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Abstract

This paper proposes a framework to analyze the effects of counterfactual policies on the
unconditional quantiles of an outcome variable. For a given counterfactual policy, we obtain
identified sets for the effect of both marginal and global changes in the proportion of treated
individuals. To conduct a sensitivity analysis, we introduce the quantile breakdown frontier,
a curve that quantifies the maximum amount of selection bias consistent with a given conclu-
sion of interest across different quantiles. We obtain a

√
n-consistent estimator of the curve,

and propose a bootstrap-based inference procedure. To illustrate our method, we perform a
sensitivity analysis on the effect of unionizing low income workers on the quantiles of the
distribution of (log) wages.
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1 Introduction

In this paper we propose a sensitivity analysis on the effect of counterfactual policies that change
the proportion of treated individuals. Consider a situation where a policy maker is interested in
treating non-treated individuals. The key identification challenge is that we do not the observe
the counterfactual outcome of individuals who switch groups, that is, the newly treated individ-
uals. In some cases, however, it is still possible to recover the distribution of the unobserved
counterfactual outcome. For example, suppose that treatment status is randomly assigned, and a
policy maker increases the proportion of treated individuals by randomly selecting non-treated
individuals.1 Although we do not observe the counterfactual outcome of the newly treated in-
dividuals, we know it is drawn from the same distribution as the already treated individuals.
Hence, we identified the counterfactual distribution of newly treated individuals.

When treatment status is not randomly assigned in the first place, the identification strategy
previously described breaks down. The reason is that due to the selection bias in the original
treatment status, a random selection of individuals from the control group will be drawn from a
different distribution. Thus, in the presence of selection bias, identification of the counterfactual
distribution requires that the policy maker has enough information to device a policy such that
the (unobservable) distribution of the newly treated “matches” the distribution of the already
treated individuals. This is usually unfeasible. Even if the policy maker has this information,
such as when treatment status is randomly assigned, they might not be interested in a policy that
merely selects the newly treated individuals at random.

The previous discussion highlights that identification of counterfactual distributions results
in either very stringent information requirements, or in policies that might not be interesting.
In both cases, the distribution of the newly treated individuals is restricted. From the point
of view of the policy maker, this can rule out many interesting policies. To see this, consider
the following example. A policy maker might like to know if an increase in the unionization
rate reduces inequality. If unionized workers are relatively high-skilled, and a policy expands
unionization with low-skilled workers, then the distribution of wages conditional on being in the
union, is likely to change.

In order to analyze a richer set of counterfactual policies, we drop the restrictions on the
distribution of the newly treated individuals and provide partial identification results for two
effects. The first one is a global effect that compares the quantiles of the observed outcome,
to those of the counterfactual outcome, where the proportion of treated individuals has been
increased by δ. The second one is a marginal effect where we let δ go to zero, and analyze its
limiting effect on the unconditional quantiles of the outcome.

Another important contribution of this paper is to propose a framework for a sensitivity
analysis on certain conclusions of interest. To do this, we quantify the departure from point
identification by the vertical distance between the distributions of the newly treated individuals

1We assume full compliance in both randomizations.
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and the already treated individuals. We introduce a curve called the quantile breakdown frontier,
which quantifies the maximum departure from point identification such that a given set of con-
clusions holds across different quantiles. Next, we bound the global effects curve using this
maximum departure derived from the quantile breakdown frontier. In this way, we obtain an
identified region for the global effect curve consistent with the desired conclusions.

The departure from point identification is due to the selection bias induced by the counter-
factual policy. We call this the policy selection bias. The usual selection bias states that treated and
non-treated individuals are different in a sense, and that is what explains the selection in the first
place. Instead, the policy selection bias is the difference between the distributions of the newly
treated individuals and the already treated individuals. Returning to the unionization example,
the policy selection bias arises because the union wages of newly unionized workers may not be
drawn from distribution of the already unionized workers. We do not know the distribution of
union wages of newly unionized workers, hence we can only partially identify the global and
marginal effects.

The policy selection bias can be non-negligible even if the original selection into treatment
is randomly assigned. The reason is that, for the policy selection bias, what matters is who the
newly treated individuals are. Conversely, if there is selection bias initially, but the distribution of
the newly treated “matches” the distribution of the already treated individuals, then there will be
no policy selection bias. Thus, the policy selection bias depends on the particular counterfactual
policy being analyzed, not whether there is selection bias in the original selection mechanism.

Estimation of both the quantile breakdown frontier and the bounds on the global effect are
based on empirical distribution functions and empirical quantiles, and are

√
n-consistent. In-

ference is more challenging, though. The reason is that the bounds derived from the quantile
breakdown frontier are not a fully Hadamard differentiable function of the underlying distribu-
tions; there are a few kinks where differentiability fails. However, directional differentiability
holds, and we can still exploit the functional Delta method to obtain asymptotic distributions.
These limiting laws are not Gaussian. So, as shown in Fang and Santos (2019), the standard or
“naive” bootstrap is not valid. Instead, we resort to the numerical bootstrap of Hong and Li
(2018, 2020) to construct pointwise confidence intervals and uniform confidence bands.

We apply these methods to the study of unions and inequality, which has long been of interest
to labor economics. A recent comprehensive review of this extensive literature is provided by
Farber et al. (2020). Using the data in Firpo, Fortin and Lemieux (2009), our empirical application
considers the effect of expanding unionization on the quantiles of the distribution of (log) wages.
Our approach allows us to tackle the question from a different perspective. Using the tools
developed in this paper, we can quantify the amount of policy selection bias that is consistent
with a policy that increases the unionization rate by unionizing low earnings workers. By looking
at the global effect in the 20th and 80th quantiles of the distribution of wages we investigate the
amount of policy selection bias consistent with unions reducing overall inequality. To this end,
we look at two conclusions: whether the 20th quantile increases by more than 10%, and whether
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the 80th quantile increases less than 10%. We find that this is consistent with moderate values of
policy selection bias.

Related Literature There is an extensive literature devoted to the analysis of counterfactual
distributions. A good reference is Firpo, Fortin and Lemieux (2011). In this paper, we focus
on counterfactual distributions that arise as a result of a counterfactual policy that changes the
proportion of treated individuals. The Policy Relevant Treatment Effect (PRTE) of Heckman and
Vytlacil (2001, 2005), and the Marginal PRTE (MPRTE) of Carneiro, Heckman and Vytlacil (2010,
2011) are examples of the aforementioned global and marginal effects. The difference is that they
analyze the unconditional mean of the outcome. Identification relies on the a separable threshold
model for the selection equation, and the availability of a continuous instrumental variable. In
this setting, the proportion of treated individuals is changed by manipulating the instrumental
variable. Our analysis does not make any assumptions on the selection equation. We do not
require an instrumental variable either.

The marginal effect on the unconditional quantiles of an outcome was first studied by Firpo,
Fortin and Lemieux (2009). The identification arguments of Firpo, Fortin and Lemieux (2009) are
based on a distributional invariance assumption: the distribution of the outcome for the original
treatment group (under the original policy regime) is the same as that for the new treatment
group (under the new policy regime), and this also holds for the control groups under the two
policy regimes.2 For the case of an endogenous binary covariate, where distributional invari-
ance might not hold, Martinez-Iriarte and Sun (2020) achieve identification by generalizing the
Marginal Treatment Effect framework. Kasy (2016) also analyzes counterfactual policies which
assign a binary treatment, but focuses on a welfare ranking. Kaplan (2019) takes a closer look
at the conditional independence assumption in the case of counterfactual assignments, and con-
cludes that it must hold not only for the original assignment, but also for the counterfactual
assignment/policy. We analyze the conditions Kaplan (2019) in more detail in Example B.4 in
Appendix B.

Rothe (2012) provides a general treatment for functionals of the unconditional distribution of
the outcome. What we call a global effect, Rothe (2012) refers to as a Fixed Partial Policy Effect, and
what we call a marginal effect, Rothe (2012) refers to as a Marginal Partial Distributional Policy.
However, Rothe (2012) imposes different identifying assumptions, namely a form of conditional
exogeneity, which also yield a partial identified set. We do not impose such assumptions in order
to broaden the types of policies we can analyze.

It is important to highlight that we do not estimate a quantile treatment effect. The quantile
treatment effect is the difference between the τ-quantile under treatment and the τ-quantile
under control, and depends on the distribution of the covariates. In a recent contribution, Hsu,
Lai and Lieli (2020) investigate the changes in this effect when the distribution of the covariates is
manipulated. Aside from treatment status, we do not manipulate the distribution of covariates.

Our sensitivity analysis is based on the breakdown analysis of Kline and Santos (2013) and

2See the proof to Corollary 3 of the working paper version Firpo, Fortin and Lemieux (2007).
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Masten and Poirier (2020). Kline and Santos (2013) perform a sensitivity analysis in a different
context: departures from a missing (data) at random assumption. In a manner similar to us, this
departure is measured as the Kolmogorov-Smirnov distance between the distribution of observed
outcomes and the (unobserved) distribution of missing outcomes. Our quantile breakdown fron-
tier builds on the breakdown frontier introduced by Masten and Poirier (2020). However, the
quantile breakdown frontier takes advantage of the unique features of the policy selection bias:
for each quantile the breakdown frontier of Masten and Poirier (2020) is a rectangle. This allows
us to plot the higher-dimensional quantile breakdown frontier in a plane.

Notation All the CDFs are denoted by F with a subscript indicating the random variable.
So, the CDF of Y is FY(y). Conditional CDFs are denoted similarly. For example, the CDF of Y
conditional on D = 1 and X = x is denoted by FY|D=1,X=x(y). The τ-quantile of Y is denoted by
F−1

Y (τ). Weak convergence is denoted by .
Organization The paper is organized as follows: Section 2 introduces our framework and

shows how to construct the identified regions; Section 3 introduces the quantile breakdown fron-
tier and explains the sensitivity analysis procedure; Section 4 discusses estimation and inference;
Section 5 contains the empirical application; and Section 6 concludes. We relegate all proofs to
Appendix A.

2 Counterfactual Policies and Unconditional Effects

We will work with the potential outcomes framework. For some unknown functions h0 and h1

Y(0) = h0(X, U0),

Y(1) = h1(X, U1),

where X are observed covariates and U0 and U1 consist of unobservables. We do not impose any
restriction on the dimension of the unobservables. The observed outcome is thus

Y = D · h1(X, U1) + (1− D) · h0(X, U0).

: = h(D, X, U),

for a general nonseparable function h, where D is a binary random variable taking values 0
and 1, and U := (U0, U1)

′. The variable D can be interpreted as the treatment status, and
p := Pr(D = 1) is the proportion of treated individuals.

In the rest of the paper, we maintain a continuity assumption about the outcome Y. This is
not essential to our results, but allows us to reduce the notational burden.

Assumption 1 (Continuity). The observed outcome Y is continuous, with positive density in its support
Y .

A counterfactual policy is an alternative assignment of individuals to treatment. It is given by
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counterfactual policy

D = 1

D = 0

D = 1
Dδ = 1

D = 0
Dδ = 1

D = 0
Dδ = 0

Figure 1: A counterfactual policy where Dδ − D ≥ 0.

a binary random variable Dδ, such that Pr(Dδ = 1) = p+ δ for a fixed δ ∈ (−p, 1− p). It is called
counterfactual because it may assign Dδ = 1 to an individual whose D = 0. As δ varies over
(−p, 1− p), we obtain a collection of counterfactual policies which is denoted by D. Somewhat
casually, we also call the collection D a sequence of policies. When a particular counterfactual
policy Dδ belongs to D we write Dδ ∈ D. The counterfactual outcome we would observe for a
given Dδ ∈ D is

YDδ
= h(Dδ, X, U),

where we implicitly assumes that the potential outcomes are not affected by the manipulation of
D.

Strictly speaking, the counterfactual outcome YDδ
is not well defined until we define D, the

collection of counterfactual policies. We will restrict ourselves to policies that shift a portion of
individuals in the control group to the treatment group. We refer to such individuals as newly
treated. This means that for every individual, Dδ − D ≥ 0. This is shown in Figure 1.

Assumption 2 (Counterfactual Policies). The sequence of policies D satisfies

1. Pr(Dδ = 1) = p + δ for δ ∈ [0, 1− p) and Dδ ∈ D;

2. Monotonicity: Dδ − D ≥ 0;

3. The counterfactual outcomes YDδ
are continuous with positive density on their support Y .

The monotonicity assumption Dδ − D ≥ 0 is mainly for expositional simplicity. We can do
without this assumption, but we need to make some minor changes to our approach. However,
there is also a practical purpose. In a context where D is union status, and D = 1 denotes union-
ized individuals, Assumption 2 requires that we increase the unionization rate by unionizing
previously nonunionized workers. It would probably be hard to simultaneously unionize and
deunionize different workers.
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Another way to look at the monotonicity assumption is by inspecting the joint distribution of
D and Dδ it induces.

Dδ = 0 Dδ = 1

D = 0 1− p− δ δ

D = 1 0 p

In other words, Assumption 2 rules out the presence of newly untreated individuals. Also, in
the limit, when δ = 0, we return to the original distribution of individuals. We will evaluate the
effect of a counterfactual policy with two parameters: the global and the marginal effects. Let
F−1

Y (τ) and F−1
YDδ

(τ) denote the τ-quantiles of Y and YDδ
respectively.

Definition 1 (Global and Marginal Effects). For a given sequence of policies D, the unconditional
global effect at the τ-quantile is

Gτ,Dδ
:= F−1

YDδ
(τ)− F−1

Y (τ),

and the unconditional marginal effect at the τ-quantile is

Mτ,D := lim
δ→0

F−1
YDδ

(τ)− F−1
Y (τ)

δ

whenever this limit exists.

The global effect Gτ,Dδ
is the comparison of quantiles of the counterfactual distribution vs.

the observed distribution. For example, it could tell us what could happen to the median under
a particular policy Dδ. The marginal effect Mτ,D can be interpreted as an ordinary derivative: for
small δ, it provides an approximation to the direction of the change in a given τ-quantile.

The next task is to define who are the newly treated individuals, that is, how does Dδ determine
who receives treatment among the individuals whose D = 0? In this paper we will focus on two
types of policies: a policy that simply chooses individuals whose D = 0 at random and assigns
them to Dδ = 1, and a policy that chooses individuals based on a user-specified criterion. We
will refer to these two types of policies as randomized policy and non-randomized policy respectively.
A randomized policy might be more in line with a concept of fairness: everyone in the untreated
group gets an equal chance of being treated. A non-randomized policy, in contrast, might be
more in line with a situation where the policy maker has a particular loss function they are
trying to optimize.

