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1 Introduction

Isolating the role of uncertainty in the business cycle is challenging because spikes in uncertainty

often coincide with a deterioration of the macroeconomic outlook. This problem is particularly

acute in the case of financial uncertainty. High stock market volatility, rising credit spreads and

economic slowdowns often materialize together, but researchers disagree on the interpretation of

this coincidence. Ludvigson et al. (2018) argue that financial uncertainty is an important source of

fluctuations for the US economy, while Berger et al. (2019) conclude that uncertainty is

endogenous to (and hence inconsequential for) the evolution of the real economy.

We examine this puzzle using a novel empirical strategy specifically designed to disentangle the

interactions between uncertainty and asset prices. The strategy consists of identifying the shock in

a daily VAR, averaging the daily shock series to the monthly frequency, and then using this average

as an instrument in a monthly VAR model. We demonstrate that this procedure delivers consistent

estimates of the low-frequency impact of the shock in a broad range of models: intuitively, the

linearity of a VAR guarantees that the causal effect of a sum of (within-month) shocks coincides

with the sum of their individual (daily) effects. Daily data serve two crucial objectives, allowing us

to (i) control accurately for the information set available to market participants at any given point

in time, and (ii) leave the relation between financial and real variables unrestricted at the monthly

frequency. In our framework the validity of the restrictions, especially those imposed between

financial variables, can be tested on monthly data rather than assumed ex-ante. After discussing the

theoretical properties of our procedure and examining its accuracy through Montecarlo exercises,

we use it to revisit two influential studies on the role of financial uncertainty shocks by Caldara

et al. (2016) (CFGZ) and Berger et al. (2019) (BDG). In both cases we keep the models unchanged

and only shift the identification restrictions from the monthly to the daily frequency, preserving the

theoretical strengths of the identification schemes while accounting for the possibility that portfolio

decisions are taken daily rather than monthly. This frequency shift has dramatic implications for

the results.

CFGZ identify uncertainty and financial shocks in a VAR as the innovations that maximize the

responses of the VXO and the Excess Bond Premium over a six-month horizon. The
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identification is sequential, as one of the shocks must be identified first and the other one is

subject to an orthogonality condition with respect to it. CGFZ find that the ordering is crucial:

uncertainty shocks have a large impact on output and inflation if they are identified first, but

become irrelevant if they are identified after (i.e. conditioning on) financial shocks. Our analysis

reveals that this ambiguity is caused by the strong interactions between corporate bond spreads

and the VXO volatility index at the daily frequency. Since spreads and volatility respond to both

disturbances within a month, any identification achieved through monthly timing assumptions is

inevitably biased and at odds with the data. Our estimates show that VXO and bond spreads

increase rapidly in response to a financial tightening and to a rise in uncertainty, as one would

expect on theoretical grounds. More importantly, provided that their daily interactions are

adequately captured, uncertainty shocks have a significant effect on industrial production,

employment and inflation irrespective of the identification order.

A similar conclusion emerges in the BDG setup. BDG draw an important distinction between

the realized volatility of the stock market (a broad proxy of changes in economic fundamentals)

and its option-implied volatility (which reflects changes in volatility expectations, i.e.

forward-looking uncertainty). Uncertainty shocks are then identified as the linear combination of

innovations that maximizes the forecast error variance of implied volatility over two years while

having no contemporaneous impact on realized volatility. The rationale for this restriction is the

fact the large negative news about macroeconomic fundamentals are captured by realized

volatility. Our analysis shows that, if the BDG restrictions are imposed on daily data, uncertainty

shocks significantly impact the realized volatility of the market within a given month. As in the

CFGZ case, the monthly restrictions are invalid. Once the within-month feedback between

expected and realized volatility is taken into account, an exogenous rise in uncertainty also causes

a significant contraction in industrial production. Interestingly, the responses are quantitatively

similar to those obtained in the CFGZ model, suggesting that – net of temporal aggregation issues

– the two identification schemes isolate the same structural disturbance.

The paper makes three contributions to the literature. The first one is to provide new evidence

on the broad economic implications of an exogenous shift in financial uncertainty. The second
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one is to demonstrate that using financial data in a VAR is a double-edged sword: asset prices

provide valuable information but do not lend themselves easily to structural identification in

monthly or quarterly models. The overlap between exogenous shocks and endogenous responses

uncovered in our study of financial uncertainty may easily arise in other contexts. The third

contribution is to provide a flexible and robust tool to identify VARs using high-frequency data,

including those obtained from financial markets. The method we propose is conceptually and

computationally simple, and the shock(s) obtained from high-frequency data can be employed as

external or internal instruments, included in an exogenous block of the VAR, or used in a local

projection setup.1 Hence, the procedure can be used in a broad range of cases where identification

restrictions imposed at “low” frequencies could bias the results.2

Related Literature. Uncertainty has attracted considerable attention in the business cycle

literature from both a theoretical and an empirical perspective.3 After Bloom (2009), researchers

often measure aggregate uncertainty using the VIX or VXO implied volatility indices. However,

different views have emerged on the identification of financial uncertainty shocks and on the

implications of such shocks for the real economy (CFGZ, Carriero et al., 2018, Ludvigson et al.,

2018, BDG). Our paper contributes to this debate by reassessing CFGZ and BDG through a new

high-frequency identification approach, showing that temporal aggregation can completely cloud

causality in this context. Few other works have employed daily or weekly data to study

uncertainty shocks. Ferrara and Guerin (2018) use a mixed-frequency VAR where the VXO is

included as a weekly average and find that the results are similar to those obtained from a

standard monthly VAR. However, identification relies on a recursive scheme that is unlikely to

1The use of external information in VARs is discussed in Beaudry and Saito (1998); Faust et al. (2004), Stock and
Watson (2012), Mertens and Ravn (2013), Noh (2018), Miranda Agrippino and Ricco (2018), and Paul (forth). See
Plagborg-Møller and Wolf (2019b) and Herbst and Johannsen (2020) for a discussion of the relation between VARs
and local projections.

2For a general discussion of temporal aggregation biases see Sims (1971), Christiano and Eichenbaum (1987),
Marcet (1991), Hendry (1992), and Swanson and Granger (1997). Marcellino (1999) and Foroni and Marcellino
(2016) show that temporal aggregation can heavily distort impulse-response functions and forecast error variance
decompositions in SVAR models.

3See e.g. Fernandez-Villaverde et al. (2011), Jurado et al. (2015), Baker et al. (2016), Basu and Bundick (2017),
Arellano et al. (2019). Extensive reviews of the literature can be found in Bloom (2009) and Fernandez-Villaverde and
Guerron-Quintana (2020).
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capture the feedbacks between uncertainty and macroeconomic conditions.4 Our identification

approach exploits daily rather weekly data and it can accommodate restrictions that are not

subject to those limitations. Piffer and Podstawski (2018) identify uncertainty shocks as

variations in gold prices around specific events and then use them as external instruments in a

VAR, concluding that uncertainty shocks are a major driver of the business cycle. Our method

represents a robust and flexible alternative to event-based identification strategies. Furthermore,

our analysis delivers more conservative estimates of the impact of financial uncertainty shocks

than those of Piffer and Podstawski (2018). The reason is that, by imposing the CFGZ or BDG

restrictions in daily VAR models that include a range of financial indicators, we can better isolate

uncertainty shocks from financial or real disturbances that may simultaneously hit the economy.5

Estimation of dynamic effects based on external information has recently spread in the

empirical macroeconomic literature (Beaudry and Saito 1998; Faust et al. 2004, Stock and

Watson, 2012, Mertens and Ravn, 2013). This paper makes two contributions to this research.

First, it provides a novel approach to exploiting high-frequency information for identification

purposes. Second, it shows how to employ proxies that are available at higher frequency than the

endogenous variables of interest. In particular, we show that, as long as the data-generating

process is a VAR, averaging the high-frequency proxy to a lower frequency delivers consistent

estimates of the responses in a broad range of empirical setups and model specifications.6 Our

method can be promptly applied to cases where daily VAR models are used to isolate monetary

policy shocks (Wright, 2012) or shocks to expected growth and risk premia (Cieslak and Pang,

2020).

4See e.g. Stock and Watson (2012), Baker and Bloom (2013), Baker et al. (2016), Cascaldi-Garcia and Galvao
(2016) and Ludvigson et al. (2018). Another limitation of stacked mixed-frequency VARs is that they do not yield
unique IRF estimates, and hence they cannot be directly compared to monthly or quarterly VAR models.

5In Alessandri et al. (2020) we take this argument one step further, exploiting the non-Gaussianity of the daily
series to identify structural shocks that are statistically independent (and not just orthogonal) from one another. In
this paper we deliberately stick to the restrictions proposed by CFGZ and BDG in order to isolate the role of daily
dynamics in the context of established, well-known identification strategies.

6Chudik and Georgiadis (2019) propose an alternative framework, treating the shocks as observed and estimating
the effect of an individual high-frequency shock on a set of lower-frequency variables. In our approach, by contrast,
the high-frequency shocks are used as instruments and the aim is to recover the cumulated effects of all the shocks
that occur within a low-frequency period: this allows us to compare our findings to those obtained from standard VAR
models based on monthly or quarterly data.
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Outline. The remainder of this paper is organized as follows. Section 2 describes the influence of

temporal aggregation on the identification of VAR models, introducing our method and discussing

its theoretical properties and its performance in Monte Carlo simulations. In Section 3 we apply

our method to the estimation of financial uncertainty shocks in the CFGZ and BDG setups. Section

4 concludes.

2 High-Frequency Identification of Low-Frequency Causal

Effects

We propose a new strategy to exploit high-frequency data (obtained for instance from financial

markets) in order to estimate the effects of structural shocks on variables that are only available at

lower frequencies (such as price and economic activity indicators). Our proposal is motivated by

the consideration that the use of high-frequency observations can significantly improve the

structural identification of a VAR model. Macroeconomists routinely use monthly or quarterly

series to examine the implications of various structural shocks. Yet firms, households and

investors may take their decisions at higher frequencies than a month: this implies that in a

monthly or quarterly dataset exogenous shocks and endogenous responses might be inextricably

mixed, and that even theoretically sound identification strategies may fail to isolate the former

from the latter. The empirical analysis in Section 3 shows that this is indeed a first-order problem

in the case of financial uncertainty shocks. However, the problem we highlight is entirely general

and the simple method proposed in this paper can be easily exploited in other contexts. After

summarizing the logic of our approach below, we develop an analytical example in Section 2.1,

provide results on the general validity of the method in a VAR framework in Section 2.2, and

document its performance in a Montecarlo study in Section 2.3.

