qi < qig is empty (indeed, q = q and j is selected under Case 2). Since
N n Np = f1; 3g; choose j = 1 and set �1 = q

1
= 3 and A1 = f2; 3; 4g: Agent 1 chooses

a1 = 2 because � 01 = 1. Output: Nu = ;; Nd = f1; 4g; Ns = f2g, Np = f1; 2; 4g, q1 = 3,
q2 = 1 and q4 = 1.

Step A.5: Input: The output of Step A.4. Set

q = �(0; 1; 0; 0) = (3; 1; 2; 1) and q = �(3; 1; 7; 1) = (3; 1; 2; 1):

Then, fi =2 Ns j qi < qig is empty (indeed, q = q and j is selected under Case 2). Since
N nNp = f3g; choose j = 3 and set �3 = q

3
= 2 and A3 = f1; 2; 3g: Agent 3 chooses a3 = 3

because � 03 = 3. Output: Nu = f3g; Nd = f1; 4g; Ns = f2g, Np = N , q1 = 3, q2 = 1, q3 = 2
and q4 = 1:

Since Np = N stop, and as Nu 6= ; and Nd 6= ; go to Stage B with input Nu = f3g;
Nd = f1; 4g; Ns = f2g, and q = (3; 1; 2; 1).
Stage B: Set t = 1 and go to Step B.1.

Step B.1: Input: The output of Stage A. Since �(2; 1; 7; 0) = (2; 1; 4; 0);

fi 2 Nu j �i(2; 1; 7; 0) � qi + 1g = f3g

and j = 3 2 Nu. Since �(0; 1; 3; 0) = (2; 1; 3; 1);

fi 2 Nd j �i(0; 1; 3; 0) � qi � 1g = f1g

and r = 1 2 Nd: Therefore, set �3 = q3 + 1 = 3 and �1 = q1 � 1 = 2. In Step B.1.a,
agent 3 chooses a3 = 3 2 A3 = f3; 4g because � 01 = 3. In Step B.1.b, agent 1 chooses
a1 = 1 2 A1 = f1; 2g because � 01 = 1. Output: Nu = ;, Nd = f1; 4g, Ns = f2; 3g and
q = (2; 1; 3; 1): Since Nu = ;, stop. The allotment q = (2; 1; 3; 1) is the outcome of the
extensive game form �� 2 MIG de�ned by the MIA obtained from � when agents play it
according to the truth-telling strategy pro�le ��
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Figure 5.a: Step A.3
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Figure 5.b: Steps A.4 and A.5
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� 0 = (1; 1; 3; 0)
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Figure 6: The path of �� when agents play it according to ��
0
, where agents are in bold numbers �

7 Final Remarks

We �nish the paper with �ve remarks.
First, our implementation result requires that the rule be replacement monotonic. Ex-

ample 2 contains a division problem where there is a strategy-proof, e¢ cient and non-
replacement monotonic rule that is not obviously strategy-proof.

Example 2 Consider the division problem where N = f1; 2; 3g and k = 2: Let 	 : RN !
X be the tops-only rule that, for every � = (� 1; � 2; � 3) 2 f0; 1; 2gN ; 	(�) is determined
sequentially. The top of agent 1 determines the order in which agents 2 and 3 have to
successively choose their most preferred assignments (among those left available by the
predecessor, if any). If agent 1 chooses 0 or 1, then agent 2 moves before 3. If agent 1
chooses 2, then agent 3 moves before 2: Agent 1�s assignment is equal to the remainder.
Namely,

	(� 1; � 2; � 3) =

(
(2� � 2 �minf2� � 2; � 3g; � 2;minf2� � 2; � 3g) if � 1 2 f0; 1g
(2� � 3 �minf2� � 3; � 2g;minf2� � 3; � 2g; � 3) if � 1 = 2:

It is easy to check that 	 is strategy-proof and e¢ cient. To see that 	 is not replacement
monotonic, consider � = (� 1; � 2; � 3) = (0; 1; 2) and � 0 = (� 01; � 2; � 3) = (2; 1; 2): Then, 	(�) =
(0; 1; 1) and 	(� 0) = (0; 0; 2): Since 	1(�) = 	1(� 0), 	2(�) > 	2(� 0) and 	3(�) < 	3(� 0); 	
is not replacement monotonic.
To obtain a contradiction, assume 	 is obviously strategy-proof. Let � be the extensive

game form that OSP-implements 	: Given a pro�le of tops � ; let �� = (��11 ; �
�2
2 ; �

�3
3 ) be a

strategy pro�le such that 	(�) = g(�� ). As � induces 	; there must exists a non-terminal
node � such that (i) the agent who moves at � has at least two available actions (denoted
by a1 and a2) and (ii) at all nodes preceding � (if any) the agents who play have only
one available action. Suppose agent 1 is who moves at �. Consider the two pro�les of tops
� = (1; 0; 0) and � 0 = (2; 1; 0): As � induces 	, g1(�� ) = 	1(�) = 2 and g1(��

0
) = 	1(�

0) = 1.
Consider �2 and �3 with the properties that (i) they respectively coincide with �

�2
2 and ��33
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at all nodes that follow � after agent 1 chooses a1 and (ii) they respectively coincide with ��
0
2
2

and ��
0
3
3 at all nodes that follow � after agent 1 chooses a2. Note that by its de�nition, node

� is reached regardless of the strategy pro�le used by the agents and, since � has perfect
information, �2 and �3 are well de�ned. Because there exists R1 2 R such that �(R1) = 1
and

g1(�
� 01
1 ; �2; �3) = 1P12 = g1(�

�1
1 ; �2; �3);

strategy ��11 is not weakly dominant in �, a contradiction with the assumption that �
OSP-implements 	. Suppose agent 2 is who moves at �. Consider the two pro�les of tops
� = (2; 1; 2) and � 0 = (1; 1; 2): As � induces 	, g2(�� ) = 	2(�) = 0 and g2(��

