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1 Introduction

Conditional quantile regression (CQR) (see, e.g., Koenker and Bassett, 1978; Koenker and Hal-
lock, 2001; Koenker, 2005; Koenker, Chernozhukov, He, and Peng, 2017, for comprehensive anal-
yses of CQR) is a general approach to estimate conditional quantile partial effects (CQPE), i.e.,
the effect of a covariate variable of interest (ceteris paribus) on the conditional quantile distribu-
tion of the outcome. CQR is a useful way to represent heterogeneity using a set of parameters to
characterize the entire conditional distribution of an outcome variable given a list of observable
covariates.

More recently, unconditional quantile regression (UQR), proposed in Firpo, Fortin, and Lemieux
(2009), has attracted interest in both applied and theoretical literatures. UQR is an important tool
for practitioners since it provides a method to evaluate the impact of changes in the distribution
of the explanatory variables on the quantiles of the unconditional (marginal) distribution of the
outcome variable. This method allows researchers to investigate important heterogeneity in the
variable of interest. Naturally, UQR leads to the unconditional quantile partial effect (UQPE),
which refers to the effect of a covariate (ceteris paribus) on the unconditional quantile distribution
of the outcome variable.1

The combination of standard CQR with simulation exercises is usually implemented to eval-
uate distributional effects, such as UQPE. While it is feasible to calculate the unconditional dis-
tribution of an outcome variable using CQR (see, e.g., Autor, Katz, and Kearney (2005), Machado
and Mata (2005), Melly (2005), and Chernozhukov, Fernández-Val, and Melly (2013)), this task
is not obvious, at least compared to the ordinary least-squares (OLS) for the conditional mean.
Since an analogue of the law of iterated expectations does not hold in the case of quantiles, the
CQR analysis cannot be directly employed to analyze unconditional quantiles (see the discussion
in Fortin, Lemieux, and Firpo, 2011).

Firpo, Fortin, and Lemieux (2009) seminal paper proposes several ways to estimate the UQPE.
The most popular approach is the recentered influence function regression method, commonly
referred to as RIF regression. It is a two-step procedure, where in the first stage one estimates
the RIF, and in the second step, a standard OLS regression of the RIF on covariates estimates the
UQPE. While the method is appealing due to its simplicity, it relies on the ablity of the ability
of the researcher to specify a regression equation for the influence function, a relatively abstract
object. Our methodology, on the contrary, starts from an specification of the conditional quantiles,
which is a common practice when researches want to explore heterogeneity in conditional effects
of a certain covariate.

An interesting theoretical derivation connecting CQPE and UQPE is that, when considering
a continuous covariate, the UQPE can be expressed as a weighted average of the CQPE, a result

1Conditional here means that one is conditioning on a set of observable variables, while partial means that one is
looking at the effect of one particular covariate controlling for the rest of the covariates. On the other hand, Conditional
Quantile Regression (CQR) and Unconditional Quantile Regression (UQR) refer to two regression methodologies to
estimate CQPE and UQPE, respectively. Sometimes the acronym of the method is informally interchanged with the
parameter of interest, and, therefore, can be somewhat confusing if read lightly.
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derived in Firpo, Fortin, and Lemieux (2009, p.959). Based on this result, first we show that one is
able to express the UQPE as a function of CQR coefficients. In particular, we start by considering
the CQR as a process indexed by quantiles η ∈ (0, 1). Thus, a useful by-product of the CQR
analysis is the ability to express UQPE, for a given quantile τ ∈ (0, 1), as a function of CQR.2

Indeed, we show that if we start with the common assumption of linear conditional quantiles,
then a simple reweighting of the CQR coefficients using density functions delivers the UQPE.

We propose a new two-step semi-parametric estimator that employs CQR coefficients to es-
timate the UQPE. The practical implementation is simple and makes use of the usual practice
of estimating the CQR process, that is, for many conditional quantiles. In the first step one
uses standard QR methods to estimate CQPE from the conditional model of interest over a grid
of quantiles {η1, . . . , ηm}, and also estimates the unconditional τ-quantile of the outcome of in-
terest. Then, one applies a matching function to select the CQR coefficient of that correspond
to each particular value of the covariates. In the second step, one employs a non-parametric
regression of the matched CQR coefficients on the outcome, and evaluates this at the uncondi-
tional τ-quantile. This is a one-dimensional (reverse) regression: the regressor is the outcome.
Mild sufficient conditions are provided for the two-step estimator to have desired asymptotic
properties, namely, consistency and asymptotic normality. We derive the convergence rate of the
estimator and show that, as expected, it converges at a standard non-parametric rate. In addition,
we suggest statistical inference procedures.

The proposed method offers at least two important advantages over available techniques to
compute UQPE. First, the effect of covariates on the unconditional model is usually difficult to
conceptualize. As an example, it is not obvious how to handle covariates in the data gener-
ating process representation for the RIF regression. There is, thus, a risk of misspecifying the
unconditional model. However, in the proposed method covariates enter in structural standard
way in the CQR, i.e. the first step in our case. This approach is simpler for the researcher. The
conditional QR model allows for a simple and intuitive modelling framework, and it is more
familiar to model main output variable as a function of the covariates using CQR. Second, there
has been considerable improvements in estimating CQR specifications. It is a very well known
semi-parametric model that has been applied in many contexts, such as panel data or models
with endogeneity. Moreover, the second non-parametric step does not suffer from the curse of
dimensionality, since it is a reverse regression where the one-dimensional outcome is the regres-
sor. Finally, the main motivation of this paper is that we can use all the accumulated knowledge
related to CQR to apply to UQPE estimation. The proposed method also has pedagogical merits
as it clearly illustrates the link between CQR and UQR.

Although the literature on applications of UQR methods is extensive, the literature on the-
oretical developments is relatively small. Rothe (2012) generalizes the method of Firpo, Fortin,

2Other procedures where statistics of interest are based on a combination of CQR coefficients are the following:
Bera, Galvao, Montes-Rojas, and Park (2016) propose to estimate a unique representative CQPE based on an asym-
metric Laplace framework, and Lee (2021) considers a general weighted average quantile derivative using the CQR
coefficients for a fixed quantile level.
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and Lemieux (2009), and for other recent developments, see, e.g., Sasaki, Ura, and Zhang (2022),
Martinez-Iriarte, Montes-Rojas, and Sun (2022), Inoue, Li, and Xu (2021), and Martinez-Iriarte
(2021). For a comprehensive survey on counterfactual distributions and decomposition methods,
see Fortin, Lemieux, and Firpo (2011). Moreover, the theoretical derivations of the statistical
properties of the two-step estimator are related to a small literature on non-parametric regres-
sion with estimated variables, see. e.g., Andrews (1995), Song (2008), Sperlich (2009), Mammen,
Rothe, and Schienle (2012), and Escanciano, Jacho-Chávez, and Lewbel (2014).

The remaining of the paper is organized as follows. Section 2 presents the main result that
motivates the UQPE estimator based on CQR. Section 3 proposes an estimator for the UQPE and
Section 4 derives its asymptotic properties. Section 5 studies the estimator’s finite sample per-
formance using Monte Carlo experiments. Section 6 provides an empirical application. Section 7
concludes.

2 Quantile Partial Effects

In this section we define the unconditional quantile partial effect (UQPE) and the conditional
quantile partial effect (CQPE), and discuss the relationship between them using a matching func-
tion. This relationship is the foundation for the UQPE estimator we discuss in the next section.

2.1 UQPE in terms of CQPE

Consider a general model Y = r(X, U), where X = (X1, X′2)
′. Here, Y is the dependent variable,

X1 is the target variable of interest and is a scalar, X2 is a (d− 1)× 1 vector consisting of other
observable covariates, and U consists of unobservables. A leading example is the simple linear
model Y = β0 + β1X1 + X′2β2 + U, such that the conditional τ-quantile of Y given (X1, X2) is

QY[τ|X1, X2] = β0(τ) + β1(τ)X1 + X′2β2(τ). (1)

The typical object of study of the standard conditional quantile regression (CQR) is the condi-
tional quantile partial effect (CQPE) defined as

CQPEX1(τ, x) : =
∂QY[τ|X1 = z, X2 = x2]

∂z

∣∣∣∣
z=x1

, (2)

and corresponds to the marginal effect of X1 on the conditional quantiles of the outcome when
X1 = x1 and X2 = x2. In the case of model (1), CQPEX1(τ, x) = β1(τ) and estimation of this
parameter follows from standard quantile regression methods.

To define an unconditional counterpart to CQPEX1(τ, x), we follow Firpo, Fortin, and Lemieux
(2009). To that end, consider the counterfactual outcome

Yδ,X1 = r(X1 + δ, X2, U),
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where δ captures a small location change in the variable X1. Let QZ[τ] be the unconditional
τ-quantile of the random variable Z. Then the unconditional quantile partial effect (UQPE) is
defined as3

UQPEX1(τ) : = lim
δ→0

QYδ,X1
[τ]−QY[τ]

δ
. (3)

The UQPEX1(τ) is the marginal effect of a location shift in X1 on the unconditional τ-quantile of
the outcome. The CQPEX1(τ, x) amounts to manipulating X1 locally at x and evaluating a local
impact on Y: the effect on the τ-conditional quantile of Y. The UQPEX1(τ) looks at a global
change in X1 and its associated global impact in the τ-unconditional quantile of Y.