Example 1 (Randomized policy). A randomized policy satisfies: for any δ ∈ [0, 1− p)

Dδ =

1 if D = 1

0 or 1 if D = 0

and the newly treated are selected at random. Using the conditional independence notation of Dawid
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(1979),3 we write Dδ ⊥ Y(1), Y(0)‖D = 0:

Pr(Dδ = 1|D = 0) = Pr(Dδ = 1|D = 0, Y(1), Y(0)) =
δ

1− p
. (1)

Example 2 (Non-randomized policy). An example of a non-randomized policy is the following: for any
δ ∈ [0, 1− p)

Dδ =


1 if D = 1

1 if D = 0 and Z ≤ F−1
Z|D=0

(
δ

1−p

)
0 otherwise

(2)

for some observable random variable Z. In this case, the individuals in the group {D = 0} whose Z is
less than the δ

1−p -quantile of this group are shifted to Dδ = 1. This rule guarantees that, in expectation, a
proportion δ of individuals is shifted.

The following theorem characterizes the counterfactual distribution associated with an arbi-
trary policy.

Theorem 1 (Counterfactual Distribution). For a sequence of policies D that satisfies Assumptions 2,
the counterfactual distribution for a given Dδ ∈ D is

FYDδ
(y) = Fa(y) + δ

[
FY(1)|D=0,Dδ=1(y)− FY(1)|D=1,Dδ=1(y)

]
, (3)

where

Fa(y) : = (1− p− δ)FY(0)|D=0,Dδ=0(y) + (p + δ)FY(1)|D=1,Dδ=1(y)

= (1− p− δ)FY|D=0,Dδ=0(y) + (p + δ)FY|D=1,Dδ=1(y). (4)

The distribution Fa is called an apparent counterfactual distribution because it is obtained by
imputing FY(1)|D=1,Dδ=1 to the newly treated subpopulation.4 The true distribution, which may
not be identifiable, is FY(1)|D=0,Dδ=1, so the second term corrects this. In a sense, Fa proceeds as
if FY(1)|D=0,Dδ=1 were equal to FY(1)|D=1,Dδ=1, something which is unlikely to be true. This can be
seen in Figure 1. The apparent distribution ignores the red shaded area, and combines the green
and the blue areas. The second term in (3) is the difference between the red and green areas.

The apparent distribution Fa is identified because the policy maker knows the composition of
the subpopulations {D = 0, Dδ = 0}, the never treated, and {D = 1, Dδ = 1}, the already treated.
For both of these subpopulations we observe the “correct” potential outcome. More specifically,

3Dawid (1979) writes X ⊥ Y‖Z to denote that X and Y are independent conditional on Z = z for any z. Here, we
require independence to hold conditionally only on D = 0.

4The correct notation for Fa is Fa,Dδ
, that is, it should include the policy Dδ. However, to keep the notation simple,

we omit this. The reader should bear in mind that for two different sequences of policies the apparent distributions
might differ.
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for the never treated subpopulation, we observe Y(0), and for the already treated subpopulation,
we observe Y(1). The distributions of Y, which is equal to Y(0) and Y(1), respectively, for the
two subpopulations, are identified. As a result, Fa is identified. It is worth pointing out that,
under Assumption 2, FY(1)|D=1,Dδ=1 = FY(1)|D=1, and FY(0)|D=0,Dδ=0 = FY(0)|Dδ=0. We maintain the
“long” notation in order to emphasize the role of Dδ. Also, while FY(0)|D=0,Dδ=0 is identified, it
may not equal FY|D=0 unless Dδ is randomized.

The only unidentified term in (3) is FY(1)|D=0,Dδ=1. This is the potential outcome Y(1) for the
newly treated individuals. However, for this subgroup, we only observe Y(0). As we mentioned
before, a consequence of Assumption 2 is that we lose point identification of the counterfactual
distribution.

Remark 1 (Firpo, Fortin and Lemieux (2009)). The marginal effect Mτ,D was originally studied by
Firpo, Fortin and Lemieux (2009). Instead of Assumption 2, Firpo, Fortin and Lemieux (2009) assume
a form of distributional invariance: FYDδ

|Dδ=d = FY|D=d and obtain point identification. See the proof to
Corollary 3 of the working paper version Firpo, Fortin and Lemieux (2007). When both D and Dδ are
independent of U and X, then distributional invariance will be satisfied. In this particular case, a policy
maker can randomize Dδ so that for a given δ, a fraction p + δ of individuals is randomly assigned to
treatment. However, if we allow for D to be endogenous, and if, as is usually the case, the structural form
of endogeneity is unknown, then it may be impossible for the policy maker to design a sequence D, such
that for every Dδ ∈ D, FYDδ

|Dδ=d “matches” FY|D=d. From the point of view of the policy maker, this is a
significant restriction on the types of counterfactual policies they can consider.

Remark 2 (Policy Relevant Treatment Effect). Heckman and Vytlacil (2001, 2005) and Carneiro, Heck-
man and Vytlacil (2010, 2011) investigate the effect on the unconditional mean of the outcome. Using our
notation, the Policy Relevant Treatment Effect (PRTE) of Heckman and Vytlacil (2001, 2005) is

PRTEDδ
=

E(YDδ
)− E(Y)
δ

and taking the limit δ→ 0 yields the Marginal PRTE (MPRTE) of Carneiro, Heckman and Vytlacil (2010,
2011):

MPRTED = lim
δ→0

PRTEδ.

Martinez-Iriarte and Sun (2020) show how to generalize the MPRTE to cover the case of Firpo, Fortin and
Lemieux (2009) as well.

Remark 3 (Rothe (2012)). Rothe (2012) also studies the global and marginal effects but under a different
identifying assumption, namely a form of conditional exogeneity. This assumption also yields an identified
set. Let the outcome be Y = h(D, X, U). For uniformly distributed random variables Ũ1 and Ũ2, the
outcome can be represented as Y = h(QD(Ũ1), QX(Ũ2), U) where QD and QX are the quantile functions.
Then QD is changed to another quantile function Q∗D, generating a counterfactual distribution, which is
identified when Ũ1 ⊥ U‖X and D is continuous. When D is discrete, Ũ1 is not uniquely determined, so
that a range of possible counterfactual distributions is possible resulting in partial identification.

8



2.1 Global Effect: Bounds and Identification Region

The difference between FYδ
and Fa is called the policy selection bias, that we denote psb(y). Since

different policies can induce different newly treated individuals, they can induce different coun-
terfactual distributions. Thus the selection bias is policy dependent, and hence the name “policy
selection bias.”

psb(y) : = FY(1)|D=0,Dδ=1(y)︸ ︷︷ ︸
newly treated

− FY(1)|D=1,Dδ=1(y)︸ ︷︷ ︸
already treated

= FY(1)|D=0,Dδ=1(y)− FY(1)|D=1(y),

where the second line follows from Assumption 2: the subpopulations {D = 1, Dδ = 1} and
{D = 1} are identical. Under a non-randomized policy, the random variable Dδ is usually a
function of D and other observables as in (2). So, even if D ⊥ Y(0), Y(1), that would lead us to

psb(y) = FY(1)|D=0,Dδ=1(y)− FY(1)|D=0(y),

which is not zero unless Dδ ⊥ Y(1)|D = 0. For example, if we want to choose individuals whose
observed outcome is below a certain threshold, then most likely Dδ will be correlated with Y(1)
conditional on D = 0. Indeed, the fact that psb(y) is unlikely to be zero seems to be an inevitable
feature of the problem of analyzing non-randomized policies.

As a measure of departure from point identification, we will bound the the policy selection
bias both from below and from above. For simplicity, we denote by Y the common support of
Y(1)|D = 0, Dδ = 1 and Y(1)|D = 1, Dδ = 1.

Assumption 3 (L-U Bounds). For any Dδ ∈ D, there exists a pair of real numbers L ∈ [−1, 0] and
U ∈ [0, 1] such that for every y ∈ Y

L ≤ FY(1)|D=0,Dδ=1(y)− FY(1)|D=1,Dδ=1(y) ≤ U.

The distribution of newly treated individuals is FY(1)|D=0,Dδ=1(y), while FY(1)|D=1,Dδ=1(y) is the
distribution of the already treated individuals. A more precise way to define L is as the infimum
over the differences FY(1)|D=0,Dδ=1(y) − FY(1)|D=1,Dδ=1(y), while U is the supremum over such
differences.

If Y(1) is higher for already treated individuals than for newly treated individuals uniformly
over Y , then FY(1)|D=0,Dδ=1(y) ≥ FY(1)|D=1,Dδ=1(y), and we can set L = 0 and U ≤ 1. This is a
situation in which FY(1)|D=1,Dδ=1(y) first-order stochastically dominates FY(1)|D=0,Dδ=1(y). In the
more general case, where the two distributions cross each other, then L ∈ [−1, 0] and U ∈ [0, 1],
and we do not necessarily need to have U = −L. Finally, setting L = −1 and U = 1 corresponds
to a trivial bounds situation.

Assumption 3 implies via (3) that the discrepancy between the counterfactual distribution
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FYDδ
and the apparent distribution Fa is further shrunk by a factor of δ:

δL ≤ FYDδ
(y)− Fa(y) ≤ δU. (5)

We are now ready to state the main result of this section.

Theorem 2 (Global Effect Bounds). For a given sequence of policies that satisfies Assumptions 1, 2 and
3, the global effect is bounded by

Gτ,Dδ
∈
[

F−1
a (τ − δU)− F−1

Y (τ), F−1
a (τ − δL)− F−1

Y (τ)
]

(6)

for any τ ∈ (δU, 1 + δL).

The proof is best given by a picture. Figure 2 shows Fa(y) in solid blue, along with the
uniform bounds for FYDδ

(y) for given values of L and U. For a fixed τ, F−1
YDδ

(τ) must lie between

the points ` and u. The point ` satisfies Fa(`) + δU = τ, from which we obtain ` = F−1
a (τ − δU).

A similar reasoning applied to u yields u = F−1
a (τ − δL). Finally, the bound for the global effect

is obtained by subtracting F−1
Y (τ) from both ` and u.

The identified region in (6) is obtained by correcting the evaluation point of the quantile of
the apparent distribution: instead of τ, we evaluate the quantile of the apparent distribution at
τ − δU and τ − δL. The farther away are U and L from zero, where point identification holds,
the bigger is the region where the counterfactual distribution can lie. This is reflected in the
widening of the identified region.

An important quantity that we will use later on is the apparent global effect. This is the estimand
that neglects the policy selection bias by setting L = U = 0. It is given by

Ga
τ,Dδ

:= F−1
a (τ)− F−1

Y (τ), (7)

where the superscript “a” conveys the fact that it captures an apparent effect. Indeed, Ga
τ,Dδ

proceeds as if the counterfactual distribution FYDδ
equals the apparent distribution Fa.

The bounds are “monotone” in L and U as we move away from point identification, that
is, when L = U = 0. Indeed, as we move in the L direction towards −1, the upper bound
F−1

a (τ − δL) − F−1
Y (τ) increases. As move away from point identification in the U direction

towards 1, the lower bound F−1
a (τ − δU)− F−1

Y (τ) decreases. It is important to recall that L is
non-positive, and U is non-negative, so that F−1

a (τ − δU) ≤ F−1
a (τ − δL).

Remark 4 (Range of τ). The requirement τ ∈ (δU, 1 + δL) comes from τ − δU ≥ 0 and τ − δL ≤ 1.
However, later on, when we fix τ and δ, we want U and L to not be restricted, i.e., they both can achieve 1
and −1 respectively. In order for this to happen, we need δ < τ < 1− δ. In the empirical application we
work with δ = 0.1, so there will not be a significant restriction on the quantiles we can analyze.

10



1

y0

τ

uF−1
a (τ)`

Figure 2: The solid blue line is Fa(y), while the grey dashed lines are the uniform bounds given by (5).
The points ` and u are F−1

a (τ − δU) and F−1
a (τ − δL) respectively.

Remark 5 (Trivial Bounds). In principle, the global effect need not be restricted. The trivial bounds,
U = 1 and L = −1, provide a bounded region which contains the global effect:

F−1
a (τ − δ)− F−1

Y (τ) ≤ Gτ,Dδ
≤ F−1

a (τ + δ)− F−1
Y (τ),

so, in the language of Manski (1989, 1990), the trivial bounds are always informative. However, the
identified set derived from the trivial bounds always contains 0 for all quantiles. The intuition is that for a
given δ, and the common support assumption, we know the counterfactual distributions for a proportion
1− δ of individuals. Thus, we are able to bound the quantiles. See Apprendix A for a proof.

Remark 6 (c-dependence). A common way to relax D ⊥ Y(1) is a version5 of the c-dependence approach
of Masten and Poirier (2018) which posits a c ∈ [0, 1] such that

sup
y∈supp(Y(1))

|Pr(D = 1|Y(1) = y)− Pr(D = 1)| ≤ c. (8)

When c = 0, then D ⊥ Y(1). If c > 0, then some sort of dependence is allowed between D and
Y(1). Alas, this approach would only help us in the case of randomized policies. For non-randomized
policies, to achieve point identification, we need an extra conditional independence assumption, namely
Dδ ⊥ Y(1)|D = 0. We could, in addition to the c-dependence condition in (8), impose

sup
y∈supp(Y(1))

|Pr(Dδ = 1|Y(1) = y, D = 0)− Pr(Dδ = 1|D = 0)| ≤ c∗.

for some c∗ ∈ [0, 1]. However, the drawback is that the relationship between c and c∗ is not at all clear.
More importantly, their interpretation is not straightforward either.

5We do not follow exactly the definition of c-dependence of Masten and Poirier (2018) which includes covariates.
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2.2 Marginal Effect: Bounds and Identification Region

Before we proceed, we will settle the question of existence of the marginal effect. Theorem 3
provides sufficient conditions.

Theorem 3 (Existence of Marginal Effect). Consider a sequence of policies D such that

1. FYD0
(y) = FY(y) for any y ∈ Y ;

2. The map δ 7→ FYDδ
(y) is differentiable at δ = 0 uniformly in y ∈ Y , with derivative ḞY,D(y), that

is

lim
δ↓0

sup
y∈Y

∣∣∣∣∣FYDδ
(y)− FY(y)

δ
− ḞY,D(y)

∣∣∣∣∣ = 0;

3. The map y 7→ ḞY,D(y) is continuous at F−1
Y (τ).

Then, Mτ,D exists and is given by

Mτ,D = −
ḞY,D(F−1

Y (τ))

fY(F−1
Y (τ))

.

The conditions and the proof of this Theorem come from viewing the marginal effect as a
Hadamard derivative. The first condition, FYD0

(y) = FY(y), is particular to this setting, though.
A primitive condition for FYD0

(y) = FY(y) is Assumption 2, because it implies the expansion of
Theorem 1. Setting δ = 0 in (3) yields FYD0

(y) = FY(y). It states that for D0 ∈ D, the limiting
counterfactual distribution FD0 matches the observed distribution FY. This might not necessarily
be the case; see Example B.2 in Appendix B. Indeed, we could define a marginal effect with
respect to FYD0

instead which would avoid the “discontinuity” at δ = 0. However, this would be
of limited interest.