0
) = 	2(�

0) = 1.
Consider �1 and �3 with the properties that (i) they respectively coincide with �

�1
1 and ��33

at all nodes that follow � after agent 2 chooses a1 and (ii) they respectively coincide with ��
0
1
1

and ��
0
3
3 at all nodes that follow � after agent 2 chooses a2. Note that by its de�nition, node

� is reached regardless of the strategy pro�le used by the agents and, since � has perfect
information, �1 and �3 are well de�ned. Because there exists R2 2 R such that �(R2) = 1
and

g2(�1; �
� 02
2 ; �3) = 1P20 = g2(�1; �

�2
2 ; �3);

strategy ��22 is not weakly dominant in �, a contradiction with the assumption that � OSP-
implements 	. A similar argument can be used to obtain a contradiction when 3 is the
agent who moves at �. �

Second, there are strategy-proof and e¢ cient rules that are not replacement monotonic
(and so, they are not sequential), but they are obviously strategy-proof. Example 3 illus-
trates this possibility

Example 3 Consider the division problem where N = f1; 2; 3g and k = 2: Let ' : RN !
X be the tops-only rule that, for every � = (� 1; � 2; � 3) 2 f0; 1; 2gN ; '(�) is determined
sequentially. Agent 1 receives his/her top. If � 1 = 0; agent 2 receives � 2 and agent 3
receives 2� � 2: If � 1 2 f1; 2g, agent 3 receives his/her best assignment in [0; 2� � 1]; denoted
by � rest3 , and agent 2 receives 2� � 1 � � rest3 : Namely,

'(� 1; � 2; � 3) =

(
(0; � 2; 2� � 2) if � 1 = 0
(� 1; 2� � 1 � � rest3 ; � rest3 ) if � 1 2 f1; 2g:

It is easy to check that ' is strategy-proof and e¢ cient. To see that ' is not replacement
monotonic, consider � = (� 1; � 2; � 3) = (0; 2; 2) and � 0 = (� 01; � 2; � 3) = (1; 2; 2): Then, '(�) =
(0; 2; 0) and '(� 0) = (1; 0; 1): Since '1(�) < '1(�

0), '2(�) > '2(�
0) and '3(�) < '3(�

0); ' is
not replacement monotonic.
However, ' is obviously strategy-proof. The extensive game form depicted in Figure 7

OSP-implements ', where agents are in bold numbers. Together, Examples 2 and 3 show
that while replacement monotonicity is indispensable for our main result to hold, it is not
necessary.
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Figure 7: The extensive game form that OSP-implements ' �

Third, Pycia and Troyan (2020) propose a strengthening of obvious strategy-proofness,
called strong obvious strategy-proofness (SOSP). In our context, a rule � : RN ! X is
strongly obviously strategy-proof if there is an extensive game form � 2 G associated to
k and N such that � induces ' (i.e., for each R 2 RN there exists a strategy pro�le
�R = (�R11 ; : : : ; �Rnn ) 2 � such that �(R) = g(�R)) and, for all i 2 N and Ri 2 R; �Rii
is strongly obviously dominant in � at Ri, where the later condition requires that when
comparing the worst possible outcome of the choice prescribed by �Rii at an earliest point of
departure � with any other �i; the choices made by i at all nodes that follow �Rii (�) do not
have to be truth-telling any more since i may now choose, at a node  that follows �Rii (�), a
di¤erent action to �Rii (). Therefore, the worst possible outcome associated to the stronger
OSP notion could be strictly worse than the one obtained when agent i is required to stay
with the truth-telling strategy, as required by the original Li (2017)�s OSP notion. Example
4 below shows that not all sequential allotment rules are strongly obviously strategy-proof.
However, the subclass of sequential dictators (that can be described as sequential allotment
rules) satisfy the stronger requirement since agents play only once. In light of Theorem 5
in Pycia and Troyan (2020), the class of all e¢ cient and strongly obviously strategy-proof
rules coincides with the class of all sequential dictator rules.

Example 4 Consider the division problem where N = f1; 2; 3g and k = 3: Let  :

RN ! X be any individually rational sequential allotment rule with respect to the allotment
q = (1; 1; 1).18 To obtain a contradiction, assume that � is an extensive game form that
SOSP-implements  . Let � be the node in � at which for the �rst time a player has available
at least two actions. Without loss of generality, let 1 be such agent. Fix an arbitrary R1 2 R
and let a` be the action such that �R11 (�) = a` with �(R1) = `: Since  is tops-only, it is
su¢ cient to distinguish between two di¤erent general cases.

Case 1: Assume a2 6= a3. Since ' is e¢ cient,  (2; 1; 0) = (2; 1; 0) and, because � induces
 , the allotment (2; 1; 0) is possible after 1 chooses a2 at �. Since  is e¢ cient,  (1; 1; 1) =
(1; 1; 1) and, by individual rationality,  (3; 1; 1) = (1; 1; 1): Then, the allotment (1; 1; 1) is

18Note that this implies that  is not a sequential dictator rule.
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possible after the choice a3:However, for all single-peaked preferenceR1 2 R with �(R1) = 3,
2P11: Hence,  is not SOSP.

Case 2: Assume a2 = a3: We refer to this action as a2;3. We distinguish between two
subcases.

Case 2.1: Assume a1 6= a2;3. Then, using similar arguments to those used in Case 1, the
allotment (1; 1; 1) is possible after 1 chooses a1 and the allotment (3; 0; 0) is possible after 1
chooses a2;3: However, there is a single-peaked preference R1 2 R with �(R1) = 2, for which
1P13: Hence,  is not SOSP.