Firpo, Fortin, and Lemieux (2009) show that under some mild conditions the following iden-
tification result holds:

UQPEX1(τ) = −
1

fY(QY[τ])

ˆ
∂FY|X(QY[τ]|z, x2)

∂z

∣∣∣∣
z=x1

dFX(x), (4)

where FX(x) is short for the joint distribution, FX1,X2(x1, x2). In a similar manner, assuming
differentiability of FY|X(y|·), from (2) we have that

CQPEX1(τ, x) = − 1
fY|X(QY[τ|X = x]|x)

∂FY|X(QY[τ|X = x]|z, x2)

∂z

∣∣∣∣
z=x1

. (5)

It is interesting to see that CQPEX1(τ, x) in equation (5) has a similar structure to UQPEX1(τ)

in (4). Comparing the formulas in (4) and (5), one is able to see that even if the conditional
quantile is equal to the corresponding unconditional, that is, QY[τ|X = x] = QY[τ], one is not
able to recover UQPEX1(τ) from CQPEX1(τ, ·) by simply integrating the latter over X. Moreover,
it is usually the case that QY[τ|X = x] 6= QY[τ]. Thus, first we need to match conditional
and unconditional quantiles and then re weight them appropriately to recover UQPEX1(τ) from
CQPEX1(·, ·).

The following matching map, introduced by Firpo, Fortin, and Lemieux (2009, p.959), is an
important tool to relate the CQPE and UQPE:

ξτ(x) = {η : QY[η|X = x] = QY[τ]} . (6)

The map ξτ(x) : (0, 1) ×Rd 7→ (0, 1) corresponds to the quantile index(es) in the conditional
model, η, that produces the closest match with the unconditional quantiles τ for different values
of x. In Section 2.3 we analyze this map in detail. For now, we assume that ξτ(x) is a singleton.
Therefore, we have that, for every x, QY[ξτ(x)|X = x] = QY[τ]. Under this condition, it is simple
to formalize the relationship between CQPE and UQPE. Note that the CQPEX1 in equation (5)

3The UQPE can be defined for a vector of covariates as in Firpo, Fortin, and Lemieux (2009) resulting in a vector of
UQPEs. Martinez-Iriarte, Montes-Rojas, and Sun (2022) provide an interpretation of the linear combination of UQPEs
as a compensated counterfactual change.
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evaluated at the ξτ(x) quantile for X = x can be written as

CQPEX1(ξτ(x), x) = − 1
fY|X(QY[τ]|x)

∂FY|X(QY[τ]|z, x2)

∂z

∣∣∣∣
z=x1

.

Now rearranging CQPEX1(ξτ(x), x) above and substituting into equation (4) yields

UQPEX1(τ) =

ˆ
CQPEX1(ξτ(x), x)

fY|X(QY[τ]|x)
fY(QY[τ])

dFX(x). (7)

The weights in (7) can be rearranged as

fY|X(QY[τ]|x)
fY(QY[τ])

fX(x) =
fY,X(QY[τ], x)

fY(QY[τ]) fX(x)
fX(x) = fX|Y(x|QY[τ]).

Finally, equation (7) becomes a reverse projection as

UQPEX1(τ) = E
[
CQPEX1(ξτ(X), X)|Y = QY[τ]

]
. (8)

The preceding informal discussion is summarized in the lemma below.

Lemma 1. Let the following assumptions hold: (i) UQPEX1(τ) is identified by (4); (ii) the matching
function defined in (6) is a singleton; (iii) FY|X(y|x) and QY[τ|X = x] are differentiable with respect to
x1; (iv) fY|X, fY and fX are strictly positive. Then (8) holds.

As mentioned above, sufficient conditions for (i) are laid out in Firpo, Fortin, and Lemieux
(2009). Regarding (ii), see Assumption 1 stated below for sufficient conditions for ξτ(x) to be
singleton. The rest of the assumptions are customary regularity conditions.

2.2 Intuition of the procedure

Equation (8) shows that the UQPE is in fact a local weighted average of CQPE effects “near” the
unconditional τ-quantile of Y. As noted above, the τth unconditional quantile of interest may be
different from the (random) ξτ(X)th conditional quantiles used inside the integral.

When conditional quantiles are linear as in (1), then CQPEX1(ξτ(x), x) = β1(ξτ(x)). This
implies that (8) becomes a weighted average of matched slopes. Figures 1 and 2 illustrate how the
procedure works in two different linear cases. The figures plot both the unconditional quantile,
QY[τ] (red line) and conditional quantiles, QY|X[η] (blue lines), as well as the conditional density
fX|Y (green curve). The intuition is as following:

1. Identify the unconditional τ quantile, QY[τ], say QY[0.50] as illustrated in the figures for
the unconditional median, and drawn in a horizontal (red) line.

2. Notice that for each η, the conditional quantiles QY|X[η] (blue lines) intersect the uncondi-
tional quantile QY[τ] (horizontal red line); in the figures, we illustrate this for {x1, x2, x3, x4}
values of X that correspond to η = ξτ(x) values {0.80, 0.60, 0.40, 0.20} respectively.
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3. The UQPE is the weighted average – with weights given by density fX|Y(x|QY[τ]) (green
curve) – of the intersected slopes on the conditional quantile models.

Figure 1: Constant CQPE.

The figures are useful for analyzing the source of the variation in the UQPE across different
unconditional quantiles. For example, in Figure 1, the CQPE slopes are the same across condi-
tional quantiles η, which implies that the CQPE is constant across quantiles. Even if the weights
change with τ, this is irrelevant, because the slopes are constant.

On the other hand, in Figure 2, the CQPE slopes exhibit some variation across conditional
quantiles η. This heterogeneity can be present even if the weights are not a function of τ. The
UQPE is then constructed as a weighted average of those. An additional source of variation is
given by the potential different conditional densities of X given Y = QY[τ]. The UQPE will then
be the based on the different CQPE and the corresponding density weights.

2.3 The matching map ξτ

In equation (6), we defined the matching map as

ξτ(x) = {η : QY[η|X = x] = QY[τ]} .

For a fixed covariate value X = x, the map τ 7→ ξτ(x) describes how the unconditional distribu-
tion maps on the conditional one. In general, ξτ(x) may vary across the value of covariates as
well. Note that it is entirely possible that τ 6= ξτ(x).

For the purpose of this paper it is important that ξτ(x) is unique. But, generally, three
situations may occur. First, ξτ(x) is unique when FY|X(y|x) is strictly increasing. In this case,
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Figure 2: Heterogeneous CQPE.

there can be at most one η that satisfies equation (6). To see this, note that QY[η|X = x] = QY[τ]

is identical to η = FY|X(QY[τ]|x), so that ξτ(x) is unique. Second, ξτ(x) might be an interval.
For example if FY|X(y|x) has a jump discontinuity at y = QY[τ], but it is otherwise continuous
and strictly increasing, then ξτ(x) =

[
limy↑QY [τ] FY|X(y|x), FY|X(QY[τ]|x)

]
. See Figure 3a below.

Third, ξτ(x) might be emptyfor some x. For example, suppose that FY|X(y|x) is continuous, and
aside for a flat interval, it is strictly increasing. If QY[τ] is in the interior of the interval mapping
to the flat interval, then we cannot have QY[η|X = x] = QY[τ]. This is illustrated in Figure 3b
below.

Example 1. Consider the model Y = α0 + α1X1 + (1 + θX1)U with X ⊥ U. By standard computations,
if 1 + θx1 > 0, then QY[η|X1 = x1] = α0 + α1x1 + (1 + θx1)QU [η]. To find ξτ(x1) we need the level η

such that QY[η|X1 = x1] = QY[τ]. Thus,

ξτ(x1) = FU

(
QY[τ]− α0 − α1x1

1 + θx1

)
. (9)

Remark 1. If the matching function is the identity function: ξτ(X) = {η : QY[η|X = x] = QY[τ]} = τ,
Then, by equation (8), UQPEX1(τ) can be written as

UQPEX1(τ) =

ˆ
CQPEX1(τ, x)

fX|Y(x|QY[τ])

fX(x)
fX(x)dx,

which is the parameter of interest of Lee (2021): a weighted average quantile derivative. Here the weight is
fX|Y(x|QY [τ])

fX(x) . If the matching function is not the identity, then our parameter is not covered by the methods
of Lee (2021).
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(a) Interval valued ξτ(x). (b) Empty ξτ(x).

Figure 3: Non-uniqueness of ξτ(x).

3 Estimator

In this section we describe a two-step estimator of UQPEX1(τ), which is based on the reverse
projection in equation (8). The asymptotic properties are discussed in later sections. In the
following, the unconditional quantiles of Y are indexed by τ ∈ (0, 1), while the conditional quantiles
Y given X are indexed by η ∈ (0, 1).

Assume first that

QY[η|X1 = x1, X2 = x2] = x1β1(η) + x′2β2(η) = x′β(η), (10)

where β = (β1, β′2)
′. Note that x2 has to include a constant for correct specification. In this

paper, we use the conditional quantile function in (10) to estimate the UQPE. Using this quantile
regression model has advantages. First, it allows the researcher to directly model the outcome
variable Y as a function of observable covariates X, instead of modeling the recentered influence
function. This is important because it may be simpler to relate the variable of interest directly
from the economic theory or existing literature, than modeling the influence function. Second,
practical estimation of (10) is simple, as we discuss below.