The second condition, that of uniform differentiability of the map δ 7→ FYDδ
(y), is more

abstract. To understand what it entails, consider the following rearrangement6 of equation (3):

FYDδ
(y)− FY(y)

δ
= FY(1)|D=0,Dδ=1(y)− FY(0)|D=0,Dδ=1(y).

The right hand side is the difference in potential outcomes for the newly treated. We require this
change to be continuous in δ: small departures from 0 to δ > 0 should not induce large (uniform)
changes in the counterfactual distribution FYDδ

. This is automatically satisfied when the sequence
of policies are randomized. The next example shows this.

6We can write FY(y) = (1− p− δ)FY(0)|D=0,Dδ=0(y) + δFY(0)|D=0,Dδ=1(y) + pFY(1)|D=1,Dδ=1(y), and FY(y) = (1−
p− δ)FY(0)|D=0,Dδ=0(y) + δFY(0)|D=0,Dδ=1(y) + pFY(1)|D=1,Dδ=1(y). Subtracting FY(y) to FYDδ

(y) we get

FYDδ
(y)− FY(y) = δ

(
FY(1)|D=0,Dδ=1(y)− FY(0)|D=0,Dδ=1(y)

)
.

12



Example 3 (Marginal Effect of Randomized Policy). For the case of a randomized policy that satisfies
Assumption 2, by (1) we can simplify the counterfactual distribution in (3) to

FYDδ
(y) = FY(y) + δ

[
FY(1)|D=0(y)− FY(0)|D=0(y)

]
,

which implies that ḞY,D(y) = FY(1)|D=0(y)− FY(0)|D=0(y). We obtain that ḞY,D is independent of D.

When ḞY,D is independent of D, two different randomized policies D and D′ will deliver
the same marginal effect. But at the same time, at the population level, there can only be one
randomized policy. This result reflects precisely that. On the other hand, for non-randomized
policies, the marginal effect can easily be sequence dependent. Appendix B contains more ex-
amples from the literature that show that the uniform differentiability of δ 7→ FYDδ

(y) might be a
non-trivial requirement.

For a randomized policy, ḞY,D is well-defined, though not necessarily identified since it in-
volves FY(1)|D=0. For this reason, when analyzing the marginal effect, we will focus on random-
ized policies. Thus, we will write Mτ instead of Mτ,D.

The bounds for the marginal effect will be obtained as the limiting bounds, as δ goes to 0, for
the global effect under a randomized policy. That is, the bounds for Mτ will be given by

lim
δ→0

F−1
a (τ − δU)− F−1

Y (τ)

δ
,

and

lim
δ→0

F−1
a (τ − δL)− F−1

Y (τ)

δ
,

provided these limits exist.
These limits can be seen as derivatives with respect to δ of δ 7→ F−1

a (τ− δL) at δ = 0. There is a
minor complication which makes the computation a bit more involved. The reason is that δ plays
a dual role in the map δ 7→ F−1

a (τ − δL): first, it enters in the argument of F−1
a (τ − δL); second

it is used in the construction of the apparent distribution Fa := (1− p− δ)FY|D=0 + (p + δ)FY|D=1

(see (4)). We resort to the chain rule and treat each case separately. The first case can be solved
as an ordinary derivative of the inverse of a function, while the second case takes advantage
of the Hadamard differentiability of the function δ 7→ Fa, which maps a scalar into the space
of right-continuous functions with left limits, composed with the function Fa 7→ F−1

a (τ) which
maps an increasing right-continuous function with left limits into the real numbers. The details
can be found in Appendix A. Heuristically, we have

lim
δ→0

F−1
a (τ − δU)− F−1

Y (τ)

δ
= lim

δ→0

F−1
Y (τ − δU)− F−1

Y (τ)

δ
+ lim

δ→0

F−1
a (τ)− F−1

Y (τ)

δ
,

where the first term can be dealt with the inverse function theorem, and the second term with a

13



Hadamard derivative to account how the function F−1
a moves when we move δ.

Theorem 4 (Marginal Effect Bounds). For a sequence of randomized policies that satisfies Assumptions
1, 2 and 3 the marginal effect is bounded by

− U
fY(F−1

Y (τ))
≤ Mτ −Ma

τ ≤ −
L

fY(F−1
Y (τ))

(9)

for any τ ∈ (0, 1), where

Ma
τ := −

FY|D=1(F−1
Y (τ))− FY|D=0(F−1

Y (τ))

fY(F−1
Y (τ))

(10)

is the apparent effect.

The apparent effect in (10) is the estimand of Firpo, Fortin and Lemieux (2009). Hence,
Theorem 4 states that the usual estimand should be enlarged by − U

fY(F−1
Y (τ))

and − L
fY(F−1

Y (τ))
in

order to contain Mτ. Recall that L is non-positive, and U is non-negative. As opposed to the
bounds on the global effect, the result in Theorem 4 holds for any τ ∈ (0, 1). However, there is
not much to gain from this because as τ approaches 0 or 1, the density fY(F−1

Y (τ)) is likely to
approach zero and the bounds will diverge to +∞ or −∞.

Remark 7 (Trivial Bounds). Setting L = −1 and U = 1 corresponds to a trivial bounds case. It is a
matter of simple algebra to show that 0 will always be in the identified set in this case. For example, if
Ma

τ ≥ 0, then 0 ∈ [Ma
τ − 1/ fY(F−1

Y (τ)), Ma
τ + 1/ fY(F−1

Y (τ))]. As in the case with the global effect, the
boundedness of the outcome is not needed for the trivial bounds to be informative.

3 Quantile Breakdown Frontier

In our framework, the amount of policy selection bias is controlled by L and U. Figure 3 shows
this in the L×U plane. When L = U = 0, there is no policy selection bias, and hence we achieve
point identification. Any other value of L ∈ [−1, 0) and U ∈ (0, 1] admits some policy selection
bias, and consequently the effects are only partially identified. A special case of this are the
trivial bounds: when L = −1 and U = 1. We refer to any combination (L, U) distinct from (0, 0)
as a departure from point identification.

The following language convention is important. Because L is always non-positive, we say
that we have more policy selection bias (due to L) in the point (L, U) = (−1, u) than in the point
(L, U) = (−0.5, u), even though L is bigger in the latter, −0.5, than in the former, −1. Thus, we
quantify the selection as how far we move (L, U) from (0, 0), rather than by the value of L or U.

The quantile breakdown frontier is a curve that quantifies the amount of policy selection bias
compatible with a given conclusion of interest across quantiles. Suppose we are interested in a
certain policy Dδ, and we would like to know if its global effect on the median of Y is positive.

14



L

U

0−1

1 Partial identification

Point identification

Trivial bounds

Figure 3: Only L = U = 0 delivers point identification.

That is, we want to know whether G.5,Dδ
> 0 or not. If we were certain that there is no policy

selection bias, we would just estimate the apparent effect Ga
.5,Dδ

using (7):

Ga
.5,Dδ

= F−1
a (.5)− F−1

Y (.5).

However, it is very likely that the apparent effect Ga
.5,Dδ

is biased for the true global effect G.5,Dδ
.

Sensitivity analysis, in a sense, asks the reverse question: how much policy selection bias is
compatible with G.5,Dδ

> 0? The quantile breakdown frontier answers this question by indicating
the amount of departure from point identification such that the conclusion holds.

In order to answer the question posed by sensitivity analysis, we recall Theorem 2 which
states that there are L and U such that

F−1
a (.5− δU)− F−1

Y (.5) ≤ G.5,Dδ
≤ F−1

a (.5− δL)− F−1
Y (.5). (11)

Hence, for G.5,Dδ
> 0 to hold, we need that the lower bound in (11) be greater than zero. That

is, we need all the values of U such that

0 < F−1
a (.5− δU)− F−1

Y (.5) ≤ G.5,Dδ
(12)

First, we note that F−1
a (.5− δU) is decreasing in U. Suppose G.5,Dδ

>0. We start with U = 0
and then move it towards 1. On the other hand, L is left unrestricted. So, all the values of U such
that (12) holds and any value of L ∈ [−1, 0] are compatible with G.5,Dδ

> 0. In particular, let U.5

be the value of U such that the lower bound in (12) is equal to zero: 0 = F−1
a (.5− δU.5)− F−1

Y (.5).
Thus, the combination of L and U compatible with G.5,Dδ

> 0 are

{(L, U) : −1 ≤ L ≤ 0 and 0 ≤ U < U.5} (13)

A value of U greater than U.5 induces too much bias and fails to guarantee that G.5,Dδ
> 0.
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L

U

0−1

1

U.5

(a) Compatible values of L and U for G.5,Dδ
> 0.

L

U

0−1

1

L.8

(b) Compatible values of L and U for G.8,Dδ
< 0.

Figure 4: Compatible values for G.5,Dδ
> 0 and G.8,Dδ

< 0.

Figure 4a shows the compatible values of L and U in the L×U plane.
Now suppose we are also interested in the 80th quantile. However, it may be the case that

there is no value of U such that

0 < F−1
a (.8− δU)− F−1

Y (.8).

holds. That is, for any value of U,

F−1
a (.8− δU)− F−1

Y (.8) ≤ 0,

or equivalently Ga
.8,Dδ
≤ 0, thus, no combination of L and U can guarantee that G.8,Dδ

> 0 holds.
Therefore, we look at the reverse conclusion G.8,Dδ

< 0, and find all the values of L such that

G.8,Dδ
≤ F−1

a (.8− δL)− F−1
Y (.8) < 0.

We denote by L.8 the value of L that solves: F−1
a (.8− δL)− F−1

Y (.8) = 0. The values of L and
U such that G.8,Dδ

< 0 are

{(L, U) : L.8 < L ≤ 0 and 0 ≤ U ≤ 1} , (14)

and are shown in Figure 4b.
The extension of this procedure to more than two quantiles gives rise to the quantile break-

down frontier. For a collection of conclusions indexed by τ ∈ (δ, 1− δ),7 for example Gτ,Dδ
> gτ,

the quantile breakdown frontier shows the combinations of L and U compatible with each con-
clusion.

Figure 5 contains an hypothetical quantile breakdown frontier constructed for all τ ∈ (δ, 1−
7See Remark 4 for an explanation of this restriction.
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U
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1

−1

0
1.5 .8

U.5

L.8

Quantile Breakdown Frontier

τ

U

L

1

−1

0
1

Gτ,Dδ
> 0

may not hold

Robust region:
Gτ,Dδ

> 0 holds

Robust region:
Gτ,Dδ

< 0 holds

Gτ,Dδ
< 0

may not hold

Figure 5: Quantile Breakdown Frontier.

δ). On the left side, at τ = .5, we can see that below the curve we have the region described in
(13) under which G.5,Dδ

> 0 holds. At τ = .8, we have that above the curve we have the region
described in (14) where G.8,Dδ

< 0 holds. The right hand side shows this for all the quantiles in
(δ, 1− δ). Values of U in the red area include possible negative values of the global effect. The
green area is the counterpart of the blue area: a robust region for Gτ,Dδ

< 0. Finally, the orange
area is the counterpart of the red area: values of L such that the global effect might be positive.

Consider again the left panel in Figure 5. We can use the values L.8 and U.5 to construct
bounds for the global effect curve: τ 7→ Gτ,Dδ

. These bounds have the property that at τ = 0.5,
the identified region for the global effect is positive, while at τ = 0.8, the identified region for the
global effect is negative. Moreover, the identified region for the global effect derived from L.8 and
U.5 will provide statements about the global effect at other quantiles as well. This can be seen
in Figure 6. The solid line in Panel (a) shows the trivial bounds. These are obtained by setting
L = −1 and U = 1 in (6). Note how the identified region of the trivial bounds contains 0 for all
the quantiles, in line with Remark 5. Panel (b) shows the restriction on U such that G.5,Dδ

> 0:
the lower bounds is tightened and crosses 0 at τ = 0.5. Similarly, panel (c) tightens the upper
bound consistent with restricting L to be L.8 in order for G.8,Dδ

< 0 to hold. Note how the upper
bound now crosses 0 at τ = 0.8. Panel (d) gives simultaneous bounds for the global effect such
that G.5,Dδ

> 0 and G.8,Dδ
< 0. The interpretation of the grey shaded area in Panel (d) of Figure

6 is the following: the global effect curve has to lie in the gray area in order for the conclusions
G.5,Dδ

> 0 and G.8,Dδ
< 0 to hold.

One of the building blocks for the construction of the quantile breakdown frontier is the
breakdown frontier of Masten and Poirier (2020). Figure 4 shows two examples a breakdown
frontier. The quantile breakdown frontier takes advantage of the fact that the frontiers in Figures
4 are straight lines. This simplicity allows us to plot the higher dimensional quantile breakdown
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τ10

Trivial bounds
for Gτ,Dδ

(a) Trivial bounds for Gτ,Dδ
.

τ10 0.5

Bounds for Gτ,Dδ

where G.5,Dδ
> 0

(b) Bounds for Gτ,Dδ
such that G.5,Dδ

> 0.

τ10 0.8

Bounds for Gτ,Dδ

where G.8,Dδ
< 0

(c) Bounds for Gτ,Dδ
such that G.8,Dδ

< 0.

τ10 0.5 0.8

Bounds
for Gτ,Dδ

(d) Bounds for Gτ,Dδ
with G.5,Dδ

> 0 and G.8,Dδ
< 0.

Figure 6: Bounds on the global effect.
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frontier in a plane as in Figure 5.
In the rest of this section we will derive analytical expressions for Lτ, Uτ, the quantile break-

down frontier, and the bounds on the global effect. We will also derive the quantile breakdown
frontier for the sign of the marginal effect.

3.1 Global Effect

Suppose that, for a given τ and Dδ, we are interested in the global effect. By Theorem 2, there
are L and U such that

F−1
a (τ − δU)− F−1

Y (τ) ≤ Gτ,Dδ
≤ F−1

a (τ − δL)− F−1
Y (τ).

In order not to impose restrictions of L and U, we will focus on τ ∈ (δ, 1− δ) (See Remark 4).
We further recall that the bounds are “centered” around Ga

τ,Dδ
:= F−1

a (τ)− F−1
Y (τ). For a given

τ we are interested in the values of L and U such that either Gτ,Dδ
> gτ or Gτ,Dδ

< gτ holds. In
order to build the breakdown frontier we must look at the location of Ga

τ,Dδ
with respect to gτ.