Case 2.2: Assume a1 = a2;3: We refer to this action as a1;2;3. We distinguish between two
further subcases.

Case 2.2.1: Assume a0 6= a1;2;3: Then, using similar arguments to those used in Case 1, the
allotment (0; 3; 0) is possible after 1 chooses a0 while the allotment (3; 0; 0) is possible after
1 chooses a1;2;3: However, there is a single-peaked preference R1 2 R with �(R1) = 2, for
which 0P13: Hence,  is not SOSP.

Case 2.2.2: Assume a0 = a1;2;3. But this means that agent 1 has a unique available action
at �. A contradiction. �

Fourth, Barberà, Jackson and Neme (1997) observe that each sequential allotment rule
is fully implementable in dominant strategies by the direct revelation mechanism. It is easy
to see that our extensive game forms provide full OSP-implementation of all sequential
allotment rules. Namely, for each sequential allotment rule, the extensive game form de-
�ned by the MIA obtained from the rule has the property that, for each preference pro�le,
each obviously dominant strategy pro�le leads to the allotment speci�ed by the rule for
that preference pro�le. Moreover, they provide ex-post perfect and full subgame perfect
implementation of the rules (see Mackenzie and Zhou (2020)).
Fifth, our extensive game forms are based on the discrete version of Sprumont (1991)�s

continuous model. An OSP-implementation of any sequential allotment rule in the continu-
ous version of the division problem should deal with the technical di¢ culties that may arise
in games in extensive form where agents play in a continuous fashion (see for instance Alós-
Ferrer and Ritzberger (2013)). For simplicity, we have decided to undertake our analysis in
the discrete division problem, �rst studied by Herrero and Martínez (2011).
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Appendix: Proofs
We start with a remark that will be intensively used in the proofs that follow.

Remark 2 Let � : f0; : : : ; kgN ! X be a sequential allotment rule. Then, for all � 2
f0; : : : ; kgN , i 2 N and � 0i 2 f0; : : : ; kg, the following two statements hold.
(R2.1) If �i(�) � � 0i; then �i(�) � �i(� 0i; ��i) � � 0i and �j(�) � �j(� 0i; ��i) for all j 2 Nnfig:
To see that (R2.1) holds, assume �rst that �i(�) = � 0i. Then, by strategy-proofness, �i(�) =
�(� 0i; ��i) and, by replacement monotonicity, �j(�) = �j(�

0
i; ��i) for all j 2 N nfig. Assume

now that �i(�) > � 0i: To obtain a contradiction, suppose that either (i) �i(�
0
i; ��i) > �i(�) >

� 0i or (ii) �i(�) > � 0i > �i(�
0
i; ��i) hold. By single-peakedness, (i) contradicts that � is

strategy-proof. Suppose (ii) holds. Then, there is R00i 2 R such that �(R00i ) = � 00i = � 0i
and �i(�) P 00i �i(�

0
i; ��i). By tops-onlyness, �i(�) P

00
i �i(�

00
i ; ��i) holds, which contradicts

that � is strategy-proof. Hence, �i(�) � �i(�
0
i; ��i) � � 0i. By replacement monotonicity,

�j(�) � �j(� 0i; ��i) for all j 2 N n fig.
(R2.2) If �i(�) � � 0i; then �i(�) � �(� 0i; ��i) � � 0i and �j(�) � �j(� 0i; ��i) for all j 2 N nfig:
A symmetric argument to the one used in (R2.1) shows that (R2.2) holds.

Lemma 1 Let � : RN ! X be a non individually rational sequential allotment rule. Let
Nu; Nd; Ns; Np and (qi)i2Np be the input of Step A.t of the MIA obtained from �, and let

q = �(0�(Ns[Nu); qNs[Nu) and q = �(k�(Ns[Nd); qNs[Nd): (9)

Then, the following four conditions hold.

(L1.1)
P

i2Np qi � k:

(L1.2) If i 2 Ns then qi = q
i
= qi.

(L1.3) If i 2 Nu then qi = q
i
� qi.

(L1.4) If i 2 Nd then qi � qi = q
i
.

Proof We proceed by induction on t. When t = 1 the four statements hold trivially
because Nu = Nd = Ns = Np = ;: Suppose t � 2:

Induction Hypothesis (IH): Let N 0
u; N

0
d; N

0
s and (q

0
i)i2N 0

p
be the input of Step A.t-1 of

the MIA obtained from �, and let

q0 = �(0�(N 0
s[N 0

u); q
0
N 0
s[N 0

u
) and q0 = �(k�(N 0

s[N 0
d)
; q0N 0

s[N 0
d
): (10)

Then, the following four conditions hold.
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(IH.L1.1)
P

i2N 0
p
q0i � k:

(IH.L1.2) If i 2 N 0
s then q

0
i
= q0

i
= q0i:

(IH.L1.3) If i 2 N 0
u then q

0
i
= q0

i
� q0i:

(IH.L1.4) If i 2 N 0
d then q

0
i
� q0i = q0

i
:

Let j be the agent that was called to play at Step A.t-1 and let Nu; Nd; Ns; Np and
(qi)i2Np be the input of Step A.t. By the de�nition of the MIA and the (IH),

Np = N 0
p [ fjg and qi = q0i for all i 2 Np n fjg: (11)

We distinguish between two cases, which corresponds to the two possible ways in which
player j is selected to play at Step A.t.