Under (10), CQPEX1(ξτ(x), x) = β1(ξτ(x)). Equation (8) then has the convenient form

UQPEX1(τ) = E [β1(ξτ(X))|Y = QY[τ]] . (11)

Our proposed estimator is a non-parametric regression of {β1(ξτ(xi))}n
i=1 on {yi}n

i=1 evaluated
at QY[τ]. To implement this method in practice we are required to estimate β1(ξτ(x)) and QY[τ].
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To estimate β1(ξτ(xi)) we first use CQR methods, and estimate β(η) for a grid of m values of
η’s given byHm = {ε < η1 < · · · < ηj < · · · < ηm < 1− ε}, ε ∈ (0, 1

2 ). In the standard linear case
we have that for a given value of ηj, and a sample {yi, xi}n

i=1, we simply apply standard quantile
regression methods as

(β̂1(ηj), β̂2(ηj)
′)′ = β̂(ηj) = arg min

b

1
n

n

∑
i=1

ρηj(yi − x′ib),

where ρτ(u) = u(τ− 1[u < 0]) is the Koenker and Bassett (1978) check function. We also estimate
the unconditional quantile QY[τ] by

Q̂Y[τ] = arg min
q

1
n

n

∑
i=1

ρτ(yi − q).

To find the matched coefficient β̂1(ξ̂τ(xi)), we employ the two previous estimates as following

ξ̂τ(xi) =


η1 ∈ Hm if Q̂Y[τ] < x′i β̂(η1)

ηj ∈ Hm if
{

x′i β̂(ηj) ≤ Q̂Y[τ] < x′i β̂(ηj+1)
}

ηm ∈ Hm if Q̂Y[τ] ≥ x′i β̂(ηm)

, (12)

for i = 1, ..., n. The above estimator relies on monotonicity of CQR such that there is only one
match. In practice, this needs to be checked in small samples as multiple crossings may occur if
xi is very different from x̄. Then an algorithm could be implemented such as taking the average
of the selected β1 or a rearrangement of estimated quantiles (see, for instance, Chernozhukov,
Fernández-Val, and Galichon (2010) for a discussion about quantile crossings). Furthermore, if
the unconditional quantile does not lie inside the intervals generated by the grid of conditional
quantile values, then we impute either the minimum if it is below, or the maximum if it is above.

Finally, to estimate the UQPEX1(τ), we can use a Nadaraya-Watson type-estimator, using the
preliminary estimators:

Ê
[
β̂1(ξ̂τ(X))|Y = Q̂Y[τ]

]
=

∑n
i=1 Kh(yi − Q̂Y[τ]) · β̂1(ξ̂τ(xi))

∑n
i=1 Kh(yi − Q̂Y[τ])

, (13)

where Kh is the rescaled kernel Kh(u) := 1
h K
( u

h

)
. The estimator in (13) avoids the curse of

dimensionality because it is a regression on just one regressor: Y. Indeed, the dimension of X
enters in the CQR estimation and in the matching function.

Equation (13) highlights the main benefit of our proposed approach: obtaining the uncon-
ditional effect is an easy follow-up from the conditional effects. If the researcher, as is usually
the case, has estimated a grid of CQR coefficients, then, after they are “matched” according to
(12), they can be averaged following (13) to yield the unconditional effect for the desired quantile
level.

Remark 2. An alternative approach to estimating UQPEX1(τ) based on (11) is a linear regression of
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β̂1(ξ̂τ(X)) on a constant and Y. The predicted fit at Y = Q̂Y[τ] is an easy-to-compute approximation to
UQPEX1(τ).

Another option is to do a local linear regression. This estimator may help reduce the bias in lower or
higher quantiles. The estimator is âτ,0 + âτ,1Q̂Y[τ], where (âτ,0, âτ,1)

′ solve

(âτ,0, âτ,1)
′ = arg min

aτ,0,aτ,1

n

∑
i=1

Kh(yi − Q̂Y[τ])

[
β1(ξ̂τ(xi))− aτ,0 − aτ,1

(
yi − Q̂Y[τ]

h

)]2

.

A study of the properties of this estimator in this particular setting is left for future research.

4 Asymptotic Theory

This section derives the asymptotic properties of the two-step estimator. First, we study the first
step, and establish an asymptotic linear representation and rate of convergence for the conditional
quantile regression coefficients as a function of the matched quantiles. Second, we study the
asymptotic properties of the non-parametric regression in the second step.

4.1 Structural QR and Matched Quantiles

The following assumptions are needed to establish that β̂1(ξ̂τ(x)) − β1(ξτ(x)) = Op(n−1/2),
where β̂1(ξ̂τ(x)) is computed according to (12).

Assumption 1. Let {yi, xi}n
i=1 be a random sample of independent and identically distributed (iid) obser-

vations with yi a scalar and xi ∈ Rd that satisfy the following properties:

1. The conditional quantiles are linear: QY[η|X = x] = x′β(η), η ∈ [ε, 1− ε], ε ∈ (0, 1
2 ), with

X ∈ Rd and E|X| < ∞.

2. For every x in the support of X, fY|X(y|x) is bounded away from zero.

3. The conditional quantile regression estimators satisfy

β̂(η)− β(η) = E
[

fY|X(X′β(η)|X)XX′
]−1 1

n

n

∑
i=1

(
η − 1

{
yi ≤ x′i β(η)

})
xi + op(n−1/2)

=
1
n

n

∑
i=1

Ψi(η) + op(n−1/2),

uniformly in η ∈ [ε, 1− ε], ε ∈ (0, 1
2 ), and η 7→ E

[
fY|X(X′β(η)|X)XX′

]
has uniformly bounded

derivatives.
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4. The unconditional quantile estimator satisfies

Q̂Y[τ]−QY[τ] = fY(QY[τ])
−1 1

n

n

∑
i=1

(τ − 1 {yi ≤ QY[τ]})

=
1
n

n

∑
i=1

ψi(τ) + op(n−1/2).

5. The grid of quantiles {ε < η1 < . . . < ηj < . . . < ηm < 1− ε}, ε ∈ (0, 1
2 ), satisfies ∆η =

o(n−1/2) as n → ∞ for ∆η := ηj − ηj−1, j = 2, ..., m, and η1 = ε and ηm = 1− ε for a small
ε > 0.

The conditions in Assumption 1 are very mild. Assumption 1.1 imposes linearity of the
model, and condition 1.2 is very standard in the QR literature, see, e.g., Koenker (2005). Assump-
tions 1.1 and 1.2, allow us to write FY|X(x′β(η)|x) = η, so that x′ β̇(η) = fY|X(x′β(η)|x)−1 > 0,
where β̇(η) is the Jacobian vector: the derivative of the map η 7→ β(η). This quantity ap-
pears in the denominator of the influence function of ξ̂τ(x). Assumption 1.3 is a uniform Ba-
hadur representation for the QR estimator. It is established in Lemma 3 in Ota, Kato, and
Hara (2019). See also Theorem 3 in Angrist, Chernozhukov, and Fernández-Val (2006). It im-
plies supη∈[ε,1−ε] |β̂(η) − β(η)| = Op(n−1/2) and the stochastic equicontinuity of the process
τ 7→

√
n(β̂(η)− β(η)) on [ε, 1− ε]. Condition 1.4 is a simple linear representation for the uncon-

ditional quantile. Sufficient conditions for Assumption 1.4 are given in Serfling (1980). Finally,
Assumption 1.5 requires that the grid for the matching function becomes denser as the sample
size increases. This condition has appeared in the QR literature. Chernozhukov, Fernández-Val,
and Melly (2013, Remark 3.1 p.2220) provide a similar condition when computing counterfactual
distributions.

The next result provides a rate of convergence and a linear representation for β̂1(ξ̂τ(x)) −
β1(ξτ(x)) = Op(n−1/2).

Theorem 1. Under Assumption 1, the CQR coefficient of X1 evaluated at the random quantile ξ̂τ(x)
satisfies β̂1(ξ̂τ(x))− β1(ξτ(x)) = Op(n−1/2) and can be represented as

β̂1(ξ̂τ(x))− β1(ξτ(x)) = β̂1(ξτ(x))− β1(ξτ(x)) + β̇1(ξτ(x))(ξ̂τ(x)− ξτ(x)) + op(n−1/2),

where

ξ̂τ(x)− ξτ(x) = − 1
x′ β̇(ξτ(x))

1
n

n

∑
i=1

x′Ψi(ξτ(x)) +
1

x′ β̇(ξτ(x))
1
n

n

∑
i=1

ψi(τ) + op(n−1/2).

Here, β̇1(ξτ(x)) is the β1 component of the Jacobian vector β̇(ξτ(x)).
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4.2 Nadaraya-Watson Estimator

Our parameter of interest given in (11) is

UQPEX1(τ) = E [β1(ξτ(X))|Y = QY[τ]] ,

and we propose the following non-parametric regression Nadaraya-Watson-type estimator:

̂UQPEX1(τ) = Ê
[
β̂1(ξ̂τ(X))|Y = Q̂Y[τ]

]
=

∑n
i=1 Kh(yi − Q̂Y[τ]) · β̂1(ξ̂τ(xi))

∑n
i=1 Kh(yi − Q̂Y[τ])

.

The unfeasible (oracle) version is denoted by

˜UQPEX1(τ) = Ê [β1(ξτ(X))|Y = QY[τ]] =
∑n

i=1 Kh(yi −QY[τ]) · β1(ξτ(xi))

∑n
i=1 Kh(yi −QY[τ])

.

We maintain the following assumptions.