Figure 7 illustrates the case of Ga
τ,Dδ

> gτ. The blue part of the axis shows the possible values
of Gτ,Dδ

. The dashed lines show three different combination of L and U. The two blue dashed
lines allow us to conclude that the effect is greater than gτ. The red dashed line include values
lower than gτ, and hence it is excluded. Since only the lower bounds concern us, this means
that we do not want U to get too close to 1. Thus there is a maximum departure from point
identification due to U that ensures that Gτ,Dδ

> gτ holds in the case where Ga
τ,Dδ

> gτ.

gτ Ga
τ,Dδ

7

3

3

Figure 7: The red segment includes values of Gτ,Dδ
< gτ.

This maximum U is denoted by Uτ, and it solves (see middle dashed line in Figure 7)

F−1
a (τ − δUτ)− F−1

Y (τ) = gτ.

which implies that

Uτ = min

{
max

{
0,

τ − Fa(F−1
Y (τ) + gτ)

δ

}
, 1

}
. (15)

Figure 8 shows the other possibility, which is Ga
τ,Dδ

< gτ. In this case we can analyze conclu-
sions of the form Gτ,Dδ

< gτ. As we move L towards −1, the right end of the identified regions
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gτGa
τ,Dδ

7

3

3

Figure 8: The red segment includes values of Gτ,Dδ
> gτ

approaches gτ. In the red segment, L is too close to −1, so the identified region contains values
contrary to the conclusion. So, it is excluded.

In this case, we have

Lτ = max

{
min

{
0,

τ − Fa(F−1
Y (τ) + gτ)

δ

}
,−1

}
. (16)

The common ingredient for Uτ in (15) and Lτ in (16) is

θ(τ) =
τ − Fa(F−1

Y (τ) + gτ)

δ
. (17)

The map τ 7→ θ(τ) is the quantile breakdown frontier. Alternatively, for a given τ, the quantile
breakdown frontier is value of the policy selection bias such that the global effect Gτ,Dδ

= gτ. If
this value is positive, it is taken to be U, if it is negative, it is taken to be L.

Continuity of the quantile breakdown frontier is important for inference purposes. Inspection
of the formulas in (17) shows that continuity of Fa, F−1

Y , and of the map τ 7→ gτ is enough.
Continuity of Fa and F−1

Y is true by assumption, but continuity of τ 7→ gτ is up to the user. In
our empirical application we will choose a gτ which is constant-across-τ. An arbitrary collection
of {gτ : τ ∈ (δ, 1− δ)} might be problematic.

Summarizing, we follow the following steps. First, we need to fix the set of quantiles τ in
which we are interested and compute the quantile breakdown frontier for a given collection of
gτ. Then, we have to check the sign of the quantile breakdown frontier at these τ’s. If the quantile
breakdown frontier is positive, we can derive the values of U such that positive conclusions hold:
Gτ,Dδ

> gτ. If the quantile frontier is negative, we can derive the values of L such that the
negative conclusions hold: Gτ,Dδ

< gτ.

3.2 Bounds derived from the QBF

Often times, researchers are interested in quantile contrasts: for example Farber et al. (2020)
examine 10th vs. 90th of a marginal increase in unionization. In this case, following Masten
and Poirier (2020) we can visualize the result in a joint breakdown frontier/robust region. This
is shown in Figure 9. The intersection contains the values of L and U compatible with both
conclusions of interest.

We can use the quantile breakdown frontier to derive bounds on the global effect for every
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Figure 9: Joint Breakdown Frontier.

τ ∈ (δ, 1− δ):

τ 7→ Gτ,Dδ
.

To do so, we find τ1 and τ2 such that we can analyze Gτ1 > 0 and Gτ2 < 0. That is, the
quantile breakdown is positive at τ1 and negative at τ2.8 Following Theorem 2, we can use Uτ1 to
construct a lower bound for the global effect, and Lτ2 to construct an upper bound for the global
effect. These bounds are given by

τ 7→ B(Uτ1 ; τ) := F−1
a (τ − δUτ1)− F−1

Y (τ), (18)

and

τ 7→ B(Lτ2 ; τ) := F−1
a (τ − δLτ2)− F−1

Y (τ). (19)

and are shown in Figure 6.

3.3 Marginal Effect

For the marginal effect the situation is a bit more delicate, and some care must be exercised with
the density in the denominator. By Theorem 4, the identified region for Mτ is[

Ma
τ −

U
fY(F−1

Y (τ))
, Ma

τ −
L

fY(F−1
Y (τ))

]
8The empirical quantile breakdown frontier might be negative or positive everywhere. In that case this analysis

would not apply. However, in our empirical analysis, the quantile breakdown is positive in a region, and negative in
another region.
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where recall that

Ma
τ := −

FY|D=1(F−1
Y (τ))− FY|D=0(F−1

Y (τ))

fY(F−1
Y (τ))

.

Consider a single quantile τ. For the conclusion Mτ > gτ to hold, then, as before, the
restriction on U, denoted by Uτ, solves

−
FY|D=1(F−1

Y (τ))− FY|D=0(F−1
Y (τ))

fY(F−1
Y (τ))

− Uτ

fY(F−1
Y (τ))

= gτ

which implies

Uτ = min
{

1, max
{

0, FY|D=0(F−1
Y (τ))− FY|D=1(F−1

Y (τ))− gτ fY(F−1
Y (τ))

}}
.

For the opposite conclusion, Mτ < gτ, similar calculations, this time on the upper bound,
yield

Lτ = max
{

min
{

0, FY|D=0(F−1
Y (τ))− FY|D=1(F−1

Y (τ))− gτ fY(F−1
Y (τ))

}
,−1

}
.

When it comes to estimation, the quantile breakdown frontier contains a non-parametric
ingredient, namely the density fY evaluated at a quantity that must estimated: F−1

Y (τ). This can
be avoided if we set gτ = 0 for every τ. In such a case, we are interested in the sign of the
marginal effect. This is natural conclusion to be interested in since the marginal effect has the
interpretation of a derivative. When gτ = 0, these expressions simplify to

Uτ = min
{

max
{

0, FY|D=0(F−1
Y (τ))− FY|D=1(F−1

Y (τ))
}

, 1
}

,

and

Lτ = max
{

min
{

0, FY|D=0(F−1
Y (τ))− FY|D=1(F−1

Y (τ))
}

,−1
}

.

The quantile breakdown frontier for the sign of marginal effect is then given by

τ 7→ θ(τ) = FY|D=0(F−1
Y (τ))− FY|D=1(F−1

Y (τ)). (20)

Remark 8. Coincidentally, in this case where g = 0 for every τ, the quantile breakdown frontiers for the
global and the marginal effects coincide. This reflects the fact that the apparent marginal effect and the ap-
parent global effects have the same sign. Of course, the true effects might differ in sign. To see this, we note
that the apparent distribution can be written as9 Fa(y) = F(y) + δ

[
FY|D=1,Dδ=1(y)− FY|D=0,Dδ=1(y)

]
.

So, that for g = 0, and plugging the previous expression for Fa(y) in (17), we obtain (20).
9See the proof for the statement of Remark 5.
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4 Estimation and Inference

There are two main results in the sensitivity analysis we propose. The first one is the quantile
breakdown frontier τ 7→ θ(τ). The second important result is the case when we use the estimated
values of Uτ1 and Lτ2 to construct bounds for the effect across all quantiles in the manner of
Figure 6. We will provide asymptotic results both pointwise, for a given τ, and uniform, when
the objects are seen as a random function.

We work in the space `∞(δ, 1− δ) of bounded real-valued functions defined on (δ, 1− δ). As
usual, we endow this space with the supremum norm: ‖x‖∞ := supt∈(δ,1−δ) |x(t)|. The reason
we restrict the space to be `∞(δ, 1− δ) and not `∞(0, 1) is due to the fact that for a given δ, we
cannot reach quantiles below δ or above 1− δ. See Remark 4 above.

In order to simplify notation, and ensure the continuity of the quantile breakdown frontier,
we are going to focus on the case where the threshold gτ is constant across τ.

Assumption 4 (Constant Threshold). For some scalar g, the threshold gτ satisfies gτ = g for any
τ ∈ (δ, 1− δ).

This assumption can be relaxed at the expense of more complicated notation. However, we
still require smoothness in the map τ 7→ gτ. For the case of the quantile breakdown for the sign
of the marginal effect, we will set g = 0.

4.1 Quantile Breakdown Frontier: Global Effect

Under Assumption 4, the quantile breakdown frontier is

θ(τ) :=
τ − Fa(F−1

Y (τ) + g)
δ

.

The empirical apparent distribution is F̂a(y) = (1− p̂− δ)F̂Y|D=0,Dδ=0(y)+ ( p̂+ δ)F̂Y|D=1,Dδ=1(y),
where p̂ := n−1 ∑n

i=1 Di, and

F̂Y|D=0,Dδ=0(y) := ∑n
i=1 1 {Yi ≤ y} (1− Di)(1− Dδ,i)

∑n
i=1(1− Di)(1− Dδ,i)

,

F̂Y|D=1,Dδ=1(y) := ∑n
i=1 1 {Yi ≤ y}DiDδ,i

∑n
i=1 DiDδ,i

.

The empirical quantiles F̂−1
Y , are computed using the generalized inverse: F̂−1

Y (τ) := inf
{

y : F̂Y(y) ≥ τ
}

.
Here, F̂Y(y) is the empirical CDF: F̂Y(y) := n−1 ∑n

i=1 1 {Yi ≤ y}. For given τ, g and δ, the esti-
mated counterpart of θ(τ) is then

θ̂(τ) :=
τ − F̂a(F̂−1

Y (τ) + g)
δ

. (21)

We can view the map τ 7→ θ̂(τ) as a random element of `∞(δ, 1− δ). In that case, we denote
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it simply by θ̂. We want to investigate the weak convergence of
√

n(θ̂ − θ) in `∞(δ, 1− δ):

√
n(θ̂ − θ) = −1

δ

√
n
(

F̂a ◦ (F̂−1
Y + g)− Fa ◦ (F−1

Y + g)
)

.

This is similar to a quantile-quantile transformation (see Exercise 4 in Chapter 3.9 in van der
Vaart and Wellner (1996)). We base our proof of the asymptotic distribution of

√
n(θ̂ − θ) on the

proof of Lemma A.1 in Beare and Shi (2019).10 The main assumption is

Assumption 5 (Functional CLT). The following multivariate functional central limit theorem holds

√
n


F̂Y − FY

F̂Y|D=0,Dδ=0 − FY|D=0,Dδ=0

F̂Y|D=1,Dδ=1 − FY|D=1,Dδ=1

p̂− p

 


GY

G0,0

G1,1

Zp

 ,

where GY, G0,0, and G1,1 are Brownian bridges in `∞(Y), and Zp is a (real-valued) normal random
variable.

The following assumption is needed to establish the Hadamard differentiable of different
functions used in the construction of θ.

Assumption 6 (Conditions for Hadamard Differentiability).

1. For some ε > 0, FY is continuously differentiable in [F−1
Y (δ)− ε, F−1

Y (1− δ) + ε] ⊂ Y with strictly
positive derivative fY.

2. The distribution functions FY|D=0,Dδ=0(y) and FY|D=1,Dδ=1(y) are differentiable, with uniformly
continuous and bounded derivatives on their support Y .

The first item in Assumption 6 concerns the support Y and the smoothness of FY. It is used to
guarantee the Hadamard differentiability of the quantile process τ 7→ F−1

Y (τ) for τ ∈ (δ, 1− δ).
The second item ensures that the apparent distribution Fa(y) has a uniformly continuous and
bounded derivative. This derivative is denoted by fa(y). It is needed to establish the Hadamard
differentiability of the composition map (Fa, F−1

Y ) 7→ Fa ◦ (F−1
Y + g).11

Theorem 5 (Asymptotic Distribution of QBF). Under Assumptions 4, 5, and 6

√
n(F̂a − Fa) Ga := (1− δ)G0,0 + δG1,1 + (FY|D=1,Dδ=1 − FY|D=0,Dδ=0)Zp,

where Ga is a Gaussian tight element of `∞(Y), and

√
n(θ̂ − θ) Gθ := −1

δ
Ga ◦ (F−1

Y + g) +
1
δ

fa ◦ (F−1
Y + g)

GY ◦ F−1
Y

fY ◦ F−1
Y

,

10Beare and Shi (2019) also offer some interesting historical context for the result.
11Section 3.9 in van der Vaart and Wellner (1996) studies the Hadamard differentiability of composition maps.
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where Gθ is Gaussian tight element of `∞(δ, 1− δ).

The second convergence result of Theorem 5 is uniform in τ ∈ (δ, 1− δ). If we are interested
in a particular quantile τ, we can evaluate

√
n(θ̂ − θ) at τ to obtain

√
n(θ̂(τ)− θ(τ)) Gθ(τ) = −

1
δ

Ga ◦ (F−1
Y (τ) + g) +

1
δ

fa ◦ (F−1
Y (τ) + g)

GY ◦ F−1
Y (τ)

fY ◦ F−1
Y (τ)

.

Instead of providing a closed form expression and a consistent estimator for the variance of
Gθ(τ), we note that, by Theorem 23.9 in van der Vaart (1998), the empirical bootstrap is valid.
Confidence intervals for θ(τ) can be constructed in the following way:

Algorithm 1 (Bootstrap for θ(τ)).

1. Given the data {Yi, Di, Dδ,i}n
i=1 and a value τ ∈ (δ, 1− δ), compute θ̂(τ) as in (21).

2. Obtain B bootstrap samples of size n from {Yi, Di, Dδ,i}n
i=1, and compute

√
n(θ̂b(τ)− θ̂(τ)), where

θ̂b(τ) is computed as in (21) for b = 1, . . . , B.

3. Obtain the (100× α/2)% and (100× (1− α/2))% percentiles of
{√

n(θ̂b(τ)− θ̂(τ))
}B

b=1. These
are denoted ξα/2,θ(τ) and ξ1−α/2,θ(τ).

The 1− α confidence intervals are then computed as

CI(θ(τ), α) =

[
θ̂(τ)−

ξ1−α/2,θ(τ)√
n

, θ̂(τ)−
ξα/2,θ(τ)√

n

]
.

It is also possible to construct uniform confidence bands for τ ∈ (δ, 1− δ). In this case, we
look for the smallest scalar c such that, under the bootstrap probability measure,

Pr∗
(

sup
τ∈(δ,1−δ)

∣∣√n(θ̂(τ)∗ − θ̂(τ))
∣∣ ≤ c

∣∣∣∣ {Yi, Di, Dδ,i}n
i=1

)
≥ 1− α.

The unknown scalar c can be obtained by the simulation procedure outlined below.

Algorithm 2 (Bootstrap for θ).

1. Given the data {Yi, Di, Dδ,i}n
i=1 and a grid of values {τk}K

k=1 ⊂ (δ, 1− δ), compute θ̂(τk) as in (21)
for each k = 1, . . . , K.