Case 1: There exists i =2 N 0
s such that q

0
i
< q0i: Then, j is one of such agents and

q0
j
< q0j: (12)

First, we show that (L1.1) holds. By the (IH) and (11), qi � q0i for all i 2 Np n fjg: Now
we show that qj � q0j. If j 2 N 0

d; by the de�nitions of �j and qj; qj = q0j � 1 < q0j: Then, by
(IH.L1.4), qj = q0j � 1 < q0j. If j 2 N 0

u; by the de�nitions of �j and qj; qj = q0j + 1: Then,
by (IH.L1.3) and (12), qj = q0j + 1 = q0

j
+ 1 � q0j: If j =2 N 0

p, by the de�nitions of �j and qj;
and (12), qj = q0

j
< q0j: Therefore, qi � q0i for all i 2 Np: Then, by feasibility of q0;P

i2Np qi �
P

i2Np q
0
i � k;

which is (L1.1). To prove that the other three statements hold, we divide Case 1 in three
cases, depending on weather j belongs to N 0

u, N
0
d or �N 0

p. But before doing so, we state two
general observations. As Nu; Nd; Ns; Np is an input of Step A.t, Np 6= N and accordingly,
Ns [ Nu 6= N and Ns [ Nd 6= N: Furthermore, we have just shown that

P
i2Np qi � k in

(L1.1) holds Then, by (9), and (1) and (2) in the de�nition of same-sidedness,

qi � �i(0�(Ns[Nu); qNs[Nu) = q
i
for all i 2 Ns [Nu (13)

and
qi = �i(k�(Ns[Nd); qNs[Nd) � qi for all i 2 Ns [Nd: (14)

Case 1.a: j 2 N 0
u: By the de�nition of the MIA obtained from � and (IH.L1.3),

qj = q0j + 1 = q0
j
+ 1;

j 2 Ns [Nu = N 0
s [N 0

u and j =2 N 0
s [N 0

d:
(15)

Claim 1 qi � q0i for all i 6= j, qi = q0i for all i 2 (Ns [Nd) n fjg and qj � q0j.

Proof of Claim 1 We distinguish between two cases.

Case C1.1: j 2 Nu: Then, j =2 Ns [ Nd = N 0
s [ N 0

d and, by (11), (k�(Ns[Nd); qNs[Nd) =
(k�(N 0

s[N 0
d)
; q0N 0

s[N 0
d
). Therefore, by (10) in the (IH) and (9), q = q0; which means that Claim

1 holds in this case.
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Case C1.2: j 2 Ns: By (R2.1), (9), (10) in the (IH), (11), (12) and (15),

qj = �j(k�(Ns[Nd); qNs[Nd) � �j(k�(N 0
s[N 0

d)
; q0N 0

s[N 0
d
) = q0j

and qi � q0i for all i 6= j: Hence, by (IH.L1.2), (IH.L1.4), (11), and (14), qi � q0i = q0i = qi �
qi holds for all i 2 (Ns [Nd) n fjg, which means that Claim 1 holds in this case. �

By (13) and (15),
q0
j
< qj � q

j
: (16)

By replacement monotonicity,

q0
i
� q

i
for all i 2 N n fjg: (17)

By (11), (IH.L1.2), (IH.L1.3), (IH.L1.4) and Claim 1,

q
i
= q0

i
= q0i = qi if i 2 (Ns [Nd) n fjg and

q
i
= q0

i
� q0i � qi if i 2 Nu n fjg:

By (11), (IH.L1.2), (IH.L1.3), (IH.L1.4), (17), and (13),

q
i
= q0

i
= q0

i
� q

i
� q

i
if i 2 (Ns [Nu) n fjg and

q
i
= q0

i
� q0

i
� q

i
if i 2 Nd:

Therefore, (L1.2), (L1.3) and (L1.4) in Lemma 1 hold for all i 6= j: Now, we show that they
also hold for j: First we show that q

j
= qj: By (15), j 2 Ns [ Nu. By (11) and (2) in the

de�nition of same-sidedness, �j(0�(Ns[Nu); q(Ns[Nu)nfjg; q
0
j) � q0j: By strategy-proofness and

single-peakedness,

�j(0�(Ns[Nu); q(Ns[Nu)nfjg; q
0
j) + 1 � �j(0�(Ns[Nu); q(Ns[Nu)nfjg; q0j + 1); (18)

because otherwise j would manipulate � at (0�(Ns[Nu); q(Ns[Nu)nfjg; q
0
j + 1) via q

0
j. By (10)

(11), (15), (18) and (9),

q0
j
+ 1 = �j(0�(N 0

s[N 0
u); q(N 0

s[N 0
u)nfjg; q

0
j) + 1 � �j(0�(Ns[Nu); q(Ns[Nu)nfjg; qj) = q

j
; (19)

that together with (16) imply q
j
= q0

j
+ 1: By (15), q

j
= q0j + 1 = q0

j
+ 1 = q

j
, which is the

equality in (L1.3) and the �rst one in (L1.2). In order to prove that the inequality qj � qj
in (L1.3), and the equality qj = qj in (L1.2) also hold, we distinguish between two cases.

Case 1a.1: j 2 Nu: As in the proof of Case C1.1 in Claim 1, we obtain that qj = q0j holds.
Then, by (12), (IH.L1.3) and (15), qj = q0j � q0

j
+ 1 = q0j + 1 = q

j
:

Case 1a.2: j 2 Ns: By (15), (12) and (10) in the (IH), qj = q0
j
+1 � q0j = �j(k�(N 0

s[N 0
d)
; q0N 0

s[N 0
d
),

which together with (9), j =2 N 0
s [N 0

d; (11) and (R2.1) imply

qj = �j(k�(Ns[Nd); qNs[Nd) = �j(k�(N 0
s[N 0

d[fjg); q
0
N 0
s[N 0

d
; qj) � qj: (20)

Conditions (14) and (20) imply qj = qj:
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Case 1.b: j 2 N 0
d: The proof that (L1.2), (L1.3) and (L1.4) hold in this case is symmetric

to the one used in Case 1.a (when j 2 N 0
u), after replacing Claim 1 by Claim 2 below.