Assumption 2. K(u) is a symmetric function around 0 that satisfies: (i)
´

K(u)du = 1; (ii) For r > 2,´
ujK(u)du = 0 when j = 1, ..., r− 1, and

´
|u|rK(u)du < ∞; (iii)

´
K′(u)du = 0 ; (iv) ujK(u) → 0

as u→ ±∞ for j=1,...,r+1; (v) supu∈R |K′′(u)| < ∞ ; (vi)
´

K′(u)2du < ∞ and
´

uK′(u)2du < ∞.

This assumption requires we use a rth order kernel with r > 2. This is to remove the bias
introduced by evaluating the kernel estimator at the estimated quantile. A popular one is the
4th order Gaussian kernel (see Section 2.7.2 in Pagan and Ullah (1999)): K(u) = 3−u2

2 φ(u) where
φ(u) is the pdf of a standard normal. This kernel satisfies Assumption 2.4

Assumption 3. (i) The density of Y is r + 1 times continuously differentiable, with uniformly bounded
derivatives; (ii) The joint density fY,X(y, x) is r + 1 times continuously differentiable, with uniformly
bounded derivatives for every x in the support of X.

Assumption 4. As n→ ∞, the bandwidth satisfies: (i) h→ 0; (ii) (nh)1/2hr → 0, (iii) nh5 → ∞.

In order for a Assumption 4 to hold, we need that 1 + 2r > 5, which implies r > 2. This is in
line with the requirement of r > 2 in Assumption 2. For example, for r = 4, if h ∝ n−1/6, then
Assumption 4 holds.

Assumption 5. The following approximation rate holds for ξ̂τ: E
[(

n1/4 [β1(e(X))− β1(ξτ(X))]
)2
] ∣∣

e=ξ̂τ
=

op(1).
4Recall that the odd moments of a standard normal random variable are 0, and the first three even moments are

1, 3, and 15. We have
´

R K(u)du = 1,
´

R uK(u)du = 0,
´

R u2K(u)du = 0,
´

R u3K(u)du = 0, and
´

R u4K(u)du = −3.
The first derivative of the kernel, using the recursive fact that φ′(u) = −uφ(u), is K′(u) = − 5

2 uφ(u) + 1
2 u3φ(u), so

that
´

R K′(u)du = 0. Moreover, ujK(u) → 0 as u → ±∞ for all j since the exponential rate of φ(u) decreases faster
than the polynomial rate. By integration by parts, and using ujK(u) → 0 as u → ±∞, we have that

´
ujK′(u)du =

−
´

juj−1K(u)du which is 0 for j = 2, 3, 4 and
´

u5K′(u)du = −
´

5u4K(u)du = 15. Finally, the second derivative is
given by K′′(u) = − 5

2 φ(u) + 4u2φ(u) − 1
2 u4φ(u) which is bounded since ujK(u) → 0 as u → ±∞. Finally, using

K′(u) = − 5
2 uφ(u) + 1

2 u3φ(u) it is easily verified that
´

K′(u)2du < ∞ and
´

K′(u)2udu < ∞.

13



Theorem 2. Let Assumptions 1, 2, 3, 4, and 5 hold. Then, as n→ ∞,

̂UQPEX1(τ) = ˜UQPEX1(τ) + op(n−1/2h−1/2).

This theorem states that the preliminary estimators of the CQR slopes, the matched quantiles
and the unconditional quantile of Y vanish asymptotically because they converge at a faster rate:
n−1/2 as opposed to n−1/2h−1/2. Moreover, the asymptotic distribution of the unfeasible estimator
˜UQPEX1(τ) is well-known and can be readily established.

The following assumption is customary in order to apply the Lindeberg-Feller Central Limit
Theorem.

Assumption 6. (i) For Uτ := β1(ξτ(X)) − E [β1(ξτ(X))|Y], and δ > 0, E[|Uτ|2+δ|Y] < C < ∞
a.s. for some C; (ii)

´
|K(u)|2+δdu < ∞; (iii) The map y 7→ E [β1(ξτ(X))|Y = y] is r + 1 times

continuously differentiable, with uniformly bounded derivatives; (iv) The map y 7→ σ2
τ(y) := E[U2

τ|Y =

y] is continuous.

Corollary 1. Let Assumptions 1, 2, 3, 4, 5 and 6 hold. Then, as n→ ∞,

√
nh
(

̂UQPEX1(τ)−UQPEX1(τ)
)

d→ N
(

0, σ2
τ(QY[τ]) fY(QY[τ])

−1
ˆ

K(u)2du
)

.

Remark 3. The practical computation of the asymptotic variance-covariance matrix in Corollary 1 is
difficult due to the presence of generated regressors in the nonparametric regression. Thus, in practice, we
employ resampling approach for inference. There is an extensive literature on constructing nonparametric
confidence bands for functions, we refer the reader to Härdle and Bowman (1988) and Hall and Horowitz
(2013) and references therein for resampling methods. Moreover, we refer the reader to Mammen, Rothe,
and Schienle (2016) for results establishing the validity of the bootstrap for a general class of standard
semiparametric estimators when the nuisance parameter is estimated using generated covariates. Relatedly,
Mammen, Rothe, and Schienle (2012) derive a formula for the asymptotic variance in a nonparametric
regression with nonparametrically generated covariates.

We describe now the implementation of the bootstrap procedure.

1. Estimate {β̂(η)} for a given grid Hm = {η1, ..., ηm} and Q̂Y[τ], then compute ÛQPEX1
(τ)

using the sample {yi, xi}n
i=1.

2. Compute samples with replacement {y∗bi , x∗bi }n
i=1, for b = 1, ..., B, and estimators {β̂∗b(η)}

for Hm, Q̂∗bY [τ] and ÛQPE
∗b
X1
(τ).

3. Compute the standard deviation from the bootstrap sample,

σ̂∗UQPE =

√√√√ 1
B

B

∑
b=1

(
ÛQPE

∗b
X1
(τ)− ÛQPE

∗
X1
(τ)

)2
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where ÛQPE
∗
X1
(τ) = 1

B ∑B
b=1 ÛQPE

∗b
X1
(τ).

4. Compute the 1− α confidence interval [ÛQPE
∗[α/2]
X1

(τ), ÛQPE
∗[1−α/2]
X1

(τ)] using the ordered
statistics of the bootstrap sample.

5 Monte Carlo experiments

This section presents several simulation exercises to study the finite sample performance of the
proposed estimator. First, we assess the matching function estimator. Second, we evaluate the
unconditional quantile partial effect (UQPE) estimation.

The first data generating process (DGP) we consider is as following:

yi = 1 + xi + (1 + θxi)ui, (14)

where xi ∼ N(10, 1) and ui is a random variable with E(ui) = 0, V(ui) = 1 and independent of
xi. The distribution of ui is specified below as either standard Gaussian or (standardized) Chi-
squared with 1 degree of freedom. The parameter θ controls the type of effect of the covariate x
on the distribution of y|x: when θ = 0 the effect is a location shift, and if θ 6= 0 is a location-scale
shift. In the former case the conditional quantile regression (CQR) effects are constant across
quantiles, while in the latter case they vary.

Second, we use a DGP with an additional covariate

yi = 1 + wi + xi + (1 + θxi)ui, (15)

where we consider two cases: (i) wi ∼ N(10, 1) (independent of xi); (ii) wi = 10+(xi + N(10, 1)−
20)/
√

2, where we make wi correlated with xi.

5.1 Matching function estimator

The proposed UQPE estimator relies on the estimator of the matching function for the quantiles,
ξ̂τ(x). This subsection presents simulations exercises for assessing the accuracy of the matching
estimator as given in equation (12). Recall from Example 1, equation (9), that in the simple linear
case we have an explicit formula for the population matching function, ξτ(x). Thus, we are able
to use simulations to assess the finite sample performance of the estimator.

We consider experiments using DGP model in (14) for a pure location model, θ = 0, as well as
a location-scale model, θ = 1. We use xi ∼ N(10, 1) and ui ∼ N(10, 1). Each experiment has 100
simulations of the DGP with sample sizes n = {250, 500, 2500, 5000}, and quantile grid sizes m =

{9, 24, 99, 199}, respectively. We consider three quantiles τ ∈ {0.25, 0.50, 0.75}. Figure 4 reports
results for the location case, and Figure 5 displays results for the location-scale case. In each
figure, we plot the parameter of interest (the true value of the matching function), the estimates

15



Figure 4: Estimation of matching functions, u ∼ N(0, 1) and θ = 0 (pure location).

(average estimates over the number of simulations), as well as the 95% empirical confidence
interval.5

Simulation results show evidence that the matching function estimator provides an approx-
imately asymptotically unbiased estimator for both the pure location and location-scale models
with a better performance of sample sizes of n ≥ 500. Point estimates are close to the populations
counterparts even for small samples and grids. As sample size and grid increase together, point
estimates become very close to the population and confidence intervals shrink. Section A.5 of
the appendix contains a proposal for conducting inference on the matching function should this
be of interest.

5.2 UQPE estimation

Now we investigate the finite sample performance of the proposed UQPE estimator as in equa-
tion (13). In what follows, We label this estimator as Nadaraya-Watson (NW). For comparison,

5These are computed as the 2.5th and 97.5th empirical percentiles of estimates across simulations.
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Figure 5: Estimation of matching functions, u ∼ N(0, 1) and θ = 1 (location-scale).
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we also implement the RIF regression model for UQR for each unconditional quantile using the
rifvar STATA command (Rios-Avila, 2020). In this case, the UQPE is estimated by OLS with
a linear and a cubic polynomial model of the RIF for each quantile as a function of xi (or as a
function of xi and wi for the model with additional covariates).