2. Obtain B bootstrap samples of size n from {Yi, Di, Dδ,i}n
i=1, and compute maxk=1,...,K

∣∣√n(θ̂b(τk)− θ̂(τk))
∣∣,

where θ̂b(τk) is computed as in (21) for b = 1, . . . , B and each k = 1, . . . , K.

3. Obtain the (100× (1− α))% percentile of
{

maxk=1,...,K
∣∣√n(θ̂b(τk)− θ̂(τk))

∣∣}B
b=1. This is denoted

ξ1−α,θ .
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The 1− α confidence bands are then computed as

CB(θ(τ), α) =

[
θ̂(τ)− ξ1−α,θ√

n
, θ̂(τ) +

ξ1−α,θ√
n

]
.

4.2 Bounds on the Global Effect

An important case is when we are interested in two conclusions Gτ1 > g and Gτ2 < g for τ1 6= τ2,
both in (δ, 1− δ). This is the case in Figure 6. For the case of the global effect, by Theorem 2,
the bounds are τ 7→ F−1

a (τ − δUτ1)− F−1
Y (τ), and τ 7→ F−1

a (τ − δLτ2)− F−1
Y (τ), for fixed values

of Uτ1 and Lτ2 . The goal is to make inference on these bounds when Uτ1 , Lτ2 , F−1
a and F−1

Y are
estimated.12

Define B(Uτ1 ; τ) := F−1
a (τ − δUτ1) − F−1

Y (τ) and B(Lτ2 ; τ) := F−1
a (τ − δLτ2) − F−1

Y (τ). The
estimated counterparts are(

B̂(Ûτ1 ; τ)

B̂(L̂τ2 ; τ)

)
=

(
F̂−1

a (τ − δÛτ1)− F̂−1
Y (τ)

F̂−1
a (τ − δL̂τ2)− F̂−1

Y (τ)

)
,

where by (15), and (16) we have(
Ûτ1

L̂τ2

)
=

(
min{max{0, θ̂(τ1)}, 1}

max{min{0, θ̂(τ2)},−1}

)
.

To find the distributions of Ûτ1 and L̂τ2 , we define the map φ : `∞(δ, 1− δ) 7→ [− 1, 0]× [0, 1]
given by

φ(H) =

(
min {max {0, H(τ1)} , 1}

max {min {0, H(τ2)} ,−1}

)
. (22)

Though continuous, the composition of max and min (and vice versa) is not smooth. How-
ever, a form of differentiability, namely Hadamard directional differentiability, is still preserved.
More importantly, the Delta method is still valid under this weaker differentiability notion. See
Shapiro (1990), Dümbgen (1993), and, more recently and with applications to econometric theory,
Fang and Santos (2019).

Theorem 6. Under the Assumptions of Theorem 5,

√
n

(
Ûτ1 −Uτ1

L̂τ2 − Lτ2

)
 φ′θ(Gθ),

12It is assumed that both Uτ1 and Lτ2 exist, in the sense that there is a robust region for the conclusions Gτ1 > g and
Gτ2 < g.
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where

φ′θ(Gθ) =

(
Gθ(τ1)1{0<θ(τ1)<1} + max(0, Gθ(τ1))1{θ(τ1)=0} + min(0, Gθ(τ1))1{θ(τ1)=1}

Gθ(τ2)1{−1<θ(τ2)<0} + min(0, Gθ(τ2))1{θ(τ2)=0} + max(0, Gθ(τ2))1{θ(τ2)=−1}

)
. (23)

It is important to point out that the distribution of φ′θ(Gθ) is not Gaussian. This is not only
due to the presence of the min and max functions, but also because when θ(τ1) /∈ [0, 1] the
first coordinate is degenerate in 0. The same comment applies to the second coordinate, which
is degenerate when θ(τ2) /∈ [−1, 0]. See Example 2.1 in Fang and Santos (2019) for a similar
situation.

We need the following assumption in order to establish the Hadamard differentiability of the
quantile process τ 7→ F−1

a (τ) for τ ∈ (δ, 1− δ). Recall that the support of Fa is assumed to be Y .

Assumption 7. For some ε > 0, Fa is continuously differentiable in [F−1
a (δ)− ε, F−1

a (1− δ) + ε] ⊂ Y
with strictly positive derivative fa.

When the bounds are viewed as a map in `∞(δ, 1− δ)× `∞(δ, 1− δ), we use “·” to keep track
of where the argument of the function should be, and we write

√
n

(
B̂(Ûτ1 ; ·)− B(Uτ1 ; ·)
B̂(L̂τ2 ; ·)− B(Lτ2 ; ·)

)
(24)

Theorem 7. Under Assumptions 4, 5, 6, and 7

√
n

(
B̂(Ûτ1 ; ·)− B(Uτ1 ; ·)
B̂(L̂τ2 ; ·)− B(Lτ2 ; ·)

)
 

(
GUτ1

GLτ2

)

a tight process in `∞(δ, 1− δ)× `∞(δ, 1− δ) given by

(
GUτ1

GLτ2

)
:=

−Ga◦F−1
a ( · −δUτ1 )

fa◦F−1
a ( · −δUτ1 )

− δφ′θ(Gθ)2

fa◦F−1
a ( · −δUτ1 )

− GY◦F−1
Y (·)

fY◦F−1
Y (·)

−Ga◦F−1
a ( · −δLτ2 )

fa◦F−1
a ( · −δLτ2 )

− δφ′θ(Gθ)1

fa◦F−1
a ( · −δLτ2 )

− GY◦F−1
Y (·)

fY◦F−1
Y (·)

 , (25)

where the map φ′θ(Gθ) is given in (23), and φ′θ(Gθ)1 and φ′θ(Gθ)2 are the first and second coordinates
respectively.

The limiting process in (25) is not Gaussian because of the presence of φ′θ(Gθ) given in The-
orem 5. Hence, by Corollary 3.1 in Fang and Santos (2019), the standard bootstrap will fail.
This means that if we attempt to construct confidence intervals in the usual way by resampling
B̂(Ûτ1 ; τ) and B̂(L̂τ2 ; τ), we will not obtain correct asymptotic coverage. Instead, we use the
numerical bootstrap of Hong and Li (2018, 2020). For a given τ, we write the map in (24) as

ψ(Fa, FY, Ûτ1 , L̂τ2 ; τ) =

(
F−1

a (τ − δÛτ1 − F−1
Y (τ)

F−1
a (τ − δL̂τ2 − F−1

Y (τ)

)
(26)
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The idea is that we can approximate (GUτ1
(τ), GLτ2

(τ))′ using a standard bootstrap for F̂a and
F̂Y and a numerical bootstrap for Ûτ1 and L̂τ2 . First, fix Ûτ1 and L̂τ2 , and let F̂∗a and F̂∗Y be the
bootstrap counterparts of F̂a and F̂Y. Then, define

ψ̂•aY(F̂∗a , F̂∗Y; τ) =
√

n
(
ψ(F̂∗a , F̂∗Y, Ûτ1 , L̂τ2 ; τ)− ψ(F̂a, F̂Y, Ûτ1 , L̂τ2 ; τ)

)
. (27)

Now, fix F̂a and F̂Y, let θ(τ1)
∗ and θ̂(τ2)∗ be the bootstrap counterparts of θ̂(τ1) and θ̂(τ2), and

define the perturbed parameters

θ̂(τ1)
p := θ̂(τ1) + εn

√
n(θ̂(τ1)

∗ − θ̂(τ1)), (28)

and

θ̂(τ2)
p := θ̂(τ2) + εn

√
n(θ̂(τ2)

∗ − θ̂(τ2)), (29)

where the sequence εn is constrained to satisfy εn → 0 and εn
√

n → ∞, as n → ∞. In the
empirical application we set εn = n−1/3. Define, the perturbed version of Uτ1 and Lτ2 as(

Ûp
τ1

L̂p
τ2

)
=

(
min{max{0, θ̂(τ1)

p}, 1}
max{min{0, θ̂(τ2)p},−1}

)
. (30)

Then, define

ψ̂•UL(Û
p
τ1 , L̂p

τ2 ; τ) =
1
εn

(
ψ(F̂a, F̂Y, Ûp

τ1 , L̂p
τ2 ; τ)− ψ(F̂a, F̂Y, Ûτ1 , L̂τ2 ; τ)

)
. (31)

The approximation to (GUτ1
(τ), GLτ2

(τ))′ is given by the distribution of

ψ̂•aY(F̂∗a , F̂∗Y; τ) + ψ̂•UL(Û
p
τ1 , L̂p

τ2 ; τ),

which, in turn, is approximated by the simulated procedure below.

Algorithm 3 (Bootstrap for B̂(Ûτ1 ; τ) and B̂(L̂τ2 ; τ)).

1. Given the data {Yi, Di, Dδ,i}n
i=1, compute ψ(F̂a, F̂Y, θ̂(τ1), θ̂(τ2); τ) given in (26).

2. Obtain B bootstrap samples of size n from {Yi, Di, Dδ,i}n
i=1.

3. For b = 1, . . . , B, following (27), compute

ψ̂•aY(F̂b
a , F̂b

Y; τ) =
√

n
(

ψ(F̂b
a , F̂b

Y, Ûτ1 , L̂τ2 ; τ)− ψ(F̂a, F̂Y, Ûτ1 , L̂τ2 ; τ)
)

. (32)

4. For b = 1, . . . , B, following (21), compute θ̂(τ1)
b and θ̂(τ2)b. Following (28) and (29), compute the
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perturbed parameters as

θ̂(τ1)
p,b := θ̂(τ1) + εn

√
n(θ̂(τ1)

b − θ̂(τ1)),

and

θ̂(τ2)
p,b := θ̂(τ2) + εn

√
n(θ̂(τ2)

b − θ̂(τ2))

Following (30) compute (
L̂p,b

τ2

Ûp,b
τ1

)
=

(
max{min{0, θ̂(τ2)p,b},−1}
min{max{0, θ̂(τ1)

p,b}, 1}

)
.

5. For b = 1, . . . , B, following (31), compute

ψ̂•UL(Û
p,b
τ1 , L̂p,b

τ2 ; τ) =
1
εn

(
ψ(F̂a, F̂Y, Ûp,b

τ1 , L̂p,b
τ2 ; τ)− ψ(F̂a, F̂Y, Ûτ1 , L̂τ2 ; τ)

)
.

6. For b = 1, . . . , B, define

ψ̂′(b, τ) = ψ̂•aY(F̂b
a , F̂b

Y; τ) + ψ̂•UL(Û
p,b
τ1 , L̂p,b

τ2 ; τ). (33)

7. Obtain the (100× α/2)% and (100× (1− α/2))% percentiles from the first coordinate of (33).
These are denoted ξα/2,τ,Uτ1

and ξ1−α/2,τ,Uτ1
.

8. Obtain the (100× α/2)% and (100× (1− α/2))% percentiles from the second coordinate of (33).
These are denoted ξα/2,τ,Lτ2

and ξ1−α/2,τ,Lτ2
.

The 1− α confidence intervals are then computed as

CI(B(Uτ1 ; τ), α) =

[
B̂(Ûτ1 ; τ)−

ξ1−α/2,τ,Uτ1√
n

, B̂(Ûτ1 ; τ)−
ξα/2,τ,Uτ1√

n

]
,

CI(B(Lτ2 ; τ), α) =

[
B̂(L̂τ2 ; τ)−

ξ1−α/2,τ,Lτ2√
n

, B̂(L̂τ2 ; τ)−
ξα/2,τ,Lτ2√

n

]
.

The simultaneous 1− α confidence intervals, by the Bonferroni correction,13 are given by the
Cartesian product

CI(B(Uτ1 ; τ), B(Lτ2 ; τ), α) = CI(B(Uτ1 ; τ), α/2)× CI(B(Lτ2 ; τ), α/2).

13If we want simultaneous 1− α confidence intervals, for each coordinate the confidence intervals must be con-
structed at the 1− α/2 level.
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Alternatively, simultaneous 1− α confidence intervals can be constructed using a lower con-

fidence interval for B(Uτ1 ; τ): B̂(Ûτ1 ; τ)−
ξ1−α/2,τ,Uτ1√

n , and upper confidence interval for B(Lτ2 ; τ):

B̂(L̂τ2 ; τ)−
ξα/2,τ,Lτ2√

n .
We can construct uniform confidence bands for τ ∈ (δ, 1− δ) in the following way.

Algorithm 4 (Bootstrap for B̂(Ûτ1 ; ·) and B̂(L̂τ2 ; ·)).

1. Given a grid of values {τk}K
k=1 ⊂ (δ, 1− δ), following (33), compute for b = 1, . . . , B

ψ̂′(b) = max
k=1,...,K

∣∣∣∣ψ̂•aY(F̂b
a , F̂b

Y; τk) + ψ̂•UL(Û
p,b
τ1 , L̂p,b

τ2 ; τk)

∣∣∣∣ (34)

2. Obtain the (100× (1− α))% percentile from the first coordinate of (34). This is denoted ξ1−α,Uτ1
.

3. Obtain the (100× (1− α))% percentile from the second coordinate of (34). This is denoted ξ1−α,Lτ2
.

The one-sided or two-sided 1− α confidence bands are computed as before.

4.3 Quantile Breakdown Frontier: Marginal Effect

The quantile breakdown frontier for the sign of the marginal effect is given by (see (20)) the map
τ 7→ FY|D=0(F−1

Y (τ))− FY|D=1(F−1
Y (τ)), and the estimated counterpart is θ̂(τ) = F̂Y|D=0(F̂−1

Y (τ))−
F̂Y|D=1(F̂−1

Y (τ)), where

F̂Y|D=0(y) := ∑n
i=1 1 {Yi ≤ y} (1− Di)

∑n
i=1(1− Di)

,

and

F̂Y|D=1(y) := ∑n
i=1 1 {Yi ≤ y}Di

∑n
i=1 Di

.

As before, we want to investigate the weak convergence of
√

n(θ̂ − θ) in `∞(0, 1):

√
n(θ̂ − θ) =

√
n
(

F̂Y|D=0 ◦ F̂−1
Y − F̂Y|D=1 ◦ F̂−1

Y −
(

FY|D=0 ◦ F−1
Y − FY|D=1 ◦ F−1

Y

))
.

Recall that the bounds on the marginal effect can be computed for any τ ∈ (0, 1), as opposed
to the global effect, where we are constrained to τ ∈ (δ, 1− δ). The main assumption is

Assumption 8 (Functional CLT). The following multivariate functional central limit theorem holds

√
n

 F̂Y − FY

F̂Y|D=0 − FY|D=0

F̂Y|D=1 − FY|D=1

 
GY

G0

G1

 ,

where GY, G0, and G1 are Brownian bridges in `∞(Y), where Y is the common support of Y, Y|D = 0,
and Y|D = 1.
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The next assumption is needed to establish the Hadamard differentiability of the composition
map, and the quantile process.