The method involves three steps:
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I) Identification of the shocks on high-frequency data. The first step consists of recovering

the structural shock(s) of interest by applying an appropriate identification strategy to a VAR model

estimated on ’high-frequency’ (HF) data. We deliberately use the HF label in a loose sense: the

data can be weekly, daily (as in our empirical applications) or intradaily, depending on the task at

hand. All that matters is that this information is available at a frequency for which the identification

restrictions are reasonable; in many cases this is higher than one month or one quarter, which is the

sampling frequency of the macroeconomic aggregates on which the impact of the shock(s) must

ultimately be quantified. The specification of the VAR must of course allow the identification of

the shock of interest; in particular, the variables need to capture an information set that is broad

enough to insure that the model is informationally sufficient. Provided this condition is met, the

method can rely on any identification scheme. In the empirical analysis of Section 3 we use it

in combination with the identification strategies proposed by CFGZ and BDG in two influential

papers on the real effects of financial uncertainty.

II) Temporal aggregation of the shocks. The second step consists of computing

low-frequency (LF, e.g. monhtly or quarterly) averages of the high-frequency shocks obtained in

(I). One strength of our approach is its robustness: if the underlying HF data generating process is

a VAR, then averaging is the correct temporal aggregation filter for the shocks irrespective of the

gap between the two frequencies and the type of variables employed in the analysis (prices, flows,

stocks, etc.; see subsections 2.1–2.3). This result on the optimal aggregation filter is also relevant

for VARs identified using external information (i.e. proxies), which have recently become very

popular in the applied macroeconomics literature (see e.g. Gertler and Karadi, 2015 and Ramey

and Zubairy, 2018). Our analysis demonstrates that there are indeed good reasons to stick to

simple within-period averaging rather than using alternative filters, such as moving averages,

large shocks, or shocks that occur at the beginning or the end of each month/quarter (see Section

2.2). The averaged LF shocks should again pass the informational sufficiency test (e.g. Forni and

Gambetti (2014)). In our applications we systematically test whether they are orthogonal to past

information obtained from large auxiliary data sets.
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III) Estimation of the causal effects of the shocks on low-frequency variables. The third

and last step consists of employing the series of LF shocks obtained in (II) as a proxy in a VAR

specified at low-frequency that contains the endogenous variables of interest. The LF shocks can

be treated as ’external’ or ’internal’ instruments for the LF-VAR; the estimation of the IRFs, like

the identification in step (I), can thus be carried out in a number of alternative ways. The correct

way to use external information to estimate IRFs and forecast error variance decomposition has

been extensively analyzed in the recent literature. The shock captured by the proxy is invertible

if and only if the proxy does not Granger-cause the residuals of the LF-VAR. If the test is not

passed, then the inference based on the Proxy-SVAR is not valid but the relative IRFs can be

still estimated by including the proxy and its lags as an exogenous variable in the VAR (Paul,

forth). Alternatively, the proxy can be used as an internal instrument in the VAR by including it

as an endogenous variable in the VAR and computing the IRFs by ordering it first in a Cholesky

decomposition (see, for example, Plagborg-Møller and Wolf, 2019a; Noh, 2018; and Miranda

Agrippino and Ricco, 2018). The latter approach constitutes a parsimonious equivalent of the

popular local projection instrumental variable approach (LP-IV) with controls. Notice that, under

the (testable) assumption that the lagged endogenous variables of the LF-VAR are orthogonal to the

proxy, the impact effect estimated using the proxy as an external instrument, an internal instrument

or an exogenous variable in the VAR must coincide. Therefore, the partial invertibility of the

shock and the strategy adopted to compute the IRFs only matter for model’s dynamics over longer

horizons. Finally, as discussed in Wooldridge (2010), generated instruments do not suffer the

inference problem of associated regressors.

2.1 Illustrative Cases

Univariate Case. Some of the implications of temporal aggregation can be easily illustrated

using a scalar AR(1) process. Let y follow an AR(1) process with white noise innovations ε at the

frequency t = 1,2, ...,T (e.g. daily):

yt = αyt−1 + εt (1)
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If the variable is observed only at the lower frequency τ = 2,4, ...,T , i.e. half of the original

frequency t, the process becomes:

yτ = α
2yτ−1 +uτ , (2)

where yτ = yt , yτ−1 = yt−2 and the residual is:

uτ := yτ −Eτ−1(yτ |Fτ−1) = αεt−1 + εt (3)

Consider estimating the contemporaneous response of yτ to the underlying structural shock,

defined as its cumulative response to the two shocks εt and εt−1 that are part of the time-τ

residual. This response is the difference between two conditional forecasts calculated setting both

shocks to 1 and to 0:

Θ0 := Eτ−1 [yτ |εt = 1,εt−1 = 1]−Eτ−1 [yτ |εt = 0,εt−1 = 0] = 1+α

Projecting yτ (or uτ ) on the average of the shocks at frequency t over τ , ετ = 1
2εt +

1
2εt−1,

recovers Θ0:

E
[
E(ετ)

′
E(ετ)

]−1
E
[
E(ετ)

′
yτ

]
= 2E

[(
1
2

εt +
1
2

εt−1

)
(αεt−1 + εt)

]
= (1+α)

Therefore, even if y is observable only at the frequency τ but there the series of innovations {εt}

can be obtained by external sources, then it is possible to recover Θ0 by using the shocks {εt} as

average over τ .7

Bivariate Case. In a multivariate context, temporal aggregation interacts in a non-trivial way

with the identification issues that generally arise in VAR models. Assume that the true data

7Note that averaging and the sum of the high frequency shocks would deliver the same qualitative IRF but scaled
since the average is just a linear transformation of the sum.
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generating process is a bivariate VAR(1) at the high frequency t : xt

yt

=

 a11 a12

a21 a22

 xt−1

yt−1

+
 b11 0

b21 b22

 εx
t

ε
y
t

 , (4)

where [xt yt ]
′

are scalar endogenous variables, A =

 a11 a12

a21 a22

 is the autoregressive matrix,

B =

 b11 0

b21 b22

 is the impact matrix, εt =
[
εx

t ε
y
t
]′

is the vector of structural shocks , and

E
[
εtε
′
t

]
= I 2. For simplicity we assume B to be lower triangular, implying that ε

y
t does not

affect xt within the same period. The results can be generalized to the case where b12 6= 0 but

the derivations are more cumbersome. The reduced-form residuals ut = Bεt are correlated, with

E
[
utu
′
t

]
= Σut = BB′. Assume further that the goal of the empirical analysis is to identify the

effect of the shock εy on x, but y is observed in every period t = 1,2, ..,T whereas x is observed

every two periods, i.e. in τ = 2,4, ...T . This frequency mismatch generates an estimation problem

as the SVAR in Eq.(4) is not observable. The problem is commonly solved by aggregating y to the

lower frequency at which x is observable and identifying the shock of interest in a VAR estimated

on low-frequency observations. Unfortunately this procedure can be seriously misleading. The

temporally aggregated system has the following form:8 xτ

yτ

=

 a2
11 +a12a21 a11a12 +a12a22

a11a21 +a21a22 a12a21 +a2
22

 xτ−1

yτ−1

+
 ux

τ

uy
τ

 , (5)

where the reduced-form residuals uτ are linear combinations of present and past structural shocks: ux
τ

uy
τ

 =

 b11εx
t +(a11b11 +a12b21)εx

t−1 +a12b22ε
y
t−1

b21εx
t +b22ε

y
t +(a21b11 +a22b21)εx

t−1 +a22b22ε
y
t−1

 (6)

8The example assumes that y is a ’stock’, so that the aggregation from high to low frequency entails keeping the
last observation within each period τ . The Appendix reports an identical example where the variables are instead
averaged over time, as if they were ’flows’.
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This process is still a VAR(1), but its residual variance-covariance matrix is given by E [uτuτ ] =

Σuτ = (I +A)BB′ (I +A)
′
. It is simple to verify that Σuτ 6= Σut . In particular, Σuτ is not lower

triangular. Thus, the Cholesky structure that would correctly recover the shocks from the high-

frequency residuals ut cannot be applied to uτ . In other words, temporal aggregation makes it

generally impossible to recover the causal impact of the shocks. This conclusion holds for other

identification schemes and different structures of the B matrix.9

We now demonstrate that, as in the univariate example, the cumulated effects of ε
y
t and ε

y
t−1

on xτ can be recovered using a simple average of the HF shocks occurring within period τ , i.e.

ε
y
τ = 1

2ε
y
t +

1
2ε

y
t−1.10 We label Θ0 the impact effect of the shock ε

y
τ , which is given in this particular

case by:

Θ0 =

 Θx
0

Θ
y
0

= B•2 +(AB)•2 =

 a12b22

b22 (2+a22)

 (7)

where B•2 and (AB)•2 denote the second columns of the matrices B and AB, respectively.

Our approach proposes to identify the shock from HF data and to compute the IRFs of the

LF endogenous variable to the average of shocks identified at HF. One can estimate a VAR at the

frequency t that includes yt and a vector of variables Ωt of length k, which is defined such that the

VAR estimated at frequency t allows the identification of the shocks (information sufficiency): Ωt

yt

=

 D11 D12

D21 d22

 Ωt−1

yt−1

+
 C11 0

C21 c22

 εΩ
t

ε
y
t

 (8)

where D =

 D11 D12

D21 d22

 is the autoregressive matrix and C =

 C11 0

C21 c22

 is the

contemporaneous one. The informational sufficiency assumption states that εΩ
t ⊇ εx

t and, under

this condition and with the right identification strategy, we recover ε
y
t or at least its proxy (i.e. a

noisy measure of the shock) zt = ε
y
t + ηt ,ηt ∼ wn(0,σ2

η),ηt ⊥ ε
y
t . In this illustrative case,

9See Marcellino (1999) for a more general discussion of the temporal aggregation bias.
10The temporal aggregation filter correctly preserves the dynamic effects of the HF shocks between horizon 1 and

m and consequently also the aggregated impact effect at LF. Conversely, the LF-VAR autoregressive components are
employed to compute the dynamic effects at LF.
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{zt−1, zt} are aggregated to zτ as the average over τ:

zτ =
zt−1 + zt

2
{τ, t}= 2,4, ...,T (9)

Then, we employ zτ as a proxy for the structural shock ε
y
τ . This strategy is valid under the typical

assumptions in the Proxy-SVAR literature on the exogeneity of zt , i.e. E [ztε
x
t ] = 0, and its strength,

i.e. E
[
ztε

y
t
]
6= 0. These two properties are translated to ε

y
τ under the correct specification of the

HF-VAR ensured by our assumptions on Ωt (and a large enough number of lags compared to the

the frequency mismatch). In this way, we correctly identify the impact effect of the shock ε
y
τ up to

a scale factor µ:

Θ
y
0 = E [zτzτ ]

−1E
[
zτuy

τ

]
= µ (2b22 +a22b22) (10)

Θ
x
0 = E [zτzτ ]

−1E [zτux
τ ] = µa12b22 (11)

In this way, the ratio
Θx

0
Θ

y
0

is correctly estimated (see Eq. 7). Notice that the aggregation of the shocks

in alternative ways would not yield the correct ratio
Θx

0
Θ

y
0

. For example, in the literature, shocks

available at a daily frequency have been sometimes aggregated by using weights proportional to the

days left in a month or as moving averages. Our paper shows that those approaches are inconsistent

with an underlying VAR structure.