Each experiment has 1,000 simulations of the DGP with sample sizes n = {250, 500, 2500, 5000},
and quantiles grid sizes m = {9, 24, 99, 199}, respectively. We consider three quantiles τ ∈
{0.25, 0.50, 0.75}. Moreover, we use the Naradaya-Watson (NW) estimator described in equa-
tion (13) with the bandwidth hn = 0.9σ̂yn−1/6 and the 4th order Gaussian kernel function,
K(u) = 3−u2

2 φ(u), where φ(u) is the pdf of a standard normal, as discussed above. To eval-
uate the procedures we report the sample average of the point estimates, bias, variance, and
mean-squared error (MSE).

Table 1 presents results for the baseline model for the simple location-shift model (i.e. θ = 0)
and Gaussian covariate and innovation. Both RIF and NW estimators have a good performance
in terms of bias, variance and MSE. These three statistics decrease for both estimators as sample
size increases, for all three quantiles.

Tables 2 and 3 present simulations results for Gaussian and Chi-squared innovations, respec-
tively, for the location-scale shift model (i.e. θ = 1) with a Gaussian covariate. For all cases we
observe that for the proposed NW estimator the bias and variance reduces as n increases. The
relative performance to the RIF-regression model varies depending on the simulation exercises,
but in most cases the NW estimator outperforms the RIF one.

Tables 4 and 5 collect simulation results for cases where there is an additional covariate, wi.
The former case uses an independent additional covariate and in the latter case wi is correlated
with xi. In both cases we use the model with θ = 1 and xi ∼ N(10, 1). The results are also in
line with previous ones, highlighting a good performance of the NW estimator in terms of bias,
variance, and MSE.

Overall, these simulation results indicate that our proposed method produces a consistent
estimator, where both bias and variance reduce as n increases. In some cases, however, the bias
improvement applies only for n ≥ 500.

Finally, Table 6 presents simulation exercises where we consider different bandwidth and
kernels choices. In particular, we use hn = 0.9σ̂yn−1/4, hn = 0.9σ̂yn−1/5 and hn = 0.9σ̂yn−1/6. In
order to explore our proposed optimal choice hn ∝ n−1/6 we compare with with hn ∝ n−1/5, the
standard bandwidth choice in non-parametric kernel estimators and also with hn ∝ n−1/4. Next
we also evaluate the proposed 4th order Gaussian kernel with the standard Gaussian one. We
consider the location-scale model with θ = 1 and Gaussian errors. The results show evidence that
there are only small differences across bandwidths and kernels which suggest that the estimator
is robust to these choices. For the empirical researcher this suggests that our proposed estimator
can be combined with the standard non-parametric implementation.6

6Other model specification results are available from the authors upon request. In all cases, they gave similar
results.
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Table 1: Location model: θ = 0, and xi ∼ N(10, 1), ui ∼ N(0, 1).

Estimator τ n Parameter Average Bias Variance MSE

RIF

25

250 1.000 1.0251 0.02518 0.01559 0.01623
500 1.000 1.0249 0.02496 0.00876 0.00938
2500 1.000 1.0135 0.01354 0.00202 0.00221
5000 1.000 1.0091 0.00915 0.00122 0.00130

50

250 1.000 1.0454 0.04503 0.01215 0.01417
500 1.000 1.0391 0.03865 0.00735 0.00884
2500 1.000 1.0232 0.02276 0.00166 0.00218
5000 1.000 1.0176 0.01716 0.00090 0.00119

75

250 1.000 1.0375 0.03755 0.01592 0.01733
500 1.000 1.0251 0.02517 0.00846 0.00909
2500 1.000 1.0116 0.01167 0.00219 0.00233
5000 1.000 1.0107 0.01082 0.00120 0.00132

Nadaraya-Watson

25

250 1.000 0.9963 -0.00367 0.00455 0.00457
500 1.000 1.0005 0.00060 0.00240 0.00240
2500 1.000 0.9993 -0.00061 0.00046 0.00046
5000 1.000 0.9999 -0.00006 0.00022 0.00022

50

250 1.000 0.9996 -0.00077 0.00421 0.00421
500 1.000 1.0021 0.00166 0.00219 0.00219
2500 1.000 0.9994 -0.00100 0.00043 0.00043
5000 1.000 0.9999 -0.00055 0.00020 0.00020

75

250 1.000 1.0018 0.00187 0.00495 0.00496
500 1.000 1.0034 0.00350 0.00257 0.00258
2500 1.000 0.9996 -0.00036 0.00047 0.00047
5000 1.000 0.9999 -0.00003 0.00023 0.00023

Notes: Monte Carlo experiments based on 1000 simulations.

19



Table 2: Location-shift model: θ = 1, and xi ∼ N(10, 1), ui ∼ N(0, 1).

Estimator τ n Parameter Expectation Bias Variance MSE

RIF

25

250 0.330 0.3210 -0.00912 1.01506 1.01514
500 0.330 0.3543 0.02423 0.47570 0.47629
2500 0.330 0.3234 -0.00672 0.09271 0.09276
5000 0.330 0.3288 -0.00125 0.04431 0.04431

50

250 1.020 1.0693 0.04934 0.86653 0.86897
500 1.020 1.0844 0.06442 0.43005 0.43420
2500 1.020 1.0253 0.00535 0.08020 0.08023
5000 1.020 1.0239 0.00396 0.03970 0.03971

75

250 1.682 1.7460 0.06373 1.06619 1.07026
500 1.682 1.7099 0.02761 0.50398 0.50474
2500 1.682 1.7014 0.01909 0.10109 0.10145
5000 1.682 1.6902 0.00787 0.04821 0.04827

Nadaraya-Watson

25

250 0.330 0.4745 0.14443 0.80540 0.82626
500 0.330 0.4176 0.08749 0.42508 0.43273
2500 0.330 0.3306 0.00046 0.08557 0.08557
5000 0.330 0.3316 0.00146 0.04142 0.04143

50

250 1.020 1.1269 0.10694 0.68828 0.69972
500 1.020 1.0844 0.06441 0.35801 0.36216
2500 1.020 1.0161 -0.00386 0.07001 0.07003
5000 1.020 1.0126 -0.00733 0.03350 0.03355

75

250 1.682 1.8656 0.18328 0.82577 0.85936
500 1.682 1.7607 0.07842 0.42324 0.42939
2500 1.682 1.6887 0.00642 0.08076 0.08080
5000 1.682 1.6823 -0.00001 0.03743 0.03743

Notes: Monte Carlo experiments based on 1000 simulations.
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Table 3: Location-scale shift model: θ = 1, and xi ∼ N(10, 1), ui ∼ (χ2
1 − 1)/

√
2.

Estimator τ n Parameter Expectation Bias Variance MSE

RIF

25

250 0.367 0.7425 0.37510 0.12921 0.26991
500 0.367 0.6731 0.30575 0.05070 0.14418
2500 0.367 0.5425 0.17506 0.00637 0.03702
5000 0.367 0.5018 0.13445 0.00289 0.02096

50

250 0.622 0.5380 -0.08427 0.22020 0.22730
500 0.622 0.5261 -0.09615 0.10207 0.11132
2500 0.622 0.5343 -0.08798 0.02002 0.02776
5000 0.622 0.5453 -0.07698 0.01075 0.01667

75

250 1.204 1.1749 -0.02864 1.39024 1.39106
500 1.204 1.1446 -0.05896 0.70950 0.71297
2500 1.204 1.2052 0.00166 0.14136 0.14136
5000 1.204 1.1986 -0.00497 0.06550 0.06552

Nadaraya-Watson

25

250 0.367 0.4103 0.04288 0.05469 0.05653
500 0.367 0.3820 0.01455 0.02024 0.02045
2500 0.367 0.3740 0.00661 0.00316 0.00321
5000 0.367 0.3705 0.00307 0.00157 0.00158

50

250 0.622 0.7019 0.07965 0.34568 0.35202
500 0.622 0.6460 0.02373 0.14878 0.14934
2500 0.622 0.6201 -0.00214 0.02376 0.02377
5000 0.622 0.6123 -0.00995 0.01236 0.01246

75

250 1.204 1.4710 0.26743 1.94604 2.01756
500 1.204 1.2765 0.07291 0.80686 0.81218
2500 1.204 1.2486 0.04506 0.13421 0.13624
5000 1.204 1.2260 0.02250 0.05981 0.06032

Notes: Monte Carlo experiments based on 1000 simulations.
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Table 4: Location-scale shift model with independent covariate: θ = 1, wi ∼ N(10, 1), and
xi ∼ N(10, 1), ui ∼ N(0, 1).