Assumption 9 (Conditions for Hadamard Differentiability).

1. The distribution functions FY|D=0(y) and FY|D=1(y) are differentiable, with uniformly continuous
and bounded derivatives on their support Y . The derivatives are fY|D=0(y) and fY|D=1(y) respec-
tively.

2. The support Y is the compact set [yl , yu].

3. FY(y) is continuously differentiable on Y with strictly positive derivative fY.

Theorem 8 (Asymptotic Distribution of QBF for Marginal Effect). Under Assumptions 8 and 9

√
n(θ̂ − θ) =

√
n
(

F̂Y|D=0 ◦ F̂−1
Y − F̂Y|D=1 ◦ F̂−1

Y −
(

FY|D=0 ◦ F−1
Y − FY|D=1 ◦ F−1

Y

))
 G0,Y −G1,Y,

where, for d = 0, 1, Gd,Y := Gd ◦ F−1
Y − fY|D=d ◦ F−1

Y ·
GY◦F−1

Y
fY◦F−1

Y
are tight Gaussian elements of `∞(0, 1).

Confidence intervals/bands can be constructed following the same procedures outlined in
Algorithms 1 and 2, because by Theorem 23.9 in van der Vaart (1998), the empirical bootstrap is
valid. We skip the details to avoid repetition.

5 Empirical application: What do unions do?

There is an extensive literature that studies unions and inequality. A recent contribution by Farber
et al. (2020) contains a review of the literature. In our empirical application, in particular, we
look at how unions affect the distribution of wages for all workers. Unions can have a variety of
effects on the distribution of wages. As argued by Freeman (1980), unions can raise the wages of
unionized workers relative to non-unionized workers, possibly through more bargaining power.
So, if higher paid workers unionize, the dispersion of wages can increase, but if lower paid
workers unionize, the dispersion of wages can decrease. Furthermore, within a given industry,
the union can reduce the dispersion of wages by standardizing the wages. This will impact the
distribution of wages more or less depending on the size of the industry and the wages it pays.

A key difficulty in identifying the causal effect of unions on wages is that selection into unions
is non-random. Hence, any measurement of the union premium, the difference in wages between
similar union and nonunion workers, will be biased for the causal effect. Indeed, this has been a
long standing concern of labor economists.14 With respect to selection into unions, Card (1996)

14Indeed, the opening words of Card (1996) are:

Despite a large and sophisticated literature there is still substantial disagreement over the extent to which
differences in the structure of wages between union and nonunion workers represent an effect of trade unions,
rather than a consequence of the nonrandom selection of unionized workers.
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argues that unionized workers with low observed skills, tend to have high unobserved skills. The
reverse happens with high skilled unionized workers: they tend to have low unobservable skills.
Due to this selection bias, it might be impossible for a policy maker to device a policy where the
newly unionized workers are selected in a way such that they are drawn from the distribution of
the already unionized workers.

Using the techniques developed in this paper, we are going to consider the effect of both
globally and marginally expanding union coverage. We will explicitly allow for non-random
selection into unions. Moreover, as opposed to Firpo, Fortin and Lemieux (2009), we will not
assume distributional invariance: the distribution of the newly unionized workers can be different
from the distribution of the already unionized workers. That is, we do not use any imputation
method to impute the union premium of the newly unionized workers

Following Freeman (1980), Card (2001) and Card, Lemieux and Riddell (2004) we consider a
two sector economy. Each worker has a well-defined pair of potential (log) wages: Yi(1) for the
unionized sector and Yi(0) for the nonunionized sector. Under Assumption 2, and for any policy
Dδ, we have the following classification of individuals:

Dδ = 0 Dδ = 1

D = 0 nonunionized newly unionized
D = 1 - unionized

The relevant unobserved distribution is then FY(1)|newly unionized: the union wages of the newly
unionized workers. So, we look at departures of FY(1)|newly unionized from FY(1)|unionized, which is
observed. This difference is what we refer to as the policy selection bias.

Using the data in Firpo, Fortin and Lemieux (2009) we estimate the quantile breakdown
frontier for marginal and global effects of different type of policies on the distribution of real
log hourly wages. We use the 1983-1985 Outgoing Rotation Group (ORG) Supplement of the
Current Population Survey. Our sample consists of 266,956 observations on U.S. males. See
Lemieux (2006) for more details about the data.

The unionization rate in the dataset is 0.26. Figure 10 shows the typical hump-shaped pattern
of the unionization rates by quantiles of the distribution of wages. For lower quantiles, union-
ization rates are quite low. They peak in the past the middle of the distribution and then drop at
the higher quantiles. We will analyze a randomized policy and a non-randomized policy. In the
first case, we will analyze the policy that marginally increases unionization by selecting workers
at random. We will look at the quantile breakdown frontier for the sign of the marginal effect.
That is, we set g = 0 and look at whether the marginal effect is positive or negative. Figure 11
shows the result for a grid of τ ∈ (0.1, 0.9), along with 95% pointwise confidence intervals and
uniform confidence bands. We can see that along almost all quantiles, the quantile breakdown
frontier is positive, and it peak at around 0.27 for τ = 0.4. This means that if the selection bias
due to U is greater than 0.27, then the conclusion Mτ > 0 does not hold for any τ.

In the second case, we will analyze a non-randomized policy. Consider a 10% increase in
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the unionization rate by unionizing workers whose wages are below the .10/(1 − p)-quantile
≈ 0.14-quantile of the wages of the nonunionized sector. In the notation of this paper, we have
D = 1 if a worker is unionized, Dδ = 1 if a worker is unionized under the policy, Y is (log) wage,
and δ = 0.1. That is, Dδ is given by

Dδ =


1 if D = 1

1 if D = 0 and Y ≤ F−1
Y|D=0(0.14)

0 otherwise

This guarantees that the unionization rate increases by roughly 10%. Indeed, the mean of
Dδ is now 0.36. Figure 12 shows the quantile breakdown frontiers for gτ = 0.1 for a grid of
τ ∈ (0.1, 0.9). This is the empirical counterpart of the right side of Figure 5. Pointwise confidence
intervals (shaded) and uniform confidence bands (dashed) are also shown, both at the 95% level.
Since the dependent variable is log wages, gτ = 0.1 amounts to a 10% change in wages for a
given quantile.

For lower quantiles, if we want the policy to result in an increase of wages higher than 10%,
then the departure from point identification is given by Uτ in the positive part of the curve: for
example, for the 20th quantile, U.2 ≈ 0.45. For higher quantiles, if we want the policy to result in
changes of wages lower than 10%, then the maximum departure from point identification, Lτ, is
given by the negative part of the curve. For example, for the 80th quantile, L.8 ≈ −0.36. In terms
of our notation, if we are interested in the conclusions G.2,D.1 > 0.1 and G.8,D.1 < 0.1, then the
robust region is

{(L, U) : −1 ≤ L ≤ −0.36 and 0 ≤ U ≤ 0.45}

Recall that U and L come from Assumption 3:

L ≤ FY(1)|newly unionized(y)− FY(1)|unionized(y) ≤ U.

So if we are interested in the 20th and 80th quantile, we need

− 0.36 ≤ FY(1)|newly unionized(y)− FY(1)|unionized(y) ≤ 0.45. (35)

for the conclusions to hold. This does not rule out either direction of first-order stochastic dom-
ination, but it does put a bound on it. Since FY(1)|unionized(y) can be estimated, then simulation
exercises can be carried out on possible CDFs that satisfy (35), i.e., they are not too far away
from the empirical counterpart of FY(1)|unionized(y). Figure 13 shows the estimated bounds for the
global effect when setting L.8 ≈ −0.36 and U.2 ≈ 0.45. For τ = 0.2, we can see that the identified
region lies above 0.10, and for τ = 0.8, the identified region lies below 0.10. Pointwise confidence
intervals (shaded) and uniform confidence bands (dashed) are also shown, both at the 95% level.
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Figure 10: Unionization rates by quantiles of the distribution of wages.

We repeat the same exercise for the global effect, this time for g = 0.05. We keep δ = 0.1. The
quantile breakdown frontier and the bounds on the global effect can be seen in Figures 14 and
15. At the 20th quantile, U.2 ≈ 0.67, while at the 80th quantile, L.8 ≈ −0.05. This means that the
hypothesis G.8,D.1 < 0.05 is not very robust: any policy selection bias above given L in [−1,−0.05)
result in identification regions for G.8,D.1 that contain values greater than 0.05.

Figures 13 and 15 show that, because of the continuity of the quantile breakdown frontier,
when we focus on conclusions at the 20th and 80th quantiles, we are also deriving bounds for
the global effect at other quantiles. Thus, in Figure 13, we can see that the global effect, which
is consistent with G.2,D.1 > 0.1 and G.8,D.1 < 0.1 is positive up to τ = 0.6. In other words, the
combinations of L and U that ensure that G.2,D.1 > 0.1 and G.8,D.1 < 0.1, imply that Gτ,D.1 > 0 for
τ ∈ (0.1, 0.6).

6 Conclusion

In this paper we show how to perform a sensitivity analysis on the effect of counterfactual policies
on the quantiles of an outcome of interest. We focus on counterfactual policies which increase the
proportion of treated individuals and obtain partial identified sets for both global and marginal
effects on the unconditional quantiles. In the former, the increase δ in the proportion is fixed,
while in the latter goes to 0. By dropping the standard distributional invariance assumption, we
are able to broaden the scope of policies that can be analyzed. Our partial identification results
are used to perform a sensitivity analysis based on the departure from point identification. The
sensitivity analysis is greatly simplified by the introduction of the quantile breakdown frontier, a
curve that quantifies the maximum amount of selection bias compatible with a given conclusion
at each quantile. A further use of the quantile breakdown frontier, is to bound the global effect
curve in order for it to be consistent with a set of desired conclusions.
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Figure 11: Quantile Breakdown Frontier for the sign of the marginal effect. 95% confidence intervals
(shaded) and 95% confidence bands (dashed).

Figure 12: Quantile Breakdown Frontier for the global effect and g = 0.1. 95% confidence intervals
(shaded) and 95% confidence bands (dashed).
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Figure 13: Bounds on the global effect for L.8 ≈ −0.36 and U.2 ≈ 0.45 and g = 0.1. 95% confidence
intervals (shaded) and 95% confidence bands (dashed).

Figure 14: Quantile Breakdown Frontier for the global effect and g = 0.05. 95% confidence intervals
(shaded) and 95% confidence bands (dashed).
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Figure 15: Bounds on the global effect for L.8 ≈ −0.05 and U.2 ≈ 0.67 and g = 0.05. 95% confidence
intervals (shaded) and 95% confidence bands (dashed).

Our empirical application takes another look at the relationship between unions and inequal-
ity. In particular, we perform a sensitivity analysis on a policy that increases unionization by
10%. This is done by selecting nonunionized workers who are below a certain threshold of in-
come. We then look at the effect of this policy on the 20th and 80th quantiles of the distribution of
wages. We are interested in the following conclusion: the change in the 20th quantile of wages is
greater than 10%, while the change at the 80th quantile is less than 10%. We derive the values of
selection bias consistent with the conclusion. Our results show that this policy is consistent with
moderate values of selection bias.
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Appendices

A Proofs

Proof of Theorem 1. Using the fact that YDδ
= DδY(1) + (1− Dδ)Y(0), we have

FYDδ
(y) = Pr(D = 0, Dδ = 0)FY(0)|D=0,Dδ=0(y) + Pr(D = 0, Dδ = 1)FY(1)|D=0,Dδ=1(y)

+ Pr(D = 1, Dδ = 0)FY(0)|D=1,Dδ=0(y) + Pr(D = 1, Dδ = 1)FY(1)|D=1,Dδ=1(y).

Under Assumption 2, the probability weights are

Pr(D = 0, Dδ = 0) = 1− p− δ,

Pr(D = 0, Dδ = 1) = δ,

Pr(D = 1, Dδ = 0) = 0,

Pr(D = 1, Dδ = 1) = p.

Therefore, we rewrite FYDδ
(y) as

FYDδ
(y) = (1− p− δ)FY(0)|D=0,Dδ=0(y) + δFY(1)|D=0,Dδ=1(y)

+ pFY(1)|D=1,Dδ=1(y),

We add and subtract δFY(1)|D=1,Dδ=1(y), to get

FYDδ
(y) = Fa(y) + δ

[
FY(1)|D=0,Dδ=1(y)− FY(1)|D=1,Dδ=1(y)

]
.

Proof of Theorem 3. Let Γτ[F] be the τ-quantile of F. The Hadamard derivative at F is (See Lemma
21.3 in van der Vaart (1998))

Γ′τ,F[h] = −
h(F−1(τ))

f (F−1(τ))
.
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for any h ∈ D[−∞, ∞] continuous at F−1(τ).15 We write the marginal effect as

Mτ,D = lim
δ↓0

Γτ

[
FYDδ

]
− Γτ[FY]

δ

= lim
δ↓0

Γτ

[
FYD0

+ δ

(
FYDδ
−FYD0
δ

)]
− Γτ[FY]

δ

= lim
δ↓0

Γτ

[
FY + δ

(
FYDδ
−FY

δ

)]
− Γτ[FY]

δ

= Γ′τ,FY
[ḞY,D ]

=
ḞY,D(F−1

Y (τ))

fY(F−1
Y (τ))

.

The third equality follows from FYD0
= FY. The fourth equality follows from

lim
δ↓0

sup
y∈Y

∣∣∣∣∣FYDδ
(y)− FY(y)

δ
− ḞY,D(y)

∣∣∣∣∣ = 0,

which is required by Lemma 21.3 in van der Vaart (1998).

Proof of Remark 5. We want to show that F−1
a (τ − δ)− F−1

Y (τ) ≤ 0 and F−1
a (τ + δ)− F−1

Y (τ) ≥ 0.
Manipulating equation (4) in Theorem 1 we can obtain that Fa and FY are related by16

Fa(y) = FY(y) + δ
[

FY(1)|D=0,Dδ=1(y)− FY(1)|D=1,Dδ=1(y)
]

.

Since −1 ≤ FY(1)|D=0,Dδ=1(y)− FY(1)|D=1,Dδ=1(y) < 1, then

FY(y)− δ ≤ Fa(y) ≤ FY(y) + δ.

Therefore, we have

F−1
a (FY(y)− δ) ≤ y ≤ F−1

a (FY(y) + δ).

Since the previous display is valid for any y ∈ Y , we set y = F−1
Y (τ). This implies that

F−1
a (τ − δ) ≤ F−1

Y (τ) ≤ F−1
a (τ + δ).

15For [a, b] ⊂ [−∞, ∞], D[a, b] is the Skorohod space: the set of all real-valued cadlag functions: right continuous
with left limits everywhere in [a, b]. D[a, b] is equipped with the uniform norm: ‖x‖∞ := supt∈[a,b] |x(t)|.