2.2 General Proposition

The results obtained in the previous section for a bivariate VAR(1) can be promptly extended to

more general set-ups. Consider the general VAR process given by

A(L)yt = Bεt (12)

where L is the lag operator such that Liyt = yt−i, the lag polynomial A(L)=I −A1L−A2L2− ...−

ApLp, ... . The SVAR is not observable itself, but corresponds to a multiplicity of reduced-form

VAR representations of the form:

A(L)yt = ut (13)
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Temporal aggregation can be expressed as a two-step filter. First, the data are made observable

only once every m periods, which represents the frequency mismatch, via the filter D(L) = I +

D1L+D2L2 + ...+Dpm−pLpm−p. The specification of D(L) has to be such that the elements of

D(L)A(L) are powers of Lm, meaning that only the observable data points enter the transformed

process. The conditions for the existence of such a filter, as well as the values taken by the matrices

Di are derived in Marcellino (1999). The second filter, denoted by W (L), depends on the temporal

aggregation scheme considered; skip-sampling (or point-in-time sampling) is usually applied to

stock variables (e.g. prices) whereas averaging is typically applied to flow variables (e.g. volumes).

The validity of our approach, which is based on averaging the HF shocks, is summarized by the

following proposition:

Proposition I. Let yt follow an underlying high-frequency (HF) VAR process with structural

shocks εt and reduced-form innovations ut , with t = 1,2, ...T ; and let yτ represent the

low-frequency (LF) version of the process obtained by applying the filters D(L) and W (L) to yt ,

with τ = m,2m, ...,T . A consistent estimate of the contemporaneous impact of εt on yτ can be

recovered by projecting the LF residuals uτ on the averages of the HF shocks that occurred

within the LF periods, i.e. ετ =
∑

τ
t=τ−m+1 εt

m for every τ .

Proof: see Appendix B. �

Proposition I implies that the causal effects of structural shocks in a low-frequency VAR can

be recovered using simple averages of the structural shocks identified using high(er) frequency

data. Importantly, this procedure is appropriate irrespective of whether the underlying series are

aggregate using averaging or skip sampling. This means that it can be safely applied to VARs that

include stocks, flows, or any combination of the two. This result hinges on the linearity of VAR

models: linearity implies that the sum of the causal effect of the HF shocks

{εt−m+1,εt−m+2, ...,εt} is equal to the causal effect of their average, i.e. the aggregated LF

shock ετ .11

11Although we do not deal explicitly with shocks identified using narrative sources and event studies, our results
on temporal aggregation are also relevant for this strand of literature. One implication of our work, for instance, is that
the practice of aggregating HF shocks by taking a moving average or a weighted average of within-period observations
is inconsistent if the true data-generating process is a HF VAR.
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2.3 Monte Carlo Evidence

In this section we assess the performance of our approach through Monte Carlo tests. Using a

structural high-frequency VAR as a data generating process (DGP), we simulate both

high-frequency (HF) and low-frequency (LF) data sets and then compare the IRFs obtained by: (i)

identifying the shocks directly in a LF-VAR; and (ii) identifying the shocks in a HF-VAR and

using them as instruments in the LF-VAR as suggested by our procedure. In all experiments we

use the right identification scheme, so that the comparison isolates specifically the implications of

identifying the shocks on HF or LF data. For comparison we also report IRFs obtained from a

“counterfactual HF VAR” that assumes that all variables are available at the highest frequency.

This case is counterfactual from our perspective because our method is motivated precisely by the

need to combine HF and LF information, so it has no use in a context where all series are

available at HF.

Our experimental design is similar to that in Foroni and Marcellino (2016). The DGP, described

in Eq.(14), is a VAR(1) process driven by Cholesky innovations: xt

yt

=

 a11 a12

a22 a21

 xt−1

yt−1

+

 b11 0

b21 b22

 εx
t

ε
y
t

 , (14)

where

 ex
t

ey
t

 ∼ N (0,I2). We focus on a VAR(1) process because any VAR of higher order

can be expressed as a VAR(1) through its companion form. The model is parameterized as follows: a11 a12

a22 a21

=

 0.71 −0.82

0 0.82

 ,

 b11 0

b12 b21

=

 0.28 0

0.23 0.95


For ease of exposition we focus on the temporal aggregation via skip-sampling, where variables

are observed only once every m periods, for a monthly-quarterly case (m = 3) with T = 1000.

Figure 1 displays respectively the IRFs of the system for the εx
t shock and the ε

y
t shock.
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Figure 1: MONTE CARLO EXPERIMENT
IRFs estimates based on data generated using equation 14. The true IRF is represented by the dotted black line. . The remaining lines denote estimates obtained by imposing the correct recursive
structure on data sampled at different frequencies: the Counterfactual HF-VAR (blue) relies entirely on high-frequeny data; the LF-VAR (green) relies on low-frequency data; in the HF+LF VAR
(red) the shocks are first identified using high-frequency data and used as instruments for the residuals of a low-frequency VAR. Shock 1 and Shock 2 represent respectively shocks to x and y; the

temporal aggregation is based on skip-sampling and it assumes HF and LF to be monthly and quarterly frequencies. Shaded areas correspond to the 90% percentile across 1000 replications. .

The true responses generated by the DGP are shown as black dashed lines.12 The differences

between the naive LF-VAR estimates and those obtained from our approach, labeled here “HF+LF

VAR” are extremely stark: the HF+LF VAR (red stars) recovers the true IRFs (black dash) with

great accuracy for both shocks , while the LF-VAR (green crosses) systematically misestimates

sign and/or magnitude of the responses. The LF-VAR clearly misses shape and sign of the impact

of εx on y (figure 1, top right panel); this in turn implies a wrong estimate of the dynamic effect

of the shock on x itself (top left panel). Furthermore, the LF-VAR constraints the impact of ey

on x to be 0 (bottom left panel). This is a direct implication of the identification restrictions,

that assume a lower-triangular structure. This restriction holds by construction in the HF data,

but it is invalid in the LF data, which incorporate an endogenous response of x to εy in the (one

12Notice that these do not match the element of the B matrix because of temporal aggregation: as in the examples
of the previous section, the object of interest is the cumulated low-frequency impact of shocks that materialize at a
higher frequency. In particular, the time-1 responses in the figure represent the quarterly changes in x and y triggered
by shocks whose monthly impact is defined by the B matrix.
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or two) months that follow the occurrence of the shock within a given quarter. This initial error

causes the LF-VAR response to be significantly biased up to the one-year horizon. An important

conclusion of this exercise is that, although temporal aggregation only has a direct effect on the

contemporaneous response of the model, this is sufficient to distort the path of the IRFs over the

entire horizon, both qualitatively and quantitatively. The figure also shows the responses obtained

from a Counterfactual HF-VAR : this assumes that the series are all available at high frequency,

so that the responses can be estimated in HF and then aggregated to LF . These IRFs (in blue)

are virtually indistinguishable from those of the DGP. This model is a useful benchmark from an

inference perspective: our approach is consistent but it is also by construction less efficient than

the HF-VAR because it relies on a two-stage estimation (IV versus OLS). However, the figures

show that (in this representative setup) the efficiency loss is fairly small and the confidence bands

are only marginally wider than those of the HF-VAR.

Table 1 displays the accuracy in the estimation of the IRFs for the three approaches described

above in a more general setup. We take as benchmark the LF-VAR, whose estimation errors are

consistently larger, and report the reduction in the Mean Absolute Deviations (MADs) from the

true response obtained by HF-VAR and HF+LF VAR relative to the benchmark. We use 100

random parametrizations of the DGP. We select those parametrizations with real eigenvalues of the

autoregressive matrix that belong to the set (0.7,0.95) to avoid non-stationarity while imposing

some persistence in the IRFs.13 The impact coefficients are drawn as {b11,b22} ∼ U (0, I2) and

b12 ∼U (−1,1). In order to maintain a clear mapping between shocks and variables, we impose

b11 > 0.1 and b22 > 0.1 and retain only the parametrizations for which b21 < b11 and b21 < b22

For each parametrization we examine (i) two alternative sample sizes (T=100 versus T=1,000) and

(ii) two frequency mismatches (M/Q versus D/M). Our approach is significantly superior to the

LF-VAR in all cases, generating MAD gains of the order of 10% to 70% compared to the LF-VAR.

Similar results hold for VAR models of higher order and/or identification schemes based on sign

restrictions instead of zero (recursive) restrictions.

13This is important because IRFs aggregated at LF are an uninteresting case without persistence, yielding zero
effect at LF independently of the impact matrix.
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MAD gains over LF-VAR
Skip-sampling Averaging

Small (LF) sample size T=100
Frequency Mismatch: Monthly-Quarterly Case (3)

HF-VAR 65% 83%
HF+LF VAR 59% 19%

Frequency Mismatch: Daily-Monthly Case (30)
HF-VAR 80% 97%

HF+LF VAR 43% 42%
Large (LF) sample size T=1000

Frequency Mismatch: Monthly-Quarterly Case (3)
HF-VAR 87% 95%

HF+LF VAR 85% 21%
Frequency Mismatch: Daily-Monthly Case (30)
HF-VAR 93% 90%

HF+LF VAR 79% 79%

Table 1: Monte Carlo Results
Performance comparisons across the counter-factual HF-VAR, the LF-VAR, and our approach. Performances are evaluated in terms of the Mean
Absolute Distance (MAD) between the true IRFs and the estimated IRFs in 100 randomly parametrized DGPs. One summary statistic is computed as
a mean across all combinations of shocks-variables in the system. The gains are expressed as percentage MAD gains over the LF-VAR. We analyze
different cases for a VAR(1) DGP by varying: i) temporal aggregation scheme, either skip-sampling or averaging; ii) the frequency mismatch
between HF and LF by 3 (monthly-quarterly case) or 30 (monthly-daily case); iii) sample size, either small (100 LF observations) or large (1000
LF observations).