Estimator τ n Parameter Expectation Bias Variance MSE

RIF

25

250 0.3247 0.3113 -0.01345 0.97543 0.97561
500 0.3247 0.3515 0.02682 0.52336 0.52408
2500 0.3247 0.3359 0.01113 0.09618 0.09630
5000 0.3247 0.3298 0.00504 0.04465 0.04468

50

250 0.9975 1.0265 0.02893 0.92922 0.93006
500 0.9975 1.0734 0.07590 0.41277 0.41853
2500 0.9975 1.0341 0.03654 0.07985 0.08119
5000 0.9975 1.0237 0.02615 0.03849 0.03918

75

250 1.6642 1.6825 0.01830 1.01380 1.01414
500 1.6642 1.7358 0.07167 0.45838 0.46351
2500 1.6642 1.7010 0.03687 0.10087 0.10223
5000 1.6642 1.6868 0.02263 0.04800 0.04851

Nadaraya-Watson

25

250 0.3247 0.4466 0.12185 0.76641 0.78126
500 0.3247 0.4191 0.09434 0.40590 0.41480
2500 0.3247 0.3488 0.02407 0.08349 0.08407
5000 0.3247 0.3343 0.00961 0.03924 0.03934

50

250 0.9975 1.0955 0.09798 0.68349 0.69309
500 0.9975 1.0866 0.08902 0.32540 0.33332
2500 0.9975 1.0201 0.02254 0.07001 0.07052
5000 0.9975 1.0133 0.01578 0.03170 0.03195

75

250 1.6642 1.7889 0.12473 0.85360 0.86916
500 1.6642 1.7475 0.08335 0.37254 0.37949
2500 1.6642 1.6960 0.03188 0.07782 0.07883
5000 1.6642 1.6777 0.01349 0.03863 0.03882

Notes: Monte Carlo experiments based on 1000 simulations.
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Table 5: Location-shift model with correlated covariate: θ = 1, wi = 10+(xi + N(10, 1)− 20)/
√

2,
and xi ∼ N(10, 1), ui ∼ N(0, 1).

Estimator τ n Parameter Expectation Bias Variance MSE

RIF

25

250 0.3247 0.2623 -0.06247 2.05660 2.06050
500 0.3247 0.3357 0.01093 0.98728 0.98740
2500 0.3247 0.3272 0.00252 0.16915 0.16916
5000 0.3247 0.3368 0.01203 0.08660 0.08674

50

250 1.0176 1.0264 0.00885 1.90909 1.90917
500 1.0176 1.0553 0.03769 0.82247 0.82389
2500 1.0176 1.0055 -0.01204 0.15643 0.15657
5000 1.0176 1.0205 0.00294 0.07593 0.07594

75

250 1.6966 1.6676 -0.02897 2.03511 2.03595
500 1.6966 1.7081 0.01155 1.03865 1.03879
2500 1.6966 1.6819 -0.01464 0.19409 0.19430
5000 1.6966 1.6666 -0.02997 0.09898 0.09988

Nadaraya-Watson

25

250 0.3247 0.4033 0.07859 1.61797 1.62415
500 0.3247 0.3987 0.07394 0.78275 0.78822
2500 0.3247 0.3391 0.01433 0.14653 0.14673
5000 0.3247 0.3401 0.01539 0.07626 0.07650

50

250 1.0176 1.0923 0.07473 1.42727 1.43285
500 1.0176 1.0541 0.03653 0.65508 0.65641
2500 1.0176 1.0033 -0.01424 0.13169 0.13190
5000 1.0176 1.0095 -0.00809 0.06319 0.06325

75

250 1.6966 1.7819 0.08536 1.60994 1.61723
500 1.6966 1.7356 0.03897 0.78620 0.78772
2500 1.6966 1.6860 -0.01054 0.14993 0.15004
5000 1.6966 1.6602 -0.03635 0.07755 0.07887

Notes: Monte Carlo experiments based on 1000 simulations.
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6 Empirical Application

This section illustrates the UQPE estimator with an analysis of Engel’s curve. The original con-
cept corresponds to Ernst Engel (1857, cited in Koenker (2005), pp. 78-79) who studied the Eu-
ropean working class households consumption in the 19th century. Engel curves describe how
household expenditures on particular goods and services depend on household income. The
analysis of Engel curves has a long history of estimating the expenditure-income relationship.
They are regression functions where the dependent variable is the level or the budget share of
total expenses used to purchase a commodity of goods or services, and the explanatory variable,
total expenditure, is usually used as a proxy for income.7 An empirical result commonly referred
to as “Engel’s law” states that the poorer a family is, the larger the budget share it spends on
food. Other categories of expenditure present a less robust pattern. Hence, we investigate the
hypothesis that food expenditure constitutes a declining share of household income.

We apply this framework to household expenditures in Argentina using the national survey
of expenditures (Encuesta Nacional de Gasto de los Hogares, known as ENGHO 2017-2018), im-
plemented by the Instituto Nacional de Estadística y Censos (INDEC). The survey was carried out
between November 2017 and November 2018. The ENGHO 2017-2018 surveys the households’
living conditions in terms of their access to goods and services, as well as their income. The
data contains information about household expenditures on different goods and services. About
21,547 households were randomly selected and participated on the survey. We consider both
food household expenditures and total non-durable consumption for comparison.8 We also use
the following covariates set: age, education of the household head, the number of children under
14 years of age in the household, the number of exclusive rooms in the household, a dummy that
indicates whether the head is the owner of the dwelling, and regional dummies.

We estimate UQPE and CQPE. The former analysis corresponds to evaluating effect of an
increase in income for every household in a uniform pattern (using the same additional controls,
if any) on the unconditional quantile of food expenditure while focusing on the entire distribution
of expenditure. The latter effect corresponds to the study of how expenditure changes when
marginally increasing income conditional on income and other controls. For comparison, we
also provide estimate results for the RIF regression of Firpo, Fortin, and Lemieux (2009) using the
rifvar STATA command (Rios-Avila, 2020). We use both income and expenditures in logarithm,
so that the coefficient estimates can be interpreted as an elasticity. Confidence intervals are
computed using 200 wild bootstrap replications.

7There is a large literature on Engel’s curve, see, e.g., for example, among many others, Lewbel (1997, 2008),
Blundell, Chen, and Kristensen (2007), Chai and Moneta (2010), Chernozhukov, Fernández-Val, and Kowalski (2015).

8In particular, the sample has information on: (i) food and non-alcoholic beverages, (ii) alcoholic beverages and
tobacco, (iii) clothing and footwear, (iv) housing, water, electricity, gas and other fuels, (v) home equipment and
maintenance, (vi) health, (vii) transportation, (viii) communications, (ix) recreation and culture, (x) education, (xi)
restaurants and hotels, and (xii) miscellaneous goods and services. Both expenses and income are transformed to
represent monthly values. Since the monetary values of each household are expressed in current currency at the time
of the survey, an inflation adjustment was made to transform them into constant currency for December of the fourth
quarter of 2018 using the Consumer Price Index (CPI) computed by national statistical office, INDEC.

25



Table 7: Engel’s curve for food expenditures (no additional covariates).

Quantile Partial Effect

10 25 50 75 90

Conditional distribution

CQR 0.383*** 0.407*** 0.408*** 0.408*** 0.425***
(0.000571) (0.000422) (0.000246) (0.000278) (0.000336)

Unconditional distribution

RIF (linear model) 0.367*** 0.388*** 0.427*** 0.396*** 0.393***
(0.0285) (0.0170) (0.0139) (0.0130) (0.0181)

RIF (quadratic model) 0.360*** 0.383*** 0.427*** 0.403*** 0.406***
(0.0275) (0.0166) (0.0140) (0.0129) (0.0182)

RIF (cubic model) 0.370*** 0.394*** 0.440*** 0.415*** 0.412***
(0.0279) (0.0169) (0.0143) (0.0137) (0.0183)

NW 0.395*** 0.405*** 0.408*** 0.409*** 0.410***
(0.0166) (0.0111) (0.00851) (0.00809) (0.00870)

Observations 21,017 21,017 21,017 21,012 21,017

Notes: Standard errors in parentheses (analytical for CQR, bootstrap with 200 replications for RIF and NW). *
indicates significance at 10 %, ** at 5 % and *** at 1 %.

(a) RIF and CQR. (b) NW and CQR.

Figure 6: Engel’s curves for food expenditures (no covariates).
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Table 8: Engel’s curve for food expenditures (with additional covariates).

Quantile Partial Effect

10 25 50 75 90

Conditional distribution

CQR 0.308*** 0.303*** 0.308*** 0.291*** 0.324***
(0.000733) (0.000353) (0.000416) (0.000366) (0.000507)

Unconditional distribution

RIF (linear model) 0.272*** 0.282*** 0.330*** 0.302*** 0.309***
(0.0315) (0.0186) (0.0148) (0.0149) (0.0213)

RIF (quadratic model) 0.266*** 0.278*** 0.330*** 0.310*** 0.323***
(0.0307) (0.0183) (0.0149) (0.0149) (0.0210)

RIF (cubic model) 0.280*** 0.292*** 0.347*** 0.326*** 0.330***
(0.0318) (0.0188) (0.0157) (0.0162) (0.0215)

NW 0.313*** 0.311*** 0.307*** 0.304*** 0.306***
(0.0210) (0.0142) (0.0107) (0.00948) (0.0109)

Observations 21,017 21,017 21,017 21,012 21,017

Notes: Other variables included are age, education and ownership situation of the household head, number of
children in the household, number of exclusive rooms and regional dummies. Standard errors in parentheses

(analytical for CQR, bootstrap with 200 replications for RIF and NW). * indicates significance at 10 %, ** at 5 % and
*** at 1 %.

(a) RIF and CQR. (b) NW and CQR.

Figure 7: Engel’s curves for food expenditures (with additional covariates).
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Table 9: Engel’s curve for total non-durables (no covariates).