16This follows from noting that FY(y) = (1− p− δ)FY|D=0,Dδ=0(y) + δFY|D=0,Dδ=1(y) + pFY|D=1,Dδ=1(y), while by
(4), Fa(y) = (1− p− δ)FY|D=0,Dδ=0(y) + (p + δ)FY|D=1,Dδ=1(y). So, if we add and subtract δFY|D=0,Dδ=1(y), we obtain

Fa(y) = F(y) + δ
[

FY|D=1,Dδ=1(y)− FY|D=0,Dδ=1(y)
]
.

41



Thus, we have that F−1
a (τ − δ)− F−1

Y (τ) ≤ 0 and F−1
a (τ + δ)− F−1

Y (τ) ≥ 0.

Proof of Theorem 4. The lower bound is the limit when δ goes to 0 of

F−1
a (τ − δU)− F−1

Y (τ)

δ
. (A.1)

We will show that this limit exists and compute its value. Recall that by (1) we can simplify the
apparent distribution in (4) to

Fa(y) = (1− p− δ)FY|D=0(y) + (p + δ)FY|D=1(y)

We will write Fa,δ(y) to make explicit the fact that the apparent distribution depends on δ.
Define

g(δ1, δ2) = F−1
a,δ1

(τ − δ2U)

to emphasize the double role played by δ. The map δ1 7→ g(δ1, δ2) for a fixed δ2 is the composition

δ1 ∈ R
h7→ Fa,δ1 ∈ D[−∞, ∞]

Γ7→ F−1
a,δ1

(τ − δ2U) ∈ R.

For [a, b] ⊂ [−∞, ∞], D[a, b] is the set of all real-valued cadlag functions: right continuous
with left limits everywhere in [a, b]. D[a, b] is equipped with the uniform norm ‖ · ‖∞. The first
map h : δ1 ∈ R 7→ Fa,δ1 ∈ D[−∞, ∞] has Hadamard derivative given by FY|D=1(y)− FY|D=0(y),
while the second map has Hadamard derivative given by (See Lemma 21.3 in van der Vaart
(1998))

Γ′Fa,δ1
[G] = −

G(F−1
a,δ1

(τ − δ2C))

fa,δ1(F−1
a,δ1

(τ − δ2U))
.

for G ∈ D[−∞, ∞] continuous at F−1
a,δ1

(τ − δ2C). Then, the derivative of the composite map
δ1 7→ Γ ◦ h(δ1) is Γ′Fa,δ1

[h′(δ1)], which is for a δ2 = 0

∂F−1
a,δ1

(τ)

∂δ1
= −

FY|D=1(F−1
a,δ1

(τ))− FY|D=0(F−1
a,δ1

(τ))

fa,δ1(F−1
a,δ1

(τ))
.

which is continuous at δ1 = 0. The derivative of the second map δ2 7→ g(δ1, δ2), for a fixed δ1 = 0,
can be obtained via the identity

Fa,δ1

(
F−1

a,δ1
(τ − δ2U)

)
= τ − δ2U.
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Differentiating through with respect to δ2, we obtain

∂F−1
a (τ − δ2U)

∂δ2
= − U

fY(F−1
Y (τ − δ2U))

.

which is continuous with respect to δ2.
Therefore, both partial derivatives of the map (δ1, δ2) 7→ g(δ1, δ2) exist and are continuous,

hence the limit in (A.1) exists and is equal to

lim
δ→0

F−1
a (τ − δU)− F−1

Y (τ)

δ
=

∂g(δ1, 0)
∂δ1

∣∣∣∣
δ1=0

+
∂g(0, δ2)

∂δ2

∣∣∣∣
δ2=0

= −
FY|D=1(F−1

Y (τ))− FY|D=0(F−1
Y (τ))

fY(F−1
Y (τ))

− U
fY(F−1

Y (τ))
.

For the upper bound, we have the analogous result

lim
δ→0

F−1
a (τ − δL)− F−1

Y (τ)

δ
= −

FY|D=1(F−1
Y (τ))− FY|D=0(F−1

Y (τ))

fY(F−1
Y (τ))

− L
fY(F−1

Y (τ))
.

Proof of Theorem 5. We introduce some new notation related to Assumption 6. Let Dδ ⊂ `∞(Y)
denote the set of all restrictions of distribution functions on R to [F−1

Y (δ) − ε, F−1
Y (1 − δ) + ε].

Additionally, Cδ is the set of continuous functions on [F−1
Y (δ)− ε, F−1

Y (1− δ) + ε]. Also, UC(Y)
is the set of uniformly continuous functions defined on Y .

The estimator of the apparent counterfactual distribution Fa is given by

F̂a(y) = (1− p̂− δ)F̂Y|D=0,Dδ=0(y) + ( p̂ + δ)F̂Y|D=1,Dδ=1(y)

The apparent counterfactual can be written as the map D(Y)2 × (0, 1) 7→ D(Y) given by

ψ(FY|D=0,Dδ=0, FY|D=1,Dδ=1, p) = (1− p− δ)FY|D=0,Dδ=0 + (p + δ)FY|D=1,Dδ=1

= (1− δ)FY|D=0,Dδ=0 + δFY|D=1,Dδ=1 + (FY|D=1,Dδ=1 − FY|D=0,Dδ=0)p.

This map is linear, so the Hadamard derivative tangentially to `∞(Y)2× (0, 1) at (FY|D=0,Dδ=0, FY|D=1,Dδ=1, p)
is the map

ψ′FY|D=0,Dδ=0,FY|D=1,Dδ=1,p(h1, h2, h3) = (1− δ)h1 + δh2 + (FY|D=1,Dδ=1 − FY|D=0,Dδ=0)h3.

By the functional Delta method (see Theorem 20.8 in van der Vaart (1998)) and Assumption
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5, we have

√
n(F̂a − Fa) =

√
n(ψ(F̂Y|D=0,Dδ=0, F̂Y|D=1,Dδ=1, p̂)− ψ(FY|D=0,Dδ=0, FY|D=1,Dδ=1, p))

 Ga := (1− δ)G0,0 + δG1,1 + (FY|D=1,Dδ=1 − FY|D=0,Dδ=0)Zp.

and convergence takes place in `∞(Y). The random element Ga is Gaussian. Indeed, for any
y ∈ Y

Ga(y) = (1− δ)G0,0(y) + δG1,1(y) + (FY|D=1,Dδ=1(y)− FY|D=0,Dδ=0(y))Zp

is a linear combination of normal random variables.
Now we deal with

√
n(θ̂ − θ) = −1

δ

√
n
(

F̂a(F̂−1
Y + g)− Fa(F−1

Y + g)
)

This can be written as the composition of two maps. The first one is φ : D(Y) ×Dδ 7→
D(Y)× `∞(δ, 1− δ) given by φ(H1, H2) 7→ (H1, H−1

2 ). The second one is ψ : D(Y)× `∞(δ, 1−
δ) 7→ `∞(δ, 1− δ) given by ψ(H1, H2) 7→ H1 ◦ (H2 + g). Thus

ψ ◦ φ(Fa, FY) = Fa(F−1
Y + g).

By Assumption 6 and Lemma 21.4(i) in van der Vaart (1998), φ has Hadamard derivative at
(Fa, FY) tangentially to `∞(Y)×Cδ given by the map

φ′(Fa,FY)
(h1, h2) =

(
h1,−

h2 ◦ F−1
Y

fY ◦ F−1
Y

)
.

The second map ψ : D(Y)× `∞(δ, 1− δ) 7→ `∞(δ, 1− δ) is given by ψ(H1, H2) 7→ H1 ◦ (H2 +

g). It has Hadamard derivative tangentially to UC(Y) × `∞(δ, 1 − δ) at any H1 such that its
derivative h1 is bounded and uniformly continuous on Y , and any H2. To see, this we combine
Lemmas 3.9.25 and 3.9.27 in van der Vaart and Wellner (1996). Let αt → α and βt → β in D(Y)
and `∞(δ, 1− δ) respectively, as t→ 0.

ψ(H1 + tαt, H2 + tβt)− ψ(H1, H2)

t
− α ◦ (H2 + g)− h1 ◦ (H2 + g) · β

=
H1 ◦ (H2 + g + tβt) + tαt ◦ (H2 + g + tβt)− H1 ◦ (H2 + g)

t
− α ◦ (H2 + g)− h1 ◦ (H2 + g) · β

= (αt − α) ◦ (H2 + g + tβt) + α ◦ (H2 + g + tβt)− α ◦ (H2 + g)

+
H1 ◦ (H2 + g + tβt)− H1 ◦ (H2 + g)

t
− h1 ◦ (H2 + g) · β

The first term, (αt − α) ◦ (H2 + g + tβt), converges to 0 in D(Y) (that is, uniformly) because
convergence of αt → α is uniform. The second term, α ◦ (H2 + g + tβt)− α ◦ (H2 + g), converges
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to 0 in D(Y) because α is uniformly continuous on Y . For the last term, fix a τ ∈ (δ, 1− δ). By
the mean-value theorem

H1(H2(τ) + g + tβt(τ))− H1(H2(τ) + g)
t

− h1(H2(τ) + g) · β(τ)

= h1(ετ,t)βt(τ)− h1(H2(τ) + g) · β(τ)

= h1(ετ,t)(βt(τ)− β(τ)) + (h1(ετ,t)− h1(H2(τ) + g)) · β(τ)

The first term, h1(ετ,t)(βt(τ) − β(τ)), converges uniformly to 0 because h1 is bounded on
Y , and βt converges uniformly to β. The second term converges to 0 uniformly because h1 is
uniformly continuous on Y .

Hence, by Assumption 6, ψ has Hadamard derivative at (Fa, F−1
Y ) tangentially to UC(Y)×

`∞(δ, 1− δ) given by the map

ψ′
(Fa,F−1

Y )
(h1, h2) = h1 ◦ (F−1

Y + g) + fa ◦ (F−1
Y + g) · h2.

We use the chain rule (see Theorem 20.9 in van der Vaart (1998)) to conclude that ψ ◦ φ has
Hadamard derivative at (Fa, FY) tangentially to UC(Y)×Cδ given by the map

(ψ ◦ φ)′(Fa,FY)
(h1, h2) = ψ′φ(Fa,FY)

◦ φ′(Fa,FY)
(h1, h2)

= ψ′
(Fa,F−1

Y )
◦ (h1,−h2(F−1

Y )/ fY(F−1
Y ))

= h1 ◦ (F−1
Y + g)− fa ◦ (F−1

Y + g)
h2 ◦ F−1

Y

fY ◦ F−1
Y

.

By the functional Delta method (see Theorem 20.8 in van der Vaart (1998)) and the continuous
mapping theorem (because of the −1/δ factor), we have that

√
n(θ̂ − θ) = −1

δ

√
n
(

F̂a ◦ (F̂−1
Y + g)− Fa ◦ (F−1

Y + g)
)

 −1
δ
(ψ ◦ φ)′(Fa,FY)

(Ga, GY))

:= Gθ = −
1
δ

Ga ◦ (F−1
Y + g) +

1
δ

fa ◦ (F−1
Y + g)

GY ◦ F−1
Y

fY ◦ F−1
Y

.

To see that Gθ is indeed Gaussian, we evaluate it at τ ∈ (δ, 1− δ) to get

Gθ(τ) = −
1
δ

Ga(F−1
Y (τ) + g) +

1
δ

fa(F−1
Y (τ) + g)

GY(F−1
Y (τ))

fY(F−1
Y (τ))

,

which is a linear combination of two normal random variables: Ga(F−1
Y (τ) + g) and GY(F−1

Y (τ)).
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Proof of Theorem 6. The map given in (22) is

φ(H) =

(
min{max{0, H(τ1)}, 1}

max{min{0, H(τ2)},−1}

)
.

is the composition of an evaluation map θ ∈ `∞(δ, 1− δ) 7→ (θ(τ1), θ(τ2)) and of the max/min
composition. The evaluation map is linear, hence fully Hadamard differentiable. The com-
position of max/min is Hadamard directional differentiable by the chain rule for Hadamard
directional differentiable maps (see Proposition 3.6 in Shapiro (1990); Lemma C2 of Masten and
Poirier (2020)). Hence, another application of the chain rule yields that φ(H) is Hadamard direc-
tional differentiable at any H ∈ `∞(δ, 1− δ) tangentially to `∞(δ, 1− δ). By direct computation,
the derivative, for any h ∈ `∞(δ, 1− δ), is given by the map

φ′H(h) =

(
h(τ1)1{0<H(τ1)<1} + max(0, h(τ1))1{H(τ1)=0} + min(0, h(τ1))1{H(τ1)=1}

h(τ2)1{−1<H(τ2)<0} + min(0, h(τ2))1{H(τ2)=0} + max(0, h(τ2))1{H(τ2)=−1}

)
. (A.2)

Combining (A.2) with Theorem 2.1 in Fang and Santos (2019) and the result of Theorem 5,
we arrive at

√
n

(
Ûτ1 −Uτ1

L̂τ2 − Lτ2

)
=
√

n(φ(θ̂)− φ(θ)) φ′θ(Gθ),

where

φ′θ(Gθ) =

(
Gθ(τ1)1{0<θ(τ1)<1} + max(0, Gθ(τ1))1{θ(τ1)=0} + min(0, Gθ(τ1))1{θ(τ1)=1}

Gθ(τ2)1{−1<θ(τ2)<0} + min(0, Gθ(τ2))1{θ(τ2)=0} + max(0, Gθ(τ2))1{θ(τ2)=−1}

)
.

Proof of Theorem 7. Recall that by (22)

φ(θ) =

(
Uτ1

Lτ2

)
,

This map is not fully differentiable with respect to θ, only directional differentiable. Now, for
fixed τ, consider the map

ψ(Fa, FY, θ, τ) =

(
F−1

a (τ − δφ(θ)1)− F−1
Y (τ)

F−1
a (τ − δφ(θ)2)− F−1

Y (τ)

)
, (A.3)

where φ(θ)1 and φ(θ)2 are the first and second coordinates of φ(θ) respectively. We want to find
the distribution of

√
n
(
ψ(F̂a, F̂Y, θ̂, τ)− ψ(Fa, FY, θ, τ)

)
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Recall the notation introduced before: Dδ ⊂ `∞(Y) denotes the set of all restrictions of
distribution functions on R to [F−1

Y (δ)− ε, F−1
Y (1− δ) + ε] for some ε > 0. Additionally, Cδ is set

of continuous functions on [F−1
Y (δ)− ε, F−1

Y (1− δ) + ε].
Consider the map from D2

δ × `∞(δ, 1− δ) 7→ `∞(δ, 1− δ)2 × [0, 1]× [−1, 0] given by

m(H1, H2, H3) = (H−1
1 , H−1

2 , φ(H3)1, φ(H3)2), (A.4)

for φ defined in (22). Now consider the map from `∞(δ, 1− δ)2 × [0, 1]× [−1, 0] 7→ `∞(δ, 1− δ)2

given by

q(H1, H2, H3, H4) =

(
H1(· − δH3)− H2(·)
H1(· − δH4)− H2(·)

)
. (A.5)

We can see that ψ in (A.3) is the composition

ψ(Fa, FY, θ, ·) = q ◦m(Fa, FY, θ).