3 Uncertainty, Volatility, and Financial Markets

The debate on the role of uncertainty in the business cycle is open and fluid. Earlier studies

documented a strong impact of aggregate uncertainty on investment and output, but recent

contributions have cast doubt on those conclusions showing that uncertainty is often an

endogenous response to changes in fundamentals rather than an independent source of

fluctuations. This ambiguity is particularly evident in the case of financial uncertainty. Recessions

in the US typically coincide with spikes in the volatility of the stock market, but researchers are

very much at odds on the interpretation of this coincidence. In line with the findings of Bloom

(2009), Ludvigson et al. (2018) argue that shocks to financial uncertainty are a genuine and

quantitatively important source of fluctuations in economic activity. Caldara et al. (2016) (CFGZ)

document instead a limited role for financial uncertainty, suggesting that economic and policy
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uncertainty are more relevant. Carriero et al. (2018) conclude that, irrespective of their origin,

uncertainty shocks give overall a modest contribution to the dynamics of the real economy.

Berger et al. (2019) (BDG) argue that, once they are properly isolated from concurrent changes in

fundamentals, exogenous shifts in the expected volatility of the stock market have no impact

whatsoever on output and employment.14 In this section we contribute to this debate by revisiting

BDG and CFGZ through the lens of our identification approach. In both cases we take the

identification schemes as given and simply shift the restrictions from the monthly frequency used

in the original papers to the daily frequency. The motivation for this test is straightforward: if

investors respond to uncertainty and macroeconomic news on a daily or intradaily basis, then

using monthly observations can lead to biased results even if the underlying restrictions are

theoretically sound. Our results forcefully corroborate this conjecture. In both cases we find that

(i) the monthly identification restrictions are rejected by the data, and (ii) uncertainty shocks have

a significant negative impact on economic activity if daily restrictions are used instead.

Interestingly, the real impact of the shock is quantitatively similar in the two applications. This

suggests that, once temporal aggregation issues are taken out of the picture, the BDG and CFGZ

identification schemes isolate the same type of structural disturbance (see Section 3.3).

3.1 Berger, Dew-Becker and Giglio (2019)

Berger et al. (2019) (BDG) demonstrate that the literature on the role of financial uncertainty is

plagued by a pervasive identification problem: volatility in financial markets reflects changes in

fundamentals as much as uncertainty about the future, so high volatility can be a powerful

predictor of economic slowdowns even if it does not cause them in any way. Following this

consideration, BDG distinguish between the realized and the expected volatility of the stock

market, and associate “uncertainty shocks” exclusively with the latter. In this way, uncertainty

14BDG and CFGZ use option-based measures of the expected volatility of the stock market as a proxy for financial
uncertainty. Despite being methodologically different, the model-based proxies used by Ludvigson et al. (2018) and
Carriero et al. (2018) (which are constructed using respectively forecast errors and conditional volatility estimates)
bear a strong empirical resemblance to implied volatility indices. The correlation between the VXO index and the
financial uncertainty proxy in Ludvigson et al. (2018), for instance, is 0.85. This suggests that the discrepancies
among the authors’ conclusions are caused primarily by the identification schemes rather than measurement issues
(see below).
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about the future is disentangled from (a broad range of) realized changes in fundamentals that can

affect market dynamics at a given point in time. BDG employ a VAR model that includes realized

volatility (rv), a measure of option-implied volatility constructed by the authors and conceptually

similar to the VXO index (v1), the Fed Funds rate ( f f r), industrial production (ip), and

employment (emp). Although the VAR is by construction linear in all variables, thanks to the

presence of rv and v1 the model accounts for the possibility that large price shocks ’today’ may

raise the expected volatility of the market ’tomorrow’, thus capturing a (nonlinear) GARCH effect

that is typically found to be important in the empirical finance literature. This feature is

particularly valuable when moving from monthly to daily data. The model is estimated over the

period between 1983 and 2014. Following the strategy originally used for TFP news shocks (see

e.g. Barsky and Sims, 2011), BDG identify uncertainty shocks as the linear combination of the

reduced-form residuals that (a) maximizes the two-year ahead forecast error variance (FEV) of

realized volatility, but (b) does not affect realized volatility within the same month. The authors

find that realized volatility shocks cause a significant decline in economic activity, whereas

uncertainty shocks have no effects on the real economy (despite accounting for 30-60 percent of

the FEV of realized volatility itself).

We revisit these results using our two-step approach to apply the BDG identification restrictions

to daily rather than monthly data. To isolate the specific role of the data frequency, we use the same

dataset and rely on the implied volatility measure constructed by the authors rather than the VXO

index.15 As a preliminary step we replicate on daily data the predictive regression run by BDG

on their monthly sample. Following BDG, we define the daily realized volatility rv as the squared

daily return on the S&P500 index, and regress the cumulative realized volatility over a 6-month

horizon (504 trading days), i.e. ∑
504
i=1 rvt+i, on the current level of implied volatility, v1. The

regression yields an R2 coefficient of 0.46, which is nearly identical to that obtained by BDG using

monthly data (see Table A1 of the Annex). The correlation between v1 and leads of rv is thus

virtually unaffected by the switch to daily observations. We then follow the procedure discussed in

15Our sample starts in 1986 rather than 1983 because the identification strategy exploits the daily v1 series
constructed by BDG, which, unlike its monthly counterpart, is only available from 1986 onward. This change has
no impact on the comparison: BDG show indeed that their results also hold for the 1988-2014 period.
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Section 2: (I) we estimate a daily VAR that includes rv and v1, applying the identification scheme

proposed by BDG (and using the same horizon for the forecast error variance maximization); (II)

we calculate monthly averages of the the daily realized and implied volatility shocks; and (III)

we use these averages as external instruments for the residuals of a monthly VAR model. This

model follows exactly the BDG specification: it includes four lags of rv, v1, f f r, ip and emp (all

expressed in natural logarithms but for f f r) and a deterministic constant. Two modeling issues

are worth commenting on. The first one is informational sufficiency. The daily ’shocks’ obtained

from a bivariate model based on rvt and v1,t fail to pass the Forni and Gambetti (2014) test: they

turn out to be correlated to (i.e. Granger-caused by) lagged factors extracted from the FRED-

MD database. We consequently discard the bivariate specification in favor of a richer model that

includes a range of daily indicators for bond, equity and commodity markets: the shocks identified

using this specification pass the information sufficiency test (see Table A2 of the Annex).16 The

second issue relates to invertibility. The shocks obtained from high-frequency data can be used

indifferently as internal or external instruments in the monthly VAR model (see Section 2). Since

we find no evidence of Granger-causality running from the shocks to the reduced-form residuals

of the VAR, following Paul (forth) and Noh (2018), we employ the realized volatility and expected

volatility shocks as external instruments for the residuals of the rvt and v1,t equations.17

A comparison between our estimates and those of BDG is reported in Figure 2. The left column

shows the response of the US economy to an uncertainty (expected volatility) shock in our model,

where the BDG restrictions are applied to daily data. The right column shows a replication of

the original results from the BDG monthly estimates.18 The daily identification reveals that rv

increases significantly ’on impact’, i.e. within a month, in response to a v1 shock. This result

is crucial because it shows that the zero restriction suggested by BDG cannot be imposed on a
16The expanded daily VAR includes (in logs) s&p500 price index, Fed Funds rate, BAA corporate bond spread,

euro-dollar exchange rate, Economic Policy Uncertainty index, the s&p Goldman Sachs Commodity Index (GSCI) -
gold spot price. If these variables are included in a forecasting regression for rvt , the R2 increases from 0.46 to 0.68,
see table A1.

17In the application of Section 3.2 we follow the alternative route, due to failure in the aforementioned test, and
include the shocks directly in the VAR.

18In order to keep the test more general and make the models more comparable we focus on the “unrestricted”
VAR specification used by BDG (where no restrictions are placed on the coefficients of the VAR model). BDG show
that the results are very similar to those of their benchmark “restricted” VAR, where the coefficients of lagged interest
rates, industrial production and employment in the rvt and v1,t equations are set to zero.
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monthly dataset: even if rv is assumed not to respond within a day to an uncertainty shock, the

stock price adjustments that take place in the days after the shock cause rv to rise within a month

after an exogenous increase in uncertainty. This result is extremely robust even using an “agnostic”

set-identification procedure: out of 1 million random draws of the impact matrix of the daily VAR,

not even one is compatible with rv remaining constant for 21 business days. The monthly BDG

model captures the impact of rv on v1, but, by failing to account for the within-month response

of the stock market, it shuts down the channel that runs in the opposite direction. As the rest of

Figure 2 shows, this has first-order implications for all remaining IRFs: contrary to BDG, we find

that uncertainty shocks cause a large and statistically significant drop in both industrial production

and employment, coupled with a (less significant) decline in interest rates.

To have a clearer view of the propagation mechanisms, in Figure 3 we compare the responses

to the expected and realized volatility shocks estimated with our model. Following BDG, we

normalize the v1 and rv shocks so that they have the same cumulated impact on rv over the 2- to

24-month horizon. The responses of v1 to the two shocks are nearly identical. In particular, v1

rises strongly in response to an rv shock, which is consistent with this shock causing a large and

persistent increase in the realized volatility of the stock market over the following months. As

in BDG, the rv shock produces larger fluctuations in industrial production and employment than

the v1 shock.19 The response of ip to the v1 shock is about one-third the response to a rv shock.

In the case of emp the response is roughly half as big and the confidence bands are narrower.

Employment may be more sensitive to uncertainty if hiring and firing decisions are subject to

non-convex adjustment costs, as demonstrated originally in Bloom (2009).