Quantile Partial Effect

10 25 50 75 90

Conditional distribution

CQR 0.778*** 0.784*** 0.776*** 0.738*** 0.662***
(0.000359) (0.000265) (0.000211) (0.000283) (0.000295)

Unconditional distribution

RIF (linear model) 0.700*** 0.706*** 0.761*** 0.768*** 0.731***
(0.0295) (0.0194) (0.0216) (0.0229) (0.0292)

RIF (quadratic model) 0.674*** 0.693*** 0.765*** 0.792*** 0.769***
(0.0278) (0.0183) (0.0217) (0.0251) (0.0338)

RIF (cubic model) 0.683*** 0.719*** 0.801*** 0.817*** 0.774***
(0.0267) (0.0183) (0.0217) (0.0229) (0.0275)

NW 0.774*** 0.772*** 0.760*** 0.731*** 0.697***
(0.0142) (0.0102) (0.00837) (0.00855) (0.0103)

Observations 21,461 21,461 21,461 21,461 21,461

Notes: Standard errors in parentheses (analytical for CQR, bootstrap with 200 replications for RIF and NW). *
indicates significance at 10 %, ** at 5 % and *** at 1 %.

(a) RIF and CQR. (b) NW and CQR.

Figure 8: Engel’s curves for non-durable expenditures (no covariates).
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Table 10: Engel’s curve for total non-durables (with additional covariates).

Quantile Partial Effect

10 25 50 75 90

Conditional distribution

CQR 0.633*** 0.639*** 0.614*** 0.568*** 0.517***
(0.000461) (0.000359) (0.000259) (0.000297) (0.000383)

Unconditional distribution

RIF (linear model) 0.485*** 0.524*** 0.602*** 0.644*** 0.615***
(0.0284) (0.0197) (0.0208) (0.0249) (0.0291)

RIF (quadratic model) 0.460*** 0.510*** 0.605*** 0.667*** 0.653***
(0.0279) (0.0189) (0.0209) (0.0275) (0.0375)

RIF (cubic model) 0.464*** 0.545*** 0.657*** 0.703*** 0.653***
(0.0252) (0.0186) (0.0211) (0.0253) (0.0269)

NW 0.616*** 0.611*** 0.596*** 0.569*** 0.543***
(0.0161) (0.0123) (0.0107) (0.0106) (0.0117)

Observations 21,461 21,461 21,461 21,461 21,461

Notes: Other variables included are age, education and ownership situation of the household head, number of
children in the household, number of exclusive rooms and regional dummies. Standard errors in parentheses

(analytical for CQR, bootstrap with 200 replications for RIF and NW). * indicates significance at 10 %, ** at 5 % and
*** at 1 %.

(a) RIF and CQR. (b) NW and CQR.

Figure 9: Engel’s curves for non-durable expenditures (with additional covariates).
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We estimate these models for different quantiles. The results are collected in Figures 6 and
7 for food expenditures for the model without and with additional covariates, respectively, for
CQR, RIF (cubic model in the second step), and NW estimators. Figures 8 and 9 repeat the
same empirical estimates for the case of non-durable expenditures. In each case, the left (a)
panels display RIF estimates together with the CQR estimators, while the right (b) panels plot
the UQPE NW estimator also together with the same CQR. The horizontal axis corresponds to
the quantile index, which should be τ for RIF and NW unconditional estimators and η for CQR.
In Tables 7-10 we provide additional results for RIF using linear and quadratic models in the
second step.

The results in Figures 6 and 7 show evidence that CQR coefficients are roughly constant across
η, although mildly increasing. The UQPE NW is roughly constant across τ. The RIF estimate,
however, shows an increasing pattern. In all cases, the estimated effects can be interpreted as
elasticities, implying that a 1% increase in income increase food consumption in less than 1%.
For the case of non-durables, Figures 8 and 9, the RIF estimates are increasing along τ, while the
UQPE NW estimator is decreasing. The fact that RIF estimates have a larger range of variation
than CQR and that it gives the counter-intuitive increasing pattern suggest that it might be
misspecified. Nevertheless, our UQPE NW estimates clearly remain within the CQR variation.
Moreover, since the CQR coefficients are mildly increasing, the variation in the UQPE has to be
coming from the variation in the density of X given Y = Qτ[Y]. As τ increases, for the UQPE to
increase, higher CQR coefficients must be getting higher weight. This happens if the density of
"income|food= Qτ[ f ood]" is moving to the right. For this to happen, this shift has to happen and
happen relatively quickly: given food expenditure is getting higher, we expect income to become
higher, but at a faster rate than the increase in food expenditure, so that the proportion is falling.

In order to explore the results in more detail, we plot the by-product of this analysis that is
the matching quantile function. This was implicitly used for the estimation of the UQPE NW
estimator. Figure 10 plots the estimated match for τ = {0.25, 0.50, 0.75} for different values of log
income (this corresponds to the case with no additional covariates). The figures illustrate that for
each τ there is a full range of variation in the corresponding CQPE model indexed by η.

7 Conclusion

This paper considers the use of conditional quantile regression analysis to estimate unconditional
quantile partial effects. The proposed methodology is based on a matching and reweighting
result to link the unconditional effects to the conditional ones. This method thus benefits from the
usual conditional quantile regression estimation techniques, and suggests a two-step estimator
for the unconditional effects. In the first step one estimates a structural quantile regression model,
and in the second stage a non-parametric regression is applied. We establish the asymptotic
properties of the estimator. Monte Carlo simulations show evidence that the estimator has good
finite sample performance and is robust to the selection of bandwidth and kernel. To illustrate
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(a) Food (b) Non-durables

Figure 10: Estimated matching function

the proposed methods, we study Engel’s curves in Argentina.
The current paper can be extended in several directions. First, the proposed model uses a

simple linear quantile regression framework and is based on its coefficient estimators. The cur-
rent framework can be applied to any other

√
n consistent estimation procedure. In particular,

as an example, instrumental variables quantile regression and/or panel data models deliver con-
sistent estimators for the conditional effects in several related statistical models. The current
methodology could be extended to evaluate unconditional effects, starting from any initial con-
sistent conditional estimation procedure. Second, the current proposed framework can be used
to evaluate any other functional analysis related to the unconditional quantile regression one. In
other words, to recover general distributional effects. Third, the Nadaraya-Watson estimator is
the first approximation to a larger family of estimators that can be used to estimate the uncondi-
tional effects. Local linear regression models is a proposed refinement to obtain possibly better
asymptotic properties.
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Appendix A

A.1 Proof of Lemma 1

Recall that X = (X1, X′2)
′, x = (x1, x′2)

′, and X1 and x1 are one-dimensional. First we show that
CQPEX1(τ, x), defined in (2) as

CQPEX1(τ, x) : =
∂QY[τ|X1 = z, X2 = x2]

∂z

∣∣∣∣
z=x1

can be written in the way of (5) as

CQPEX1(τ, x) = − 1
fY|X(QY[τ|X = x]|x)

∂FY|X(QY[τ|X = x]|z, x2)

∂z

∣∣∣∣
z=x1

.

By definition of quantiles, we have that this identity holds for all x ∈ X for a given fixed τ:

FY|X(QY[τ|X = x]|x) = τ.

Differentiating both sides with respect to x1, we obtain

fY|X(QY[τ|X = x]|x)CQPEX1(τ, x) +
∂FY|X(QY[τ|X = x]|x)

∂z

∣∣∣∣
z=x1

= 0.

Since fY|X(QY[τ|X = x]|x) 6= 0, then the result follows by solving for CQPEX1(τ, x). Since the
matching is a singleton, then for every x, and any τ, we have QY[ξτ(x)|X = x] = QY[τ]. Thus,
we evaluate CQPEX1(τ, x) at τ = ξτ(x) to yield

CQPEX1(ξτ(x), x) = − 1
fY|X(QY[τ]|x)

∂FY|X(QY[τ]|z, x2)

∂z

∣∣∣∣
z=x1

.

Given the identification result for UQPEX1(τ) in equation (4), we have that

UQPEX1(τ) =

ˆ
CQPEX1(ξτ(x), x)

fY|X(QY[τ]|x)
fY(QY[τ])

dFX(x),

which is the result in (7). Since fY and fX are non-zero, then

fY|X(QY[τ]|x)
fY(QY[τ])

fX(x) =
fY,X(QY[τ], x)

fY(QY[τ]) fX(x)
fX(x) = fX|Y(x|QY[τ]).

Therefore, we obtain (8):

UQPEX1(τ) = E
[
CQPEX1(ξτ(X), X)|Y = QY[τ]

]
.
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A.2 Proof of Theorem 1

Let

Ψτ(η|x) = QY[η|X = x]−QY[τ].

Here, τ and x are fixed, and the criterion function is the map [ε, 1 − ε] 3 η 7→ Ψτ(η|x) for
0 < ε < 1/2. Under Assumption 1.2, y 7→ FY|X(y|x) is strictly increasing, and hence Ψτ(η|x)
has a unique zero given by ξτ(x) = FY|X(Qτ[Y]|x). This shows that Qτ[Y] is ξτ(x)-conditional
quantile of Y|X = x. By Assumption 1.1, this can be written as x′β(ξτ(x)) = Qτ[Y].

Now we will show consistency: ξ̂τ(x)
p→ ξτ(x). The matching function is defined to be the

(approximate) zero of the random criterion function Ψτ,n(η|x):

Ψτ,n(ξ̂τ(x)|x) = x′ β̂(ξ̂τ(x))− Q̂Y[τ].

Indeed, the computational procedure outlined in equation (12) implicitly defines ξ̂τ(x) as ηj for
some j in {1, 2, . . . , m} such that

x′ β̂(ηj) ≤ Q̂Y[τ] < x′ β̂(ηj+1).