Claim 2 q
i
� q0

i
for all i 6= j, q

i
= q0

i
for all i 2 (Ns [Nu) n fjg and qj � q0

j
.

Case 1.c: j =2 N 0
p: By the de�nition of the MIA obtained from � and (10) in the (IH),

qj = q0
j
= �j(0�(N 0

s[N 0
u); q

0
N 0
s[N 0

u
) and j =2 N 0

u [N 0
d [N 0

s: (21)

Claim 3 qi � q0i for all i 6= j, qi = q0i for all i 2 (Ns [Nd) n fjg and qj � q0j.

Proof of Claim 3 The proof follows similar arguments to those already used in the proof
of Claim 1, and therefore it is omitted. �
We now show that �(0�(N 0

s[N 0
u); q

0
N 0
s[N 0

u
) = �(0�(Ns[Nu); qNs[Nu) holds. Suppose j 2 Nd:

By (11), the equality holds. Suppose j 2 Ns[Nu. By (21) and (R2.1), �j(0�(N 0
s[N 0

u); q
0
N 0
s[N 0

u
) =

qj = q0
j
� �j(0�(Ns[Nu); qNs[Nu): By (2) in the de�nition of same-sidedness, �j(0�(Ns[Nu); qNs[Nu) �

qj: Hence, �j(0�(N 0
s[N 0

u); q
0
N 0
s[N 0

u
) = �j(0�(Ns[Nu); qNs[Nu): By replacement monotonicity,

�i(0�(N 0
s[N 0

u); q
0
N 0
s[N 0

u
) = �i(0�(Ns[Nu); qNs[Nu) for all i 6= j: Hence,

q0 = �(0�(N 0
s[N 0

u); q
0
N 0
s[N 0

u
) = �(0�(Ns[Nu); qNs[Nu) = q: (22)

By (11), (IH.L1.2), (IH.L1.3), (IH.L1.4) and Claim 3,

q
i
= q0

i
= q0i = qi if i 2 (Ns [Nd) n fjg and

q
i
= q0

i
� q0i � qi if i 2 Nu n fjg:

By (11), (IH.L1.2), (IH.L1.3), (IH.L1.4) and (22),

q
i
= q0

i
= q0

i
= q

i
if i 2 (Ns [Nu) n fjg and

q
i
= q0

i
� q0

i
= q

i
if i 2 Nd n fjg:

Therefore, (L1.2), (L1.3) and (L1.4) in Lemma 1 hold for all i 6= j: Now, we show that they
also hold for j: By (21) and (22),

qj = q0
j
= q

j
: (23)

We distinguish between two possibilities, depending on the set of agents in the output
of Step A.t to which j belongs to.

Case 1c.1: j 2 Nu: By using a similar argument to the one used in the proof of Case C1.1
in Claim 1, qj = q0j. Moreover, by (21) and (12) qj = q0

j
< q0j = qj: By (22), qj = q

j
< qj

which implies (L1.3).

Case 1c.2: j 2 Ns[Nd: By (21), (12) and (10) in the (IH), qj = q0
j
< q0j = �j(k�(N 0

s[N 0
d)
; q0N 0

s[N 0
d
):

By (R2.1), (9) and the fact that j =2 N 0
s [N 0

d,

qj � �j(k�(N 0
s[N 0

d[fjg); q
0
N 0
s[N 0

d
; qj) � �j(k�(Ns[Nd); qNs[Nd) = qj: (24)

Then, (24) and (14) imply qj = qj, which together with (23) imply qj = q
j
= qj: But this is

(L1.2) if j 2 Ns or implies (L1.4) if j 2 Nd:
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Case 2: There does not exist i =2 N 0
s such that q

0
i
< q0i. Let j 2 N n Np be the agent

selected to play at Step A.t and let q
j
be j�s guaranteed assignment. By the de�nition of

the MIA obtained from �, (IH.L1.2), (IH.L1.3), (IH.L1.4), (10) in the (IH), (11) and the
condition de�ning Case 2 (i.e., q0

i
� q0i for all i =2 N 0

s),

qj = q
j
= q0

j
= �j(0�(N 0

s[N 0
u); q

0
N 0
s[N 0

u
) and

qi = q0i = q0i = q0
i
for all i 2 Np n fjg:

(25)

Therefore, qi = q0
i
for all i 2 Np. By feasibility of q0;

P
i2Np qi =

P
i2Np q

0
i
� k which is

(L1.1).

Claim 4 q0 = q0:

Proof of Claim 4 Assume otherwise. By the feasibility of q0 and q0, there exists i 2 N

such that q0i < q0
i
: Then, by (25), there exists i =2 Np n fjg = N 0

p such that q
0
i
< q0i, which by

(IH.L1.2) contradicts the hypothesis of Case 2. Therefore, q0i � q0
i
for all i 2 N: Then, by

feasibility of q0 and q0; q0 = q0: �

We now show that (L1.2), (L1.3) and (L1.4) hold. By (R2.1), (R2.2), (25), (9) and (11),

q0
j
= �j(0�(N 0

s[N 0
u); q

0
N 0
s[N 0

u
) = qj = �j(0�(Ns[Nu); qNs[Nu) = q

j
(26)

and
q0
i
= q

i
for all i 2 N: (27)

By (26), Claim 4, and (10), qj = q0j = �j(k�(N 0
s[N 0

d)
; q0N 0

s[N 0
d
): Then, (R2.1) and (11) imply

qj = �j(k�(N 0
s[N 0

d)
; q0N 0

s[N 0
d
) = �j(k�(Ns[Nd); qNs[Nd) (28)

and
q0i = qi for all i 2 N: (29)

From (25), (26), (27), (28) and (29) it follows that qi = qi = q
i
for all i 2 Np: Hence, (L1.2),