In summary, by imposing the BDG restrictions on daily rather than monthly observations we

model in a more flexible way the daily interactions between volatility expectations, market returns

and the realized volatility of the stock market. The exercise reveals that (i) realized volatility rises

endogenously in response to positive uncertainty shocks occurring within a given month; and (ii)

forcing this response to be zero biases the IRFs in the BDG framework, causing uncertainty shocks

19This difference is not surprising because the rv shock is effectively a summary statistic that captures a broad range
of structural shocks (including e.g. macroeconomic news and changes monetary or fiscal policy surprises) rather than
a true structural shock (see BDG for further details on the interpretation of the identified shocks).
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to appear irrelevant for the the real economy.

Daily Analysis in BDG. BDG explicitly acknowledge that high-frequency dynamics could

potentially invalidate their identification procedure and dedicate one of their robustness test

specifically to this problem (see BDG Section 6.1.3). However, their test focuses on a different

issue compared to our approach. BDG use a daily VAR model to generate a counterfactual

realized volatility series that is by construction unaffected by uncertainty shocks (rviv−purged),

and show that the IRFs do not change if this is introduced in the VAR instead of the original rv

series. As the authors note, rviv−purged satisfies by construction their monthly restrictions: hence,

the test demonstrates that the estimated impact of rv shocks in the baseline model is not distorted

by temporal aggregation.20 Our procedure is more general (it eliminates the bias in the estimation

of v1 as well as rv shocks) and it allows us to estimate the contemporaneous monthly responses of

v1 and rv to the two shocks without restrictions (instead of assuming one of them to be zero). The

results show that the critical distortion arises indeed for the v1 rather than the rv shocks. In line

with BDG, we find that rv shocks matter irrespective of the data frequency and that their

quantitative relevance is not affected by the endogeneity of rv to v1. Unlike BDG, however, we

conclude that v1 shocks are important in their own right: their economic impact appears only if

the monthly response of rv is left unrestricted, which in turn requires an identification based on

daily data.

20The logic is that rviv−purged removes the within-month influence of v1 shocks on rv. If the impact of rv shocks in
the baseline model were caused by such influences, the VAR based on the counterfactual series would deliver different
(i.e. smaller and less significant) estimates of the impact of these shocks. This test eliminates biases in the rv but not
in the v1 shocks. These shocks are in fact deliberately removed from the counterfactual rv series (and hence made less
powerful than they are in reality) in order to construct a robust realized volatility estimate.
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Figure 2: Comparison with BDG
Impact of uncertainty shocks under the identification strategy of Berger et al. (2019, BDG). The shocks are identified
as innovations to the option-implied expected volatility of the stock market ([v1]) that are orthogonal to the realized
market volatility (rv). In the Daily+Monthly VAR (left column) the shock is identified imposing the restrictions on daily
data, averaged to the monthly frequency, and then used as an external instrument in the monthly VAR model. In the
Monthly VAR (right column) the restrictions are imposed directly on monthly data as in BDG. The estimation sample is
January 1983-December 2014. The variables included in the VAR are: realized volatility (rv), option implied volatility
(v1), Fed Funds rate (ffr), employment (emp) and industrial production (ip). Each plot reports the median response
with 68% and 90% confidence bands computed using 1000 wild bootstrap replications.
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Figure 3: Comparison of IRFs: Uncertainty versus Realized Volatility Shocks
Impact of realized volatility and uncertainty (i.e. expected volatility) shocks in the Daily+Monthly VAR model.
Following BDG, uncertainty shocks are identified as innovations to the option-implied expected volatility of the stock
market (v1) that are orthogonal to the realized market volatility (rv). The shocks are identified applying the BDG
restrictions to a daily VAR model, averaged to the monthly frequency, and then used as external instruments in the
monthly VAR model. The estimation sample is January 1986–December 2014. The variables included in the VAR are:
realized volatility (rv), option implied volatility (v1), Fed Funds rate (ffr), employment (emp) and industrial production
(ip). Each plot reports the median responses with 90% bootstrapped confidence bands.

3.2 Caldara, Fuentes-Albero, Gilchrist and Zakrajsek (2016)

Caldara et al. (2016) (CFGZ) focus on a specific source of confusion between first- and

second-moment shocks, namely the overlap between uncertainty and credit conditions. Spikes in

volatility are typically associated to a rise in credit spreads: Stock and Watson (2012) note that

this correlation is so strong that one could be tempted to see uncertainty proxies and credit

spreads as different manifestations of a common underlying structural shock. Furthermore, large
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bond investors are an obvious example of highly reactive economic agents that respond quickly to

any change in economic fundamentals. Based on these considerations, CFGZ propose an

identification strategy (at the monthly frequency) that avoids contemporaneous restrictions on

asset prices and allows credit and uncertainty shocks to have similar effects on the economy. In

this section we show however that using plausible restrictions is not sufficient: the endogenous

response of the bond market cannot be captured using low-frequency observations, and the results

change significantly if the CFGZ identification is applied to daily rather than monthly data.

CFGZ estimate a range of Bayesian VAR(6) models using monthly data for the period January

1975–March 2015 and specifications that include 10 variables: industrial production, private

payroll employment, real personal consumption expenditures, PCE deflator, the S&P Goldman

Sachs Commodity Index, a value-weighted stock market price index, the 2-year and 10-year

Treasury bond yields, the Excess Bond Premium and a proxy of economic or financial

uncertainty. The first six variables are included in log differences, yields and spreads are in

percentage points and the uncertainty proxy (which differs across specifications) is in logarithms.

All models are estimated imposing a Minnesota prior on the reduced-form parameters. In order to

account for the simultaneity between asset prices and uncertainty, CFGZ propose a novel

identification strategy based on the penalty function approach (PFA) developed by Faust (1998)

and Uhlig (2005). In particular, they identify uncertainty (financial) shocks as the linear

combination of reduced-form residuals that maximize the response of the uncertainty (financial

conditions) indicator over a predefined horizon. The identification is implemented sequentially,

imposing an orthogonality condition between the two structural shocks. An important advantage

of the PFA is that it leaves the impact response of uncertainty and financial conditions

unrestricted while identifying shocks that cause significant and persistent changes in these

variables. One of its limitations is that, as CFGZ acknowledge, the results may depend on which

shock is identified first, pretty much as in a recursive identification scheme. The authors find

indeed that, while macro uncertainty has a significant macroeconomic impact regardless of the

ordering, financial uncertainty shocks matter if and only if they are identified first: under the

alternative ordering, a rise in financial uncertainty causes a decline in the stock market but it has
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no implications for the real economy. This dichotomy is problematic because there are no

economic arguments to favor either of the two orderings.

We run our tests focusing on the CFGZ specification where financial uncertainty is captured

by the implied volatility of the stock market, i.e. the VXO index; this makes the results more

comparable to those obtained in the BDG setup examined in previous section.21 As in the BDG

case, we take sample, VAR specification and identification restrictions as given, and simply shift

the restrictions from the monthly to the daily frequency. We set the PFA maximization horizon to

120 business days, so to match the 6-month horizon used by CFGZ. Since the Excess Bond

Premium computed by Gilchrist and Zakrajsek (2012) is not available at daily frequency, we

replace it with the spread between Moody’s Seasoned BAA Corporate Bond yield and the

10-Year Treasury constant maturity yield (BAA10Y).22 We estimate the IRFs by including the

shocks (aggregated at the monthly frequency) as internal instruments in the monthly VAR. The

reason is twofold. First, we are consistent with the Bayesian framework employed by CFGZ,

which matters for comparability reasons. Second, we cannot reject that the identified shocks

Granger cause the residuals of the VAR, thus they cannot be employed as external instruments.23

Figure 4 displays the IRFs to an uncertainty shock identified with our approach (left column)

and with the CFGZ approach (right column). The results obtained with uncertainty shocks ordered

first are shown in red (VXO-BAA case), those obtained with uncertainty ordered second are in

green (BAA-VXO case). To ease the comparisons across models and orderings, the shocks are

normalized to generate a 3% increase in the VXO index in all models. For each variable the figure

reports the mean response along with a 90% credible set. To save space we focus on the VXO

21Like CFGZ, we use a sample starting from January 1986 to exploit the VXO series from the beginning. We
obtain similar results when replacing the VXO with the realized volatility of the stock market or the Economic
Policy Uncertainty index, two alternative proxies of uncertainty used in CFGZ that are also available at the daily
frequency. However, these have important limitations in our context: the EPU index measures policy rather than
financial uncertainty, and the realized volatility of the stock market captures changes in fundamentals as well as
uncertainty in a strict sense (BDG use it indeed as a control variable rather than an uncertainty proxy, see section
[3.1]).

22To insure the spread has no bearing on our results, we (i) replicate the monthly analysis of CFGZ using the BAA
spread instead of EBP; and (ii) estimate an additional specification where the identification is based on the daily BAA
spread but the EBP is used as a proxy of financial conditions in the monthly VAR. The results are reported in Appendix
C.

23Notice that, conversely, the shocks pass the information sufficiency test of Forni and Gambetti (2014).
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index, the BAA spread and a set of key macroeconomic aggregates, namely industrial production

(IPM), employment (EMPL), consumption (PCE) and the consumption deflator (PPCE): a full

set of IRFs can be found in Appendix C. Our first and most important result is that using daily

data is sufficient to resolve the ambiguity encountered in CFGZ. The right column of the figure

confirms the CFGZ findings: uncertainty shocks affect credit spreads and economic activity if

they are identified before financial shocks (green bands), but become completely irrelevant if the

ordering is reversed (red bands). The left column shows that this discrepancy disappears in our

model. If the identification is based on daily data, irrespective of the ordering uncertainty shocks

cause a sizable and persistent increase in the spread (row 2), a decline in industrial production

and employment (rows 3 and 4) and a fall in prices (bottom row). For most variables the mean

responses are indeed almost indistinguishable across orderings. The credible sets tend to be wider

when financial shocks are identified first, but they are still sufficiently narrow to rule out a null

response of output, employment and inflation to the shock. The behavior of the credit spread is

key in explaining this result. Under the BAA-VXO ordering, the identification assumes uncertainty

shocks to have maximal impact on VXO only after ’netting out’ the impact of financial shocks on

both volatility and credit spreads. This seemingly minor restriction has a dramatic impact in the

CFGZ model, where the response of the spread becomes negative on impact (a result that is hardly

justifiable from a theoretical perspective) and null in the longer term.24 It has no impact instead

in our model, where the spread rises on impact by roughly the same amount under both orderings.