By Assumptions 6 and 7, Lemma 21.4(i) in van der Vaart (1998), Theorem 5 and the chain
rule for Hadamard directional differentiable maps, the map m is Hadamard directional dif-
ferentiable (see Proposition 3.6 in Shapiro (1990); Lemma C2 of Masten and Poirier (2020)) at
(Fa, FY, θ(τ1), θ(τ2)) tangentially to C2

δ × `∞(δ, 1− δ), with derivative given by the map

m′(Fa,FY ,θ)(h1, h2, h3) =

(
−h1 ◦ F−1

a

fa ◦ F−1
a

,−
h2 ◦ F−1

Y

fY ◦ F−1
Y

, φ′θ(h3)1, φ′θ(h3)2

)
(A.6)

where the map h 7→ φ′H(h) is given in (A.2), and φ′H(h)1 and φ′H(h)2 are the first and second
coordinates respectively.

The map q(H1, H2, H3, H4) in (A.5) has Hadamard derivative at (F−1
a , F−1

Y , Uτ1 , Lτ2) tangen-
tially to UC(δ, 1− δ)× `∞(δ, 1− δ)× [0, 1]× [−1, 0] given by the map

q′
(F−1

a ,F−1
Y ,Uτ1 ,Lτ2 )

(h1, h2, h3, h4) =

h1(· − δUτ1)−
δh4

fa◦F−1
a (·−δUτ1 )

− h2(·)

h1(· − δLτ2)−
δh3

fa◦F−1
a (·−δLτ2 )

− h2(·)

 .

We use the chain rule to conclude that the map q ◦m has Hadamard directional derivative at
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(Fa, FY, θ) tangentially to C2
δ × `∞(δ, 1− δ) given by the map

(q ◦m)′(Fa,FY ,θ)(h1, h2, h3) = q′m(Fa,FY ,θ) ◦m′(Fa,FY ,θ)(h1, h2, h3)

= q′
(F−1

a ,F−1
Y ,Lτ2 ,Uτ1 )

◦
(
−h1 ◦ F−1

a

fa ◦ F−1
a

,−
h2 ◦ F−1

Y

fY ◦ F−1
Y

, φ′θ(h3)1, φ′θ(h3)2

)

=

− h1◦F−1
a (·−δUτ1 )

fa◦F−1
a (·−δUτ1 )

− δφ′θ(h3)2

fa◦F−1
a (·−δUτ1 )

− h2◦F−1
Y

fY◦F−1
Y (·)

− h1◦F−1
a (·−δLτ2 )

fa◦F−1
a (·−δLτ2 )

− δφ′θ(h3)1

fa◦F−1
a (·−δLτ2 )

− h2◦F−1
Y

fY◦F−1
Y (·)

 .

Using Assumption 5, Theorem 5 and Theorem 2.1 in Fang and Santos (2019), we conclude
that

√
n
(
ψ(F̂a, F̂Y, θ̂, ·)− ψ(Fa, FY, θ, ·)

)
 (q ◦m)′(Fa,FY ,θ)(Ga, GY, Gθ)

=

−Ga◦F−1
a (·−δUτ1 )

fa◦F−1
a (·−δUτ1 )

− δφ′θ(Gθ)2

fa◦F−1
a (·−δUτ1 )

− GY◦F−1
Y (·)

fY◦F−1
Y (·)

−Ga◦F−1
a (·−δLτ2 )

fa◦F−1
a (·−δLτ2 )

− δφ′θ(Gθ)1

fa◦F−1
a (·−δLτ2 )

− GY◦F−1
Y (·)

fY◦F−1
Y (·)

 ,

and convergence takes place in `∞(δ, 1− δ)× `∞(δ, 1− δ).

Proof of Theorem 8. For d = 0 or d = 1, we find the asymptotic distribution of
√

n(F̂Y|D=d ◦ F̂−1
Y −

FY|D=d ◦ F−1
Y ). Consider first the map ψ : D(Y)2 → D(Y) × `∞(0, 1), given by ψ(H1, H2) =

(H1, H−1
2 ). Here, D(Y) is the set of all restrictions of distribution functions on R to Y = [yl , yu],

such that they give mass 1 to (yl , yu]. Also, C(Y) is the set of all (uniformly) continuous functions
defined on Y .

By Lemma 21.4.(ii) in van der Vaart (1998), and Assumption 9, ψ is Hadamard differentiable
tangentially to `∞(Y)×C(Y) at (FY|D=d, FY), with derivative given by the map

ψ′(FY|D=d,FY)
(h1, h2) =

(
h1,−

h2 ◦ F−1
Y

fy ◦ F−1
Y

)
.

Now, consider the map φ : D(Y) × `∞(0, 1) → `∞(0, 1) given by φ(H1, H2) = H1 ◦ H−1
2 .

By Lemmas 3.9.25 and 3.9.27 in van der Vaart and Wellner (1996), and Assumption 9, φ has
Hadamard derivative at (FY|D=d, F−1

Y ) tangentially to UC(Y)× `∞(0, 1) given by the map

φ′
(FY|D=d,F−1

Y )
(h1, h2) = h1 ◦ F−1

Y + fY|D=d ◦ F−1
Y · h2.

We use the chain rule (see Theorem 20.9 in van der Vaart (1998)) to conclude that φ ◦ ψ has
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Hadamard derivative at (FY|D=d, FY) tangentially to UC(Y)×C(Y) given by the map

(φ ◦ ψ)′(FY|D=d,FY)
(h1, h2) = φ′φ(FY|D=d,FY)

◦ ψ′(FY|D=d,FY)
(h1, h2)

= φ′
(FY|D=d,F−1

Y )
◦ (h1,−h2 ◦ F−1

Y / fY ◦ F−1
Y )

= h1 ◦ F−1
Y − fY|D=d ◦ F−1

Y ·
h2 ◦ F−1

Y

fY ◦ F−1
Y

.

By the functional Delta method (see Theorem 20.8 in van der Vaart (1998)) we have that

√
n(F̂Y|D=d ◦ F̂−1

Y − FY|D=d ◦ F−1
Y ) (φ ◦ ψ)′(FY|D=d,FY)

(Gd, GY))

Gd,Y := Gd ◦ F−1
Y − fY|D=d ◦ F−1

Y ·
GY ◦ F−1

Y

fY ◦ F−1
Y

.

By the continuous mapping theorem

√
n(θ̂ − θ) =

√
n
(

F̂Y|D=0 ◦ F̂−1
Y − F̂Y|D=1 ◦ F̂−1

Y −
(

FY|D=0 ◦ F−1
Y − FY|D=1 ◦ F−1

Y

))
 G0,Y −G1,Y.

B A Closer Look at the Marginal Effect

This appendix contains example that show the difficult of justifying the existence of the marginal
effect. The first example shows that the distributional invariance assumption of Firpo, Fortin and
Lemieux (2007, 2009) identifies the marginal effect.

Example B.1 (Distributional Invariance). If we assume distributional invariance: for d = 0, 1, then
FYDδ

|Dδ=d(y) = FY|D=d(y), we obtain

FYDδ
(y) = (p + δ)FYDδ

|Dδ=1(y) + (1− p− δ)FYDδ
|Dδ=0(y)

= (p + δ)FY|D=1(y) + (1− p− δ)FY|D=0(y)

= FY(y) + δ
(

FY|D=1(y)− FY|D=0(y)
)

,

where the last line uses the decomposition FY(y) = pFY|D=1(y) + (1− p)FY|D=0(y). Now,

FYDδ
(y)− FY(y)

δ
= FY|D=1(y)− FY|D=0(y)

which implies trivially that ḞY,D(y) = FY|D=1(y)− FY|D=0(y). Note further that ḞY,D is independent of
D.

The next example illustrates a case where FYD0
(y) 6= FY(y).
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Example B.2 (Threshold Crossing Model). Suppose that individuals select into treatment by D =

1 {V ≤ p} for V ∼ U[0,1]. Consider the sequence of policies Dδ = 1 {V ≤ p + δ}, and δ ≥ 0. Then,

FYDδ
(y) = Pr(Y ≤ y|V ≤ p + δ)(p + δ) + Pr(Y ≤ y|V > p + δ)(1− p− δ)

In this case, FYD0
= FY. However, if the sequence of policies is Dδ = 1 {V > 1− p− δ}, then FYD0

might
not coincide with FY.

The next three examples show that the condition of uniform differentiability may easily fail.

Example B.3 (Effect at the Margin). For the case of a non-randomized policy that satisfies Assumption
2, equation (3) in Theorem 1 can be written as

FYDδ
(y)− FY(y)

δ
= FY(1)|D=0,Dδ=1(y)− FY(0)|D=0,Dδ=1(y).

It is not immediate that the limit when δ goes to 0 of the right hand side exists pointwise for any y ∈ Y .
This is not obvious, since the conditioning set D = 0, Dδ = 1 shrinks to a measure 0 set: those individuals
whose D = 0 and D = 1.

In the case of a threshold-crossing model for D, as in D = 1
{

V ≤ F−1
V (p)

}
, and a sequence of

policies such that Dδ = 1
{

V ≤ F−1
V (p + δ)

}
, the event {D = 0, Dδ = 1} is equivalent to the event{

0 ≤ V ≤ F−1
V (p + δ)

}
, so we can define the limiting conditioning probability to be

lim
δ→0

FYDδ
(y)− FY(y)

δ
= lim

δ→0
FY(1)|D=0,Dδ=1(y)− lim

δ→0
FY(0)|D=0,Dδ=1(y)

= FY(1)|V=0(y)− FY(0)|V=0(y),

If the distributions FY(1)|V=0 and FY(0)|V=0 are continuous then pointwise convergence is equivalent
to uniform convergence. This implies that ḞY,D(y) = FY(1)|V=0(y)− FY(0)|V=0(y) which is the familiar
result (see Martinez-Iriarte and Sun (2020)) that the marginal individuals, those whose V = 0, are the
ones that drive the marginal effect in a threshold-crossing model. The effect is policy dependent because it
entails a particular departure in the selection equation. This policy dependence is emphasized in Carneiro,
Heckman and Vytlacil (2010, 2011).

Example B.4 (Unconfoundedness). Consider the following structural model for the observed outcome
Y = h(D, X, U). The counterfactual outome is given by Yδ = h(Dδ, X, U). Kaplan (2019) analyzes a
setting where both D ⊥ U‖X and Dδ ⊥ U‖X for every Dδ ∈ D hold. Let Xd denote the common support
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of X|D = d and X|Dδ = d.

FYDδ
(y) = (p + δ)

ˆ
X1

FYDδ
|Dδ=1,X=x(y)dFX|Dδ=1(x) + (1− p− δ)

ˆ
X0

FYDδ
|Dδ=0,X=x(y)dFX|Dδ=0(x)

= (p + δ)

ˆ
X1

ˆ
Y

1 {h(1, x, U) ≤ y} dFU|Dδ=1,X=x(u)dFX|Dδ=1(x)

+ (1− p− δ)

ˆ
X0

ˆ
Y

1 {h(0, x, U) ≤ y} dFU|Dδ=0,X=x(u)dFX|Dδ=0(x)

Using D ⊥ U‖X and Dδ ⊥ U‖X we get

FYDδ
(y) = (p + δ)

ˆ
X1

ˆ
Y

1 {h(1, x, U) ≤ y} dFU|D=1,X=x(u)dFX|Dδ=1(x)

+ (1− p− δ)

ˆ
X0

ˆ
Y

1 {h(0, x, U) ≤ y} dFU|D=0,X=x(u)dFX|Dδ=0(x)

= (p + δ)

ˆ
X1

FY|D=1,X=x(y)dFX|Dδ=1(x)

+ (1− p− δ)

ˆ
X0

FY|D=0,X=x(y)dFX|Dδ=0(x).

We can write this last expression as

FYDδ
(y) = FY(y) + p

ˆ
X1

FY|D=1,X=x(y)d
(

FX|Dδ=1(x)− FX|D=1(x)
)

+ (1− p)
ˆ
X0

FY|D=0,X=x(y)d
(

FX|Dδ=0(x)− FX|D=0(x)
)

+ δ

[ˆ
X1

FY|D=1,X=x(y)dFX|Dδ=1(x)−
ˆ
X0

FY|D=0,X=x(y)dFX|Dδ=0(x)
]

.

It shows that the counterfactual distribution is identified. Under some regularity conditions, we have
that, pointwise in y ∈ Y

lim
δ→0

FYDδ
(y)− FY(y)

δ
= p
ˆ
X1

FY|D=1,X=x(y)
∂ fX|Dδ=1(x)

∂δ

∣∣∣∣
δ=0

dx

+ (1− p)
ˆ
X0

FY|D=0,X=x(y)
∂ fX|Dδ=0(x)

∂δ

∣∣∣∣
δ=0

dx

+ FY|D=1(y)− FY|D=0(y).

The regularity conditions relate to the smoothness of the maps δ 7→ FX|Dδ=d(x) for d = 0, 1. Uniform
convergence is not guaranteed though.

Example B.5 (Propensity Score Manipulation). Martinez-Iriarte and Sun (2020) consider a setting
where D = 1 {UD ≤ µ(X)}, UD ∼ U(0,1), and a sequence of policies that satisfy E[Pδ(X)] = P(X) + δ,
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where P(X) is the propensity score, P(X) := Pr(D = 1|X) and Pδ(X) := Pr(Dδ = 1|X). In this case,
the counterfactual distribution can be written as

FYδ
(y) = FY(y) + δE

[{
FY(1)|UD ,X(y|P (X) , X)− FY(0)|UD ,X(y|P (X) , X)

}
Ṗ (X)

]
+ R(δ),

where, as δ goes to 0, R(δ) goes to 0 uniformly in y ∈ Y . Ṗ(x) is the reaction of the propensity score to
the sequence policies:

Ṗ (x) :=
∂Pδ (x)

∂δ

∣∣∣∣
δ=0

.

Using the uniformity in y ∈ Y of the remainder R(δ), we obtain

ḞY,D(y) = E
[{

FY(1)|UD ,X(y|P (X) , X)− FY(0)|UD ,X(y|P (X) , X)
}

Ṗ (X)
]

.

Here, the adjustment term Ṗ (x) will be different for different sequences D considered.
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