(L1.3) and (L1.4) hold. �

Lemma 2 Let � : RN ! X be a non individually rational sequential allotment rule. Let
N 0
u; N

0
d; N

0
s; N

0
p and (q

0
i)i2N 0

p
be the input of Step A.t of the MIA obtained from � and let

Nu; Nd; Ns; Np and (qi)i2Np be the output of its Step A.t and Stage A (i.e., Np = N).
Then, q = q0 = q0 and

P
i2N qi = k:

Proof Let j be the agent called to play at Step A.t. By hypothesis, this means that
fjg = N n N 0

p. By the de�nition of the MIA obtained from �; qi = q0i for all i 6= j. By
Lemma 1,

q0
i
� qi � q0i for all i 6= j: (30)

Then,
P

i2Nnfjg q
0
i
�
P

i2Nnfjg qi �
P

i2Nnfjg q
0
i: The feasibility of q

0 and q0 imply that
q0
j
� q0j: Because agent j is called to play at Step A.t, q

0
i
� q0i for all i =2 N 0

s: Furthermore,
by Lemma 1, q0

i
= q0i for all i 2 N 0

s: Then, by the de�nition of the MIA obtained from �,
qj = q0

j
. The feasibility of q0 and q0 and (30) imply that q = q0 = q0 and

P
i2N qi = k. �
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Lemma 3 Let � : RN ! X be a sequential allotment rule and Nu; Nd; Ns and q be the
output of Stage A of the MIA obtained from �. Then,

�(0Nd ; qNu ; qNs) = �(kNu ; qNd ; qNs) = q:

Proof We distinguish between two cases, depending on whether or not � is individually
rational.

Case 1: � is not individually rational. Let Nu; Nd; Ns and q be the output of Step A.t,
the last step of Stage A of the MIA obtained from �. Let N 0

u; N
0
d; N

0
s and (q

0
i)i2N 0

p
be the

input of Step A.t and let j be the agent that is called to play at Step A.t: Accordingly,
N 0
p = N n fjg. By the de�nition of the MIA obtained from �, q0i = qi for all i 6= j: Then, by

Lemma 2 and j =2 N 0
p;

�(0�(N 0
s[N 0

u); qN 0
s[N 0

u
) = q0 = q = q0 = �(k�(N 0

s[N 0
d)
; qN 0

s[N 0
d
): (31)

If j 2 Nd then N 0
s [ N 0

u = Ns [ Nu holds and (31) imply �(0�(Ns[Nu); qNs[Nu) = q: If
j 2 Nu then N 0

s [N 0
d = Ns [Nd holds and (31) imply �(k�(Ns[Nd); qNs[Nd) = q: Finally, if

j 2 Ns; then by (31), (R2.1) and (R2.2), �(0�(Ns[Nu); qNs[Nu) = �(k�(Ns[Nd); qNs[Nd) = q:

Moreover, since Np = N; we have that �(Ns [ Nu) = Nd and �(Ns [ Nd) = Nu: Hence,
�(0Nd ; qNu ; qNs) = �(kNu ; qNd ; qNs) = q:

Case 2: � is individually rational. Then, �(0) = �(k) = q: By iterated applications of
(R2.1) and (R2.2), �(0Nd ; qNu ; qNs) = �(kNu ; qNd ; qNs) = q: �

Lemma 4 Let � : RN ! X be a sequential allotment rule. Let Nu; Nd; Ns and q be the
output of Step B.t of the MIA obtained from � and let q0 be one of its inputs. Then, the
following two conditions hold.

(L4.1) �(0Nd ; q�Nd) = q.

(L4.2) If Nu 6= ;; then �i(kNu ; (q0 � 1)Nd ; qNs) =
(

q0i � 1 if i 2 Nd
qi if i 2 Ns:

Proof Let N 0
u; N

0
d; N

0
s and q

0 be the input of Step B.t and let j 2 N 0
u and r 2 N 0

d be
respectively the agents that are called to play at Step B.t.a and Step B.t.b. By the
de�nition of the MIA obtained from �,

qi =

8><>:
q0i + 1 if i = j

q0i � 1 if i = r

q0i if i 2 N n fj; rg:
(32)

We now prove that (L4.1) and (L4.2) hold.

(L4.1) If Nd = ;, the statement follows by the e¢ ciency of �. Assume Nd 6= ;: We proceed
by induction on t. Suppose t = 1: Let N 0

u; N
0
d; N

0
s and q

0 be the input of Step B.1. Then,
N 0
u; N

0
d; N

0
s and q

0 is the output of Stage A. By Lemma 3,

�(0N 0
d
; q0N 0

u
; q0N 0

s
) = q0: (33)
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By (R2.2) and (33),

�j(0N 0
d
; q0N 0

unfjg; q
0
N 0
s
; q0j + 1) � q0j + 1 (34)

and
�i(0N 0

d
; q0N 0

unfjg; q
0
N 0
s
; q0j + 1) � q0i for all i 2 N n fjg: (35)

By the de�nition of agent r;

�r(0N 0
d
; q0N 0

unfjg; q
0
N 0
s
; q0j + 1) � q0r � 1: (36)

Since q0 is feasible, the inequalities in (34), (35) and (36) can be replaced by equalities. By
(32), and since r 2 N 0

d; �(0N 0
d
; q�N 0

d
) = q: Either Nd = N 0

d, in which case �(0Nd ; q�Nd) = q

follows, or Nd 6= N 0
d; in which case r 2 Ns and, by (R2.1), �(0Nd ; q�Nd) = q: This �nishes

the proof of (L4.1) for the case t = 1. Suppose t � 2.
Induction hypothesis: Let N 0

u; N
0
d; N

0
s and q

0 be the output of Step B.t-1. Then,

�(0N 0
d
; q0�N 0

d
) = q0: (37)

Observe that in the proof for the case t = 1, (33) can be replaced by (37) and, with the
same argument used there, we can show that �(0Nd ; qNnNd) = q: This proves (L4.1).