The likely reason is that bond markets price uncertainty on a daily rather than a monthly basis, and

the bulk of the adjustment takes place within a few days after a shock. The identification sequence

becomes irrelevant once this component of the endogenous market response is fully taken into

account. A second interesting result is the large negative response of the PCE price index. This

deflationary effect is far more pronounced than in the original CFGZ model, and it corroborates

the idea that uncertainty acts mainly through the demand side of the economy (Leduc and Liu,

2016 and Basu and Bundick, 2017). The responses of inflation, output and employment are indeed

24The negative initial response of the BAA spread in figure 4 is fully consistent with the results of CFGZ: the
authors show that (i) the EBP also falls after a rise in uncertainty if financial shocks are identified first, and (ii) this
result is indeed robust to replacing the VXO index with a number of alternative proxies of aggregate uncertainty.
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qualitatively similar to those obtained in the BDG setup examined in Section 3.1. This suggests

that the differences between BDG and CFGZ also depend on temporal aggregation issues, and that

using daily data can yield results that are (also) more robust across identification schemes (see

Section 3.3).

Figure 5 compares the impact of uncertainty and financial shocks in our model under the two

alternative PFA orderings. In this case we do not rescale the responses, so to assess the relevance

of the two mechanisms for shocks of equal size (one standard deviation). The ordering makes no

difference for the financial shock (right column): a 1σ financial tightening causes a rise in the

spread and in the VXO index and a decline in prices and economic activity, and the responses are

virtually identical for the VXO-BAA and the BAA-VXO case. Furthermore, the response of the

BAA spread is extremely similar to that in Figure 5, with a large contemporaneous increase and a

peak at the three-month horizon followed by a slow decline. This similarity is presumably one of

the reasons why the PFA identification is not robust to the ordering of the shocks when applied to

monthly observations: changes in uncertainty and changes in risk aversion, leverage or net worth

(all of which represent likely ’financial shock’ candidates) have approximately the same

implications for corporate bond spreads. Finally, the impact of financial and uncertainty shocks

are not only qualitatively similar but also of comparable magnitudes. A 1σ financial shock causes

IPM and EMP to drop respectively by -0.5% and -0.12% at the one-year horizon; for the 1σ

uncertainty shock these figures are approximately -0.2% and -0.1%, with some variation

depending on the ordering. PCE only responds to financial shocks, whereas PPCE is more

sensitive to uncertainty shocks. These estimates confirm clearly that uncertainty shocks have

significant macroeconomic effects. From a methodological perspective, they also demonstrate

that the ambiguities documented by CFGZ disappear completely if their identification strategy is

implemented using daily rather than monthly data.
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Figure 4: Impact of Uncertainty Shocks - Comparison with Caldara et al. (2016)
Impact of an uncertainty shock under the identification restrictions of Caldara et al. (2016, CFGZ). All IRFs are
based on the CFGZ Penalty Function Approach (PFA). In the Daily+Monthly VAR model (left column) the shock is
identified imposing the restrictions on daily data, averaged to the monthly frequency and introduced as an additional
variable in the monthly VAR model. In the Monthly VAR model (right column) the restrictions are imposed directly
on monthly data as in CFGZ. Green and red areas correspond to the responses estimated ordering the ucertainty
shock before and after the financial shock in the penalty function maximization. The variables plotted are: VXO index,
the spread between US BAA Corporate Yield and the 10Y US Treasury yield (BAA10Y), industrial production (IPM),
private payroll employment (EMPL), real personal consumption expenditures (PCE) and PCE deflator (PPCE) .Each
plot reports the median response with a 90% Bayesian credible set.
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Figure 5: Impact of Uncertainty and Financial Shocks in the Daily+Monthly VAR model
The shocks are identified by applying the Penalty Function Approach (PFA) of Caldara et al. (2016) (CFGZ) to a daily
VAR, averaged to the monthly frequency, and then introduced as additional variables in a monthly VAR model based
on the CFGZ specification. Green and red areas correspond to the responses estimated ordering the ucertainty shock
before and after the financial shock in the PFA. The variables plotted are: VXO index, the spread between US BAA
Corporate Yield and the 10Y US Treasury yield (BAA10Y), industrial production (IPM), private payroll employment
(EMPL), real personal consumption expenditures (PCE) and PCE deflator (PPCE) Each plot reports the median
response with a 90% Bayesian credible set.

3.3 The real impact of financial uncertainty: a summary

The macroeconomic implications of financial uncertainty shocks have proved to be hard to pin

down and highly variable across samples, models, and identification strategies. Our work shows

that this ambiguity is largely caused by the daily interaction between stock returns, bond spreads

and market volatility, which seriously complicates the identification of uncertainty shocks in VAR

models based on monthly or quarterly data. In Figure 6 we bring together the results of our

revisitation of BDG and CFGZ. The lines with diamonds show the cumulative response of

industrial production to uncertainty shocks in the original monthly models of BDG and CFGZ;

the lines without markers show the responses obtained by replicating their analysis with our
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method, which imposes the same identification restrictions on daily rather than monthly data.

Solid and dashed lines indicate respectively statistically significant and not significant responses .

To make the responses comparable, we normalize the IRFs so that the cumulative increase in

financial uncertainty (i.e. implied equity volatility, which is captured respectively by VXO in

CFGZ and v1 in BDG) is the same across models. The responses thus represent the elasticities of

industrial production to implied volatility. With monthly data, the responses differ widely both

across models (BDG vs CFGZ) and between identification schemes within a given model (see

CFGZ cases). The null hypothesis that uncertainty has no impact cannot be rejected, but the upper

bound for the elasticity exceeds 30% at the one-year horizon. With daily data, the elasticities at

the one-year horizon fall in an interval between 2% and 12% and the estimates are statistically

significant in all cases.

Figure 6: Cumulative Effect of Uncertainty Shocks on Industrial Production
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4 Conclusions

Does financial uncertainty affect the real economy? In this paper we answer this question using a

novel approach to tackle the complex interactions between uncertainty and asset prices. The

approach consists of three steps: we identify uncertainty shocks applying the restrictions

proposed by Caldara et al. (2016) and Berger et al. (2019) to daily observations, we aggregate the

shocks to the monthly frequency, and we use the aggregated series as instruments in monthly

VAR models of the US economy. The strategy is motivated by a simple consideration: if financial

markets react to macroeconomic news and changes in risk on a continuous basis, then using

monthly or quarterly data may by construction prevent a correct separation between exogenous

shocks and endogenous responses. More generally, the use of high-frequency observations

simplifies structural identification in a VAR because restrictions that hold on high-frequency data

can easily be violated by the corresponding low-frequency (temporally aggregated) data.

Our methodological contribution is to show that, as long as the economy is described by a

VAR at high frequency, temporal aggregation problems can be bypassed by identifying the shock

of interest at that frequency and then using a low-frequency average of the shock to estimate the

impulse-response functions. This simple strategy delivers consistent and unbiased estimates of the

impact of the shocks in a broad range of data-generating processes. We then demonstrate that using

daily data is necessary in order to correctly isolate the impact of financial uncertainty shocks. We

replicate the studies by Berger et al. (2019) and Caldara et al. (2016) imposing their identification

restrictions on daily rather than monthly data, and find that the impact of uncertainty shocks on

economic activity is (i) always negative and significant, and (ii) fairly similar across models. This

reflects daily interactions between stock prices, bond yields and volatility expectations that are

captured by our method but neglected in the original analyses. In particular, our replication of

Berger et al. (2019) shows that shocks to the expected volatility of the stock market also affect

the realized volatility of the market within a given month, and that this endogenous response,

which is shut down in the monthly model, plays a key role in the transmission of uncertainty

to the real economy. A similar problem arises in the Caldara et al. (2016) set-up, where temporal

aggregation distorts the relation between expected volatility and credit spreads. By using daily data
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for identification, and hence letting spreads and volatility interact freely at the monthly frequency,

we estimate a negative and robust impact of volatility shocks on financial conditions, output and

inflation. The responses are quantitatively similar in the two applications, suggesting that – once

the endogenous response of equity and bond markets is accounted for – the two identification

schemes isolate the same type of shock despite the differences among the underlying models.

Future work on the effects of uncertainty shocks should start from the premise that financial

markets are a key link in the transmission mechanism, and that even theoretically sound

identification strategies may misrepresent their role if applied to monthly or quarterly samples.

More generally, researchers can resort to the approach proposed in this paper to tackle

identification challenges in cases where imposing restrictions on low-frequency data is

problematic and high-frequency data (e.g. from financial markets or textual sources) can be used

to better isolate the shocks of interest.
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Appendix

A Detailed Econometric Framework
This section formalizes and generalizes the description of our approach. First, we presents the
econometric framework used for the analysis, then Sections A.1 to A.3 describe the different steps
of the methodology in detail. Conditions and tests for the validity of identification performed in
the HF-VAR, as well as the correct procedure to conduct causal inference on the LF variables are
discussed.

The framework that we consider is the following: i) the vector of innovations that drives the
variables can be partitioned as ε =

[
ε1 ε 1̄

]
, where ε1 denotes the structural shock of interest and

ε 1̄ is the vector that comprises all the other shocks of the system; ii) the objective is to identify
the effect the innovation ε1 on a vector of endogenous variables y; iii) ε1 can be recovered at
the frequency t = 1,2, ...,T higher than the frequency τ at which y is observable (τ = m,2m, ...,T
where m > 1 is the frequency mismatch). Our identification approach is comprised of three steps:
1) identify ε1

t in a daily VAR; 2) aggregate ε1
t transforming it into ε1

τ ; and 3) estimate a VAR at
lower frequency on yτ and use ε1

τ as a proxy (internal or external instrument) to estimate the causal
impact effect of ε1 on y.

Consider a vector of n time series modeled as a causal and covariance stationary SVAR of
lag-length p:

yt = A1yt−1 + ...+Apyt−p +Bεt (A.1)

where εt is a vector of stochastic innovations and B is a n× n matrix whose coefficients
determine how εt contemporaneously affects the variables yt . Such a process can be expressed via
compact notation through the polynomial A(L) = I −A1L−A2L2− ...−ApLp:

A(L)yt = Bεt (A.2)

where L is the lag operator such that Liyt = yt−i. The SVAR is not observable itself, but
corresponds to a multiplicity of reduced-form VAR representations of the form:

A(L)yt = ut (A.3)

In what follows we focus exclusively on the problem of identification of matrix B under temporal
aggregation. Temporal aggregation can be expressed as a two-step filter. First, the data are made
observable only once every m periods, which represents the frequency mismatch, via the filter
D(L) = I +D1L+D2L2 + ...+Dpm−pLpm−p. The specification of D(L) has to be such that the
elements of D(L)A(L) are powers of Lm, meaning that only the observable data points enter the
transformed process. The conditions for the existence of such a filter, as well as the values taken by
the matrices Di are derived in Marcellino (1999). The second filter, denoted by W (L), depends on
the temporal aggregation scheme considered; skip-sampling (or point-in-time sampling) is usually
applied to stock variables (e.g. prices) whereas averaging is typically applied to flow variables
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(e.g. volumes). In the former case, W (L) does not modify the original data, i.e. W (L) = I .
For example, consider the VAR(1) process analyzed in the stylized example: yt = A1yt−1 +Bεt
and m = 2. The filter D(L)W (L) = I +A1L transforms the original process into (I +A1L)yt =
(I +A1L)A1yt−1+(I +A1L)Bεt , which can be rearranged as yτ = A2

1yτ−1+Bεt +A1Bεt−1. In
the averaging case W (L)=I +L+L2+ ...+Lm−1 and for the specific process under consideration
W (L) = I +L and D(L)W (L) = (I +A1L)(I +L). The temporally aggregated process would
then become ȳτ = A2

1ȳτ−1 +B(εt + εt−1)+A1B(εt−1 + εt−2) with ȳτ = yτ + yτ−1.
The typical object of interest in the SVAR literature are the dynamic effects of the innovations

εt on yt+k where k ∈N represents the horizon. The impact effects of the innovations are defined as:
Θ0,t = EFt−1

[yt/εt = 1] - EFt−1
[yt/εt = 0] with the information set Ft−1 =

{
yt−1, ...,yt−p

}
.

Conversely, there are two possible definitions of temporally aggregated IRFs Θ0,τ according to
the information set considered at LF. A first possibility employs the relevant information set for
the LF representation; the information set is Fτ−1 = {yτ−1,yτ−2, ...} and consequently Θ0,τ =
EFτ−1

[yτ/εt = 1, ...,εt−m+1 = 1] - EFτ−1
[yt/εt = 0, ...,εt−m+1 = 0] . This definition considers

all the innovations occurring between τ − 1 and τ . Alternatively, the LF-IRFs can be defined
directly via the temporal aggregation filter, implicitly using the information set Ft−1 (i.e. using the
HF information set). In this case, the LF-IRFs are defined directly as Θ0,τ = D(L)W (L)Θt

0. Thus,
this choice is key to determining how to correctly use the HF shocks εt . While both definitions are
formally correct, we regard the first as the most interesting from a macroeconomic perspective.

A.1 First Step: Identification at High-Frequency
The first step concerns the identification of a shock or proxy ε1

t at the high-frequency
t = 1,2, ...,T . The HF-VAR has to be specified to achieve informational sufficiency, meaning that
the shock ε1

t can be recovered as a linear combination of the reduced form residuals if the
appropriate identification strategy is applied. Thus, a set of variables Ωt are included to achieve
this goal as in Eq.(A.4). Å(L) and B̊ denote respectively the autoregressive matrix and the impact

matrix that characterize the HF system
[

Ω y1
t
]′

:

Å(L)
[

Ωt
y1

t

]
= B̊

[
εΩ

t
ε1

t

]
(A.4)

After estimating the reduced form HF-VAR, one can apply any of the different identification
strategies previously used by the literature to identify the structural shock of interest from the
reduced form residuals (i.e. recursive, sign, or narrative restrictions).1a The identification at HF
recovers z1

t , a potentially noisy measure of the shock ε1
t as described in Eq.(A.5):

z1
t = ε

1
t +wt (A.5)

1aSee Ramey (2016) or Kilian and Lutkepohl (2017) for a summary of different identification strategies
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where wt is a measurement error such that E [wtwt ] = σ2
w and E

[
ε1

t wt

]
= 0. Assuming that σ2

w = 0
implies that we are recovering the true shock. In what follows, we use zt and εt interchangeably.

A.2 Second Step: Aggregation and Information Sufficiency Test
In the second step, we aggregate the shocks identified at high-frequency and test for their partial
invertibility. Considering that the IRFs are defined in terms of the LF information set Fτ . This
means that the evaluation of the IRFs takes into account all the innovations occurring between τ−1
and τ . Let {Γm−1,Γm−2, ...,Γ0} be the sequence of the LF impact effects associated respectively
to the shocks {εt−m+1,εt−m+2, ...,εt}. For example, in the stylized process of Section 2.1 Γ0 =
Θ0,t = B and Γ1 = Θ0,t +A1Θ0,t = (I +A1)B. Then the aggregated response at LF is given by
Θ0,τ = ∑

m−1
i=0 Γj and can be recovered according to Proposition I presented in Section 2.2.

The crucial property that distinguishes structural shocks from reduced form residuals, i.e. their
orthogonality, is preserved when the HF shocks are aggregated to LF according to Lemma IA.
It is worth stressing that the proposition provides sufficient conditions for the orthogonality of
the LF shocks but not a necessary condition. Furthermore, Lemma IIA expresses that the lack of
autocorrelation of shocks is preserved by the aggregation. Proofs are reported in Section B.4.

Lemma IA. Given the shocks εt =
[
ε1

t ,ε
1̄
t

]
identified in the HF-VAR that by construction

satisfy E
[
ε1

t ε 1̄′
t

]
= 0, if the HF-VAR approximates well enough the data generating process, then

E
[
ε1

τ ε 1̄′
τ

]
= 0.2a

An ancillary result regarding the autocorrelation of the aggregated shocks, which is based on
Proposition IA, is contained in Lemma IA.

Lemma IIA. Given the shocks εt identified in the HF-VAR, if the HF-VAR is a good enough
approximation of the data generating process, then the shocks aggregated at the LF ετ do not
display autocorrelation.

A.3 Third Step: External Instruments and Identification of the LF-VAR
The last step is twofold. First, we estimate the LF-VAR of order p in Eq.(A.6) including the
relevant HF variables (aggregated at LF) together with the macroeconomic variables of interest in
the system:

yτ = Ã1yτ−1 + Ã2yτ−2 + ...+ Ãpyτ−2 +uτ (A.6)

where uτ denotes the vector of reduced form residuals. Second, the causal impact effect of ε1
τ

on yτ is identified by employing z1
τ as external instrument. Assuming that the shock of interest

ε1
τ is invertible, i.e. it can be expressed as a linear combination of the reduced form residuals uτ ,

inference from the Proxy-SVARs is valid under three conditions:

2aFollowing Canova (2007), a HF-VAR is considered to approximate well enough the data generating process if
the underlying MA representation of the process can be expressed as the linear combination of current and past values
of yτ using the HF-VAR.

40



i) exogeneity: E
[
ε 1̄

τ z1
τ

]
= 0

ii) strength: E
[
ε1

τ z1
τ

]
6= 0

iii) limited lag-lead exogeneity: E
[
e1̄

τ+ jz
1
τ

]
6= 0 for j 6= 0, where e1̄ denotes the subset of ε 1̄

τ of
non-invertible shocks.

See main text for a discussion of the appropriate estimation method of the IRFs, which depends on
the invertibility and exogeneity of the proxy.

B Proofs
This section contains the proofs of Proposition I included in Section A.2. The proof relies on some
intermediate results which are preliminary included in this section.

We first derive intermediate results on the aggregation of HF shocks under alternative temporal
aggregation filters (B.1-B.2) and then demonstrate Proposition I (B.3). Finally, we report the
proofs of the Lemmas previously stated in this Annex.

B.1 IRFs under Skip-Sampling
The skip-sampling case is simpler because the second step of the temporal aggregation process
consists of the trivial filter W (L)=I that leaves the variables unaffected. Skip-sampling is usually
applied by taking the last value: for example the last daily observation within the month. We
focus on this skip-sampling scheme without loss of generality.3a Eq.(A.2) is modified by temporal
aggregation as:

D(L)A(L)yt = D(L)Bεt (A.7)

Under skip-sampling, the impact effect of ε on y is trivially given Θ0,τ = Θ0,t = B. Suppose
that the HF shocks are identified under the assumptions described in Equation A.4.

Proposition IA. Given an underlying HF-VAR temporally aggregated via skip-sampling, the
IRF Θ0,τ = B can be recovered by projecting the reduced form residuals estimated from the LF-
VAR, uτ , on the last HF shock within the LF period. Thus the correct filter J(L) applied to εt is
J(L) = I such that ετ = εt for {τ, t}= m,2m, . . . ,T .

Proof. The correct impact matrix can be recovered simply projecting uτ on εt,m−1. The LF
reduced form residuals are given by:

uτ = D(L)ut = D(L)Bεt (A.8)

3aNotice that the same results that we provide hold simply by using the shock corresponding to the skip-sampling
scheme (e.g. take the first shock if skip-sampling is performed using the first HF value)
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Recall that D(L) = I +D1L+D2L2+ ...+Dpm−pLpm−p always contains the identity matrix
as first term. Thus

D(L)Bεt = Bεt +D1Bεt−1 +D2Bεt−2 + ...+Dpm−pBεt−pm+p (A.9)

Independently of the values of Di (that depend on the HF-VAR lag length p and frequency
mismatch m) and considering that εt are uncorrelated, the following relationship holds:

Pro j (uτ/εt) = B = Θ0,τ (A.10)

B.2 IRFs under Averaging
The averaging case is more complex as the second filter is W (L) = I +L+L2 + ...+Lm−1. We
use the summing filter, which is equivalent to averaging up to a constant. Consequently, the system
becomes

D(L)W (L)A(L)yt = D(L)W (L)Bεt (A.11)

The HF impact effect is again Θt
0 = B but the IRFs must be consistently temporally aggregated

if we want to dispose of a reliable metric of comparison. Under linearity, the impact effect of ε on
y at low-frequency is given by Θτ

0 = Θt
0 +Θt

1 + . . .+Θt
m−1.

Proposition IIA. Given an underlying HF-VAR temporally aggregated via averaging, the IRF
Θ0,τ can be recovered by projecting the reduced form residuals estimated from the LF-VAR, uτ , on
the first HF shock within the LF period. Thus, the correct filter J(L) applied to εt is J(L) = Lm−1

such that ετ = εt−m+1 for {τ, t}= m,2m, . . . ,T .