(L4.2) Assume Nu 6= ;: We proceed by induction on t. Suppose t = 1: Let N 0
u; N

0
d; N

0
s and

q0 be the input of Step B.1. Then, N 0
u; N

0
d; N

0
s and q

0 is the output of Stage A. By Lemma
3,

�(kN 0
u
; q0N 0

d
; q0N 0

s
) = q0: (38)

By de�nition of the MIA obtained from �; N 0
d 6= ;. Let i1 2 N 0

d: By (R2.1) and (38),

�i1(kN 0
u
; q0N 0

dnfi1g
; q0i1 � 1; q

0
N 0
s
) � q0i1 � 1 and

�i(kN 0
u
; q0N 0

dnfi1g
; q0i1 � 1; q

0
N 0
s
) � q0i for all i 2 N n fi1g:

Proceeding similarly for each remaining agent in N 0
d n fi1g, we obtain that

�i(kN 0
u
; (q0 � 1)N 0

d
; q0N 0

s
) �

(
q0i � 1 if i 2 N 0

d

q0i if i 2 N 0
s:

(39)

Furthermore, by the de�nition of agent j 2 N 0
u, who plays at Step B.1.a,

�j(kN 0
u
; (q0 � 1)N 0

d
; q0N 0

s
) � q0j + 1: (40)

From (39) and (40), and (32);

�i(kN 0
u
; (q0 � 1)N 0

d
; qN 0

s
) �

(
q0i � 1 if i 2 N 0

d

qi if i 2 N 0
s [ fj; rg:

(41)

We now look at the di¤erent possibilities depending on the subsets of agents to which r
and j enter in this StepB.1.
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First, j 2 Nu and r 2 Nd: Then, Nu = N 0
u, Nd = N 0

d and Ns = N 0
s, and by (41),

�i(kNu ; (q
0 � 1)Nd ; qNs) �

(
q0i � 1 if i 2 Nd
qi if i 2 Ns:

Second, j 2 Nu and r =2 Nd: Then, Nu = N 0
u, Nd = N 0

d n frg and Ns = N 0
s [ frg, and by

(32), (kNu ; (q
0 � 1)Nd ; qNs) = (kN 0

u
; (q0 � 1)N 0

d
; qN 0

s
): Then, by (41),

�i(kNu ; (q
0 � 1)Nd ; qNs) �

(
q0i � 1 if i 2 Nd
qi if i 2 Ns:

Third, j =2 Nu and r 2 Nd: Then, Nu = N 0
u n fjg, Nd = N 0

d and Ns = N 0
s [ fjg, and by

(41) and (R2.1),

�j(kNu ; (q
0 � 1)Nd ; qNs) � qj and �i(kNu ; (q

0 � 1)Nd ; qNs) �
(

q0i � 1 if i 2 Nd
qi if i 2 Ns n fjg:

Fourth, j =2 Nu and r =2 Nd: Then, Nu = N 0
u n fjg, Nd = N 0

d n frg and Ns = N 0
s [ fj; rg,

and by (32), (kN 0
u
; (q0 � 1)Nd ; qNsnfjg) = (kN 0

u
; (q0 � 1)N 0

d
; qN 0

s
): By (41) and (R2.1),

�j(kNu ; (q
0 � 1)Nd ; qNs) � qj and �i(kNu ; (q

0 � 1)Nd ; qNs) �
(

q0i � 1 if i 2 Nd
qi if i 2 Ns n fjg:

Then, in all four cases we have

�i(kNu ; (q
0 � 1)Nd ; qNs) �

(
q0i � 1 if i 2 Nd
qi if i 2 Ns:

Hence, by (1) in the de�nition of same-sidedness and the fact that Nu 6= ;;

�i(kNu ; (q
0 � 1)Nd ; qNs) =

(
q0i � 1 if i 2 Nd
qi if i 2 Ns:

(42)

This �nishes the proof of (L4.2) for the case t = 1. Suppose t � 2.
Induction hypothesis: LetN 0

u; N
0
d; N

0
s and q

0 be the output of Step B.t-1 andN 00
u ; N

00
d ; N

00
s

and q00 be its input; observe that ; 6= Nu � N 0
u holds. Then,

�i(kN 0
u
; (q00 � 1)N 0

d
; q0N 0

s
) =

(
q00i � 1 if i 2 N 0

d

q0i if i 2 N 0
s:

(43)

We �rst prove that (43) implies (39). Then, to obtain (42), the proof follows from (39)
with the same argument used in the case t = 1.
Let j0 2 N 00

u and r
0 2 N 00

d be the agents who play at Step B.t-1. If r
0 =2 N 0

d; then q
0
i = q00i

for all i 2 N 0
d: Therefore (43) implies (39) and the proof follows as in the case t = 1: If
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r0 2 N 0
d; then q

0
i = q00i for all i 2 N 0

d n fr0g and q0r0 = q00r0 � 1. Then, as q00r0 � 1 > q0r0 � 1; by
(R2.1) and (43),

�r0(kN 0
u
; (q0 � 1)N 0

d
; q0N 0

s
) � q0r0 � 1; and (44)

�i(kN 0
u
; (q0 � 1)N 0

d
; q0N 0

s
) �

(
q0i � 1 if i 2 N 0

d n fr0g
q0i if i 2 N 0

s:
(45)

Then, (44) and (45) imply (39) and the proof of (L4.2) follows as in the case t = 1: �

Lemma 5 Let � : RN ! X be a sequential allotment rule and Nu; Nd; Ns and q be the
output of the MIA obtained from �. Then, the following two conditions hold.

(L5.1) If Nu = ; then �(0Nd ; qNs) = q.