Proof. It is convenient to express the IRFs at horizon k employing the companion form of the
VAR:

xt = F xt−1 +ηt (A.12)

where

F =


A1 A2 A3 . . . Ap
I 0 0 . . . 0

0 I 0 . . . 0
... . . . . . . . . . ...
0 0 . . . I 0

 (A.13)

ηt =


ut = Bεt

0
0
...
0

 (A.14)

xt =
[
yt yt−1 ...yt−p−1

]′
where p is the lag length of the VAR and xt−1 = Lxt , such that xt is a

42



vector of (n× p) variables. Then, considering that Θ0,t = B, the dynamic effects can be written as
well in companion form as:

Θ̃k,t = FΘ̃k−1,t k ∈ N (A.15)

We are interested in the matrix that contains the impulse response at horizon k, positioned in
Θ̃k,t (1,1) = Θk,t .

Kalman (1982) and Kilic (2007) have shown that this formulation of the IRFs corresponds
to a generalized Fibonacci sequence of order p in the matrices A1,A2, ...,Ap (also referred to as
generalized order p Fibonacci polynomial), denoted by Sp

(
A1, ...,Ap

)
. Given an initial condition

B, Sp
(
A1, ...,Ap

)
generates a sequence whose elements are a linear combination of the previous

terms in the sequence weighted by A1, ...,Ap. A1 is the weight associated to the previous element
of the sequence whereas Ap multiplies the p-th previous element. For instance S0 = B, S1 = A1S0,
S2 = A1S1 +A2S0, and so on and so forth.

Following Marcellino (1999), we define the following vector of matrices Dv and Av with
dimension 1× pm, where m denotes the frequency mismatch, and the matrix of matrices G with
dimension (pm− p)× pm

Dv =
(
D1,D2, ...,Dpm−p

)
Av =

(
A1,A2, ...,Ap,0, ...,0

)

G =



−I A1 A2 ... Ap−1 Ap 0 0 . . . 0
0 −I A1 A2 ... Ap−1 Ap 0 0 . . . 0
0 0 −I A1 A2 ... Ap−1 Ap 0 0 . . . 0
... 0 0 −I

. . . . . . . . . . . . . . . . . . . . . ...
... 0 . . . . . .

... . . . Ap−1 Ap 0
0 0 · · · . . . 0 −I A1 A2 ... Ap−1 Ap


Marcellino (1999) shows that D(L) exists if |G−k| 6= 0 where G−k corresponds to the G matrix

whose columns multiple of m (i.e. m,2m, ...) have been deleted. Then, the coefficients of D(L)
are given by Dv =−Av

−k (G−k)
−1. The intuition is that they have to be such that only the powers

of Lm can have a coefficient different from 0 (since the variables are unobserved between Lm and
L2m).

Since our goal is the identification of the impact effect Θ0,τ , we focus exclusively on the upper
square block of G of dimension (m−1)× (m−1) , denoted by G̃. Consistently, we denote Ãv and
D̃v the vector containing the first m− 1 elements of the original Av and Dv vectors. The matrix
G̃ is a very special matrix, being a Toeplitz upper triangular matrix with main diagonal −I .
Sahin (2018) shows that, if invertibility is satisfied, the inverse of this class of matrices, denoted
in our case by G̃−1, contains the elements of the Fibonacci sequence in the matrix A1, ...,Ap. By
considering that

D̃v =−ÃvG̃−1

it follows that the elements of D̃v correspond to Sp
(
A1, ...,Ap

)
, the Fibonacci sequence in
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A1, ...,Ap. Disregarding the initial effect B, the IRFs Θt
0,Θ

t
1, ...,Θ

t
m−1 and the elements of the

temporal aggregation filter I ,D1,D2, ...,Dm−1 are generated by the same generalized Fibonacci
sequence Sp

(
A1, ...,Ap

)
.. Finally, the temporally aggregated residuals are given by

uτ = D(L)W (L)εt . The filter W (L) = I + L+ ...+ Lm−1 implies the first shock within the LF
period, i.e. εt,1, enter uτ through all the terms Θ0,t ,Θ1,t , ...,Θm−1,t and thus recovers the correct
Θ0,τ = Θ0,t +Θ1,t + ...+Θm−1,t . Thus, the projection of uτ on εt−m+1 yield the correct IRFs
Θ0,τ :

Pro j (uτ/εt−m+1) = Θ0,τ (A.16)

�

B.3 Proof of Proposition I
This proof follows directly from the proof of Proposition IIA, which showed that the IRFs
Θt

0,Θ
t
1, ...,Θ

t
m−1 and the elements of the temporal aggregation filter I ,D1,D2, ...,Dm−1 are

generated by the same generalized Fibonacci sequence Sp
(
A1, ...,Ap

)
(for the given initial

condition B). This implies that the contemporaneous LF impact effect of the shock εt−m+1 is
given by the sum of the first m elements of the Fibonacci sequence denoted by Sm−1

p . The effect
of εt−m+2 is given by the sum of the elements in Sm−2

p and so on and so forth until the last HF
shock εt that impacts through B = S0

p. In the case of skip-sampling, Θ0,τ = S0
p whereas in the

case of averaging Θ0,τ = ∑
m
i=1 BSi

p. In both cases, projecting uτ on ετ recovers Θ0,τ .

Consider that ετ =
(

I +L+ ...+Lm−1
)

εt and uτ = D(L)W (L)Bεt where the first m elements

of D(L) are I + D1L + ...+ Dm−1Lm−1 and W (L) =
(

I +L+ ...+Lm−1
)

. By the result in
Proposition IIA on the equivalence between the recursive definition of IRFs and the matrices
I ,D1,D2, ...,Dm−1, it is straightforward to verify that:

Pro j (uτ/ετ) = E
[(

ετε
′
τ

)−1
]
E
[
ετu′τ

]
=

m−1

∑
i=0

Γj = Θ0,τ

�

B.4 Proof of Lemmas IA and IIA
Proof of Lemma IA. Under standard assumptions, the Wold Representation Theorem implies
that the innovations {ηt} of a time series process {yt} are white noise. If the underlying process is
well approximated by a VAR(p), then this property extends to the residuals estimated by the VAR
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{ut} (Canova, 2007 Ch.4). Thus, it holds that:

E
[
utu
′
t− j

]
= Σ for j = 0

E
[
utu
′
t− j

]
= 0 for ∀ j 6= 0

(A.17)

Property A.17 extends to the structural shocks εt = B−1ut because they are a linear
transformation of ut : E

[
εtε
′
t− j

]
= 0 for j = 1, ..., p. Furthermore, it follow from identification

that E
[
εtε
′
t
]
= 0. Without loss of generality, partition εt =

[
ε1

t ε 1̄
t

]′
and define ε1

t = b•1ut and

ε 1̄
t = b•1̄ut , where b•1 denotes the first column of the impact matrix B and b•1̄ the remaining

columns. Combining the previous properties, it holds

E
[
ε

1
t ε

1̄′
t− j

]
= 0 for ∀ j (A.18)

Consider now the aggregated shocks ετ = ∑
m−1
i=0 εt−i. To evaluate E

[
ε1

τ ε 1̄′
τ

]
, we need to

compute the correlations between all the elements that are summed into ε1
τ and ε 1̄

τ , which are all
null by (A.18). Thus, E

[
ε1

τ ε 1̄′
τ

]
= 0.�

Proof of Lemma IIA. Notice that ε1t = b1•ut and ε2t = b2•ut are two structural shocks obtained
as linear combination of the residuals ut , where b•1 denotes the first column of the impact matrix
B and b•1̄ the remaining columns Based on Proposition IA, E

[
utu
′
t− j

]
= 0 for ∀ j 6= 0. This

extends to E
[
ε1tεit− j

]
for ∀ j 6= 0 and i = 1,2 by the property of the linear operator b1•. Plus,

E [ε1tε2t ] = 0 since they are structural shocks. Thus, each element of the sum in ε1τ is uncorrelated
to the elements in ε2τ and so it is their sum. Based on Lemma IA, the lack of autocorrelation of
order 1 holds. �
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C Additional Results on the Empirical Applications

C.1 Berger, Dew Becker, and Giglio (2020)

(1) (2)
∑

504
i=1 rvt+i ∑

504
i=1 rvt+i

v1,t 0.68*** 0.47***
(0.01) (0.01)

Additional predictors × X

Observations 7181 7181
R2−ad j 0.46 0.68

Table A1: Predictive Regressions
Predictive regressions of 6-months rv. (1) includes only v1 as regressor; (2) includes all variables included

in the full VAR specification.
Standard errors are reported in parenthesis, *** p<0.01, ** p<0.05, * p<0.1.

(1) Bivariate DVAR (2) Full DVAR
εu

τ εrv
τ εu

τ εrv
τ

F− stat(8,338) 2.42** 1.10 1.10 0.41
F− test (pval) 0.01 0.36 0.38 0.89

Observations 347 347 347 347
R2−ad j 0.06 0.07 0.01 0.01

Table A2: Invertibility Test - Uncertainty Shocks - BDG
The regressions include seven lagged factors from FRED-MD database, one lag of the dependent, and a

constant. εu
τ and εrv

t denote the uncertainty and realized volatility shocks . F-stat denotes the value of the F
test statistic and F-test is the pvalue on the joint test of all coefficients associated with the factors being 0.

Standard errors are reported in parenthesis, *** p<0.01, ** p<0.05, * p<0.1.
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C.2 Caldara, Fuentes-Albero, Gilchrist and Zakrajsek (2016)

Unc− id1 Fin− id1 Unc− id2 Fin− id2
F− stat(8,326) 1.02 1.97 1.07 1.98
F− test (pval) 0.42 0.06 0.38 0.06

Observations 338 338 338 338
R2−ad j 0.01 0.02 0.01 0.02

Table A3: Invertibility Test - Uncertainty and Financial Shocks - CFGZ
The regressions include seven lagged factors from FRED-MD database, one lag of the dependent, and a
constant. Unc and Fin denote the uncertainty and financial shocks. F-stat denotes the value of the F test

statistic and F-test is the pvalue on the joint test of all coefficients associated with the factors being 0.
Standard errors are reported in parenthesis, *** p<0.01, ** p<0.05, * p<0.1.

Figure A1: IRFs in monthly VAR of CFGZ with BAA spread under VXO-BAA identification
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Figure A2: IRFs in monthly VAR of CFGZ with BAA spread under BAA-VXO identification

Figure A3: IRFs to uncertainty and financial shocks in Daily+Monthly VAR model. BAA spread in the
daily VAR and EBP in the monthly VAR
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Figure A4: IRFs in baseline Daily+Monthly VAR of CFGZ VXO-BAA identification

Figure A5: IRFs in baseline Daily+Monthly VAR of CFGZ under BAA-VXO identification
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