(L5.2) If Nu 6= ; then Nd = ; and �(kNu ; qNs) = q.

Proof Suppose the output of the MIA obtained from � is the output of Stage A. Then,
by Lemma 3,

�(kNu ; q�Nu) = �(0Nd ; q�Nd) = q: (46)

Assume Nu = ;. Then, �Nd = Ns and (L5.1) follows from (46). Assume Nu 6= ;. Since the
MIA obtained from � does not move to Stage B, Nd = ; and �Nu = Ns. Then, (L5.2)
follows from (46).
Now suppose the output of the MIA obtained from � is the output of Stage B. Then,

(L5.1) follows from (L4.1) since Nu = ; implies Ns = �Nd. To show (L5.2), assume Nu 6= ;:
As Nu; Nd; Ns and q is the output of the MIA obtained from �; Nd = ;: By (L4.2), for all
i 2 Ns,

�i(kNu ; qNs) = qi: (47)

Let j 2 Nu be arbitrary. We �rst show that �j(kNu ; qNs) � qj holds by distinguishing
between two cases.

Case 1: Suppose j has not played throughout Stage B. Let N�
u , N

�
d , N

�
s and q

� be the
output of Stage A in the path to the �nal output Nu; Nd; Ns and q of the MIA obtained
from �. Hence, N�

d 6= ;, j 2 Nu � N�
u , q

�
i = qi for all i 2 N�

s [fjg and q�i � qi for all i 2 N�
d .

By Lemma 3, �(kN�
u
; q��N�

u
) = q�. Hence, because �N�

u = N�
s [ N�

d , �i(kN�
u
; qN�

s
; q�N�

d
) = qi

for all i 2 N�
s [ fjg.

Let i 2 N�
d : Then, �i(kN�

u
; qN�

s
; q�N�

d
) � qi. By (R2.1), �i(kN�

u
; qN�

s
; q�N�

d nfig
; qi) � qi,

�j(kN�
u
; qN�

s
; q�N�

d nfig
; qi) � qj and �i0(kN�

u
; qN�

s
; q�N�

d nfig
; qi) � qi0 for all i0 2 N�

d n fig (if any).
By iteratively applying (R2.1) to all remaining agents in N�

d n fig (if any), we obtain that
for the arbitrarily �xed agent j 2 Nu,

�j(kN�
u
; q�N�

u
) � qj: (48)

Let i 2 N�
u n Nu: By strategy-proofness, �i(kN�

u
; q�N�

u
) � �i(kN�

unfig; q�N�
u
; qi): By re-

placement monotonicity and (48), qj � �j(kN�
u
; q�N�

u
) � �j(kN�

unfig; q�N�
u
; qi). Iteratively

applying the same argument to all remaining agents in (N�
u n fig) n Nu (if any), we obtain

that for the arbitrarily �xed agent j 2 Nu, qj � �j(kNu ; q�Nu):

38



Case 2: Suppose j has played throughout Stage B. Let Step B.t be last step at which
agent j has played and let N�

u ; N
�
d ; N

�
s and q

� be the input of Step B.t in the path to the
�nal output Nu; Nd; Ns and q of the MIA obtained from �. By de�nition, j 2 N�

u and

q�j + 1 � �j(kN�
u
; (q� � 1)N�

d
; q�N�

s
); (49)

and j�s guaranteed assignment at Step B.t is q�j +1: Furthermore, as agent j does not play
anymore, qj = q�j + 1: Therefore, (49) can be written as

qj � �j(kN�
u
; (q� � 1)N�

d
; q�N�

s
): (50)

Let bNu; bNd; bNs; and bq be the output of Step B.t.
Claim (kN�

u
; (q� � 1)N�

d
; q�N�

s
) = (k bNu ; (q� � 1) bNd ; bq bNs):

Proof of Claim As j 2 Nu; bNu = N�
u : Let r 2 N�

d be the agent that plays at Step B.t.b.
Then, bqi = q�i for all i 2 N�

s [ N�
d n frg and bqr = q�r � 1. If bNd = N�

d , then bNs = N�
s and

(kN�
u
; (q� � 1)N�

d
; q�N�

s
) = (k bNu ; (q� � 1) bNd ; bq bNs) holds trivially. If bNd = N�

d n frg, then N�
s =bNsnfrg and (kN�

u
; (q��1)N�

d
; q�N�

s
) = (k bNu ; (q��1) bNd ; bq bNsnfrg; q�r�1) = (k bNu ; (q��1) bNd ; bq bNs).

�
Since bNu 6= ;; we can apply (L4.2) to obtain

�i(k bNu ; (q� � 1) bNd ; bq bNs) =
(

q�i � 1 if i 2 bNdbqi if i 2 bNs:
If i 2 bNs; then i 2 Ns and qi = bqi: If i 2 bNd; then i 2 Ns because Nd = ; and i is called to
play at least once at some Step B.t0.b with t < t0: Then, by de�nition of qi and the fact
that i 2 bNd; qi � bqi � 1 � q�i � 1:
Then, as in Case 1, by iteratively applying (R2.1) to all i 2 ( bNs [ bNd), and strategy-

proofness to all i 2 bNu nNu and replacement monotonicity to j, we obtain that
�j(k bNu ; (q� � 1) bNd ; bq bNs) � �j(k bNu ; q� bNu) � �j(kNu ; q�Nu): (51)

Therefore, by the claim above, (50) and (51), qj � �j(kNu ; q�Nu):
Hence, qj � �j(kNu ; q�Nu) holds, independently of whether or not j plays throughout

Stage B. Since j was arbitrary and �Nu = Ns, for all j 2 Nu, qj � �j(kNu ; qNs): Thus, by
(47) and feasibility of q; �(kNu ; qNs) = q. �
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