We want to show that this, together with Assumption 1.5 that ensures ∆η = ηj+1− ηj = o(n−1/2),
imply that Ψτ,n(ξ̂τ(x)|x) = op(n−1/2). For a given n, let ηj = ξ̂τ(x), that is

x′ β̂(ηj) ≤ Q̂Y[τ] < x′ β̂(ηj+1)

0 ≤ Q̂Y[τ]− x′ β̂(ηj) < x′ β̂(ηj+1)− x′ β̂(ηj)

0 ≤ −Ψτ,n(ξ̂τ(x)|x) < x′
(

β̂(ηj+1)− β̂(ηj)
)

.

We focus on the difference β̂(ηj+1)− β̂(ηj). We write

β̂(ηj+1)− β̂(ηj) = β̂(ηj+1)− β(ηj+1)−
(

β̂(ηj)− β(ηj)
)

+ β(ηj+1)− β(ηj).

For the last term, we can write β(ηj+1)− β(ηj) = β′(η̃)(ηj+1− ηj) = o(n−1/2) because the deriva-
tive is bounded by Assumption 1.3. To alleviate notation, define:

J(η) = E
[

fY|X(X′β(η)|X)XX′
]

,

which is differentiable with bounded derivative by 1.3. Using Assumption 1.3 we have that

β̂(η)− β(η) = J(η)−1 1
n

n

∑
i=1

(
η − 1

{
yi ≤ x′i β(η)

})
xi + op(n−1/2),
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so that

β̂(ηj+1)− β(ηj+1)−
(

β̂(ηj)− β(ηj)
)
= J(ηj+1)

−1 1
n

n

∑
i=1

(
ηj+1 − 1

{
yi ≤ x′i β(ηj+1)

})
xi

− J(ηj)
−1 1

n

n

∑
i=1

(
ηj − 1

{
yi ≤ x′i β(ηj)

})
xi + op(n−1/2)

= J(ηj+1)
−1 1

n

n

∑
i=1

[ (
ηj+1 − 1

{
yi ≤ x′i β(ηj+1)

})
xi

−
(
ηj − 1

{
yi ≤ x′i β(ηj)

})
xi

]
+
(

J(ηj+1)
−1 − J(ηj)

−1
) 1

n

n

∑
i=1

(
ηj − 1

{
yi ≤ x′i β(ηj)

})
xi + op(n−1/2).

By Assumption 1.2, J(η) is bounded away from zero, so that J(η)−1 is bounded. We focus first
on the difference in the sums.

1
n

n

∑
i=1

(
ηj+1 − 1

{
yi ≤ x′i β(ηj+1)

}
− ηj + 1

{
yi ≤ x′i β(ηj)

})
xi.

We note first that since ηj < ηj+1, by definition of quantiles, x′i β(ηj) < x′i β(ηj+1). This means that
if 1

{
yi ≤ x′i β(ηj+1)

}
= 0, then 1

{
yi ≤ x′i β(ηj)

}
= 0, and if 1

{
yi ≤ x′i β(ηj+1)

}
= 1, then either

1
{

yi ≤ x′i β(ηj)
}
= 0, or 1

{
yi ≤ x′i β(ηj)

}
= 1. Thus, the difference

1
{

yi ≤ x′i β(ηj+1)
}
− 1

{
yi ≤ x′i β(ηj)

}
is either 1 or 0. Using this, we have∣∣∣∣∣ 1n n

∑
i=1

(
ηj+1 − 1

{
yi ≤ x′i β(ηj+1)

}
− ηj + 1

{
yi ≤ x′i β(ηj)

})
xi

∣∣∣∣∣
≤ 1

n

n

∑
i=1

∣∣ηj+1 − 1
{

yi ≤ x′i β(ηj+1)
}
− ηj + 1

{
yi ≤ x′i β(ηj)

}∣∣ |xi|

≤
∣∣ηj+1 − ηj

∣∣ 1
n

n

∑
i=1
|xi|

= o(n−1/2)Op(1) = op(n−1/2).
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Now, for the second term, we note that∣∣∣∣∣(J(ηj+1)
−1 − J(ηj)

−1
) 1

n

n

∑
i=1

(
ηj − 1

{
yi ≤ x′i β(ηj)

})
xi

∣∣∣∣∣ ≤
∣∣∣∣ J(ηj)− J(ηj+1)

J(ηj)J(ηj+1)

∣∣∣∣ 1
n

n

∑
i=1
|xi|

=

∣∣∣∣ J′(η̃)(ηj+1 − ηj)

J(ηj)J(ηj+1)

∣∣∣∣ 1
n

n

∑
i=1
|xi|

= o(n−1/2)Op(1) = op(n−1/2).

where η̃ is between ηj and ηj+1. Therefore, we have that

Ψτ,n(ξ̂τ(x)|x) = op(n−1/2).

Since ξ̂τ(x) is a Z-estimator, we follow Theorem 5.9 in van der Vaart (1998). We need to show
(i) that the criterion function converges uniformly in probability:

sup
η∈[ε,1−ε]

|Ψτ,n(η|x)−Ψτ(η|x)|
p→ 0, (A.1)

and (ii) that the zero is well-separated: for any ∆ > 0

inf
η:|η−ξτ(x)|>∆

|Ψτ(η|X)| > 0.

To show (A.1), we note that by Assumption 1.1

sup
η∈[ε,1−ε]

|Ψτ,n(η|x)−Ψτ(η|x)| = sup
η∈[ε,1−ε]

|x′ β̂(η)− Q̂Y[τ]− x′β(η) + QY[τ]|

≤ ||x|| sup
η∈[ε,1−ε]

|β̂(η)− β(η)|+ |Q̂Y[τ]−QY[τ]|

= ||x||Op(n−1/2) + Op(n−1/2)

= op(1).

where ‖ · ‖ is the Euclidean norm, and the bounds follow from Assumptions 1.3 and 1.4. To
show that the zero is well-separated, we note that by Assumption 1.2, y 7→ FY|X(y|x) is strictly
increasing, so that for any ∆ > 0, if |η − ξτ(x)| > ∆, then by the mean-value theorem

|η − FY|X(Qτ[Y]|x)| = |FY|X(Qη [Y|X = x]|x)− FY|X(Qτ[Y]|x)| = fY|X(Q̃|x)|Qη [Y|X = x]−Qτ[Y]|,

where Q̃ is between Qη [Y|X = x] and Qτ[Y]. Now, fY|X(Q̃|x) > 0. Moreover, if η > ξτ(x), then
η > ξτ(x) + ∆, so that Qη [Y|X = x] > Qξτ(x)+∆[Y|X = x] > Qξτ(x)[Y|X = x] = Qτ[Y], where
we take ∆ small enough such that η < 1. The same analysis can be carried out for η < ξτ(x), in
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which case: Qη [Y|X = x] < Qξτ(x)−∆[Y|X = x] < Qξτ(x)[Y|X = x] = Qτ[Y]. Therefore,

inf
η:|η−ξτ(x)|>∆

|Ψτ(η|X)| = inf
η:|η−ξτ(x)|>∆

fY|X(Q̃|x)|Qη [Y|X = x]−Qτ[Y]|

≥ inf
η:|η−ξτ(x)|>∆

fY|X(Q̃|x)× inf
η:|η−ξτ(x)|>∆

|Qη [Y|X = x]−Qτ[Y]|

≥ inf
y∈R

fY|X(y|x)×min
{
|Qξτ(x)+∆[Y|X = x]−Qτ[Y]|, |Qξτ(x)−∆[Y|X = x]−Qτ[Y]|

}
> 0,

where we have used that fY|X(y|x) is bounded away from zero. Finally, we can invoke Theorem
5.9 in van der Vaart (1998), since we also showed that Ψτ,n(ξ̂τ(x)|x) = op(n−1/2), therefore,
ξ̂τ(x)

p→ ξτ(x).
Having shown consistency, we now prove it is actually

√
n-consistent. To that end, we use

Assumption 1.5:

op(n−1/2) = x′ β̂(ξ̂τ(x))− Q̂Y[τ]

= x′
(

β̂(ξ̂τ(x))− β(ξ̂τ(x))
)
+ x′

(
β(ξ̂τ(x))− β(ξτ(x))

)
+ x′β(ξτ(x))−QY[τ]︸ ︷︷ ︸

=Ψτ(ξτ(x)|x)=0

−
(
Q̂Y[τ]−QY[τ]

)
.

By Assumptions 1.1, 1.2, we have that FY|X(x′β(η)|x) = η, so that x′β′(η) = fY|X(x′β(η)|x)−1 > 0,
so that we can do a first order term-by-term Taylor expansion to obtain

β(ξ̂τ(x))− β(ξτ(x)) = β̇(ξτ(x))
(
ξ̂τ(x)− ξτ(x)

)
+ op(|ξ̂τ(x)− ξτ(x)|).

Here, β̇(ξτ(X)) is the Jacobian vector: the derivative of the map τ 7→ β(τ) and op(|ξ̂τ(x)− ξτ(x)|)
is a vector of residuals of the expansion. Plugging this into the previous display, we obtain

op(n−1/2) = x′
(

β̂(ξ̂τ(x))− β(ξ̂τ(x))
)
+ x′ β̇(ξτ(x))

(
ξ̂τ(x)− ξτ(x)

)
+ op(|ξ̂τ(x)− ξτ(x)|)−

(
Q̂Y[τ]−QY[τ]

)
. (A.2)

Here the term op(|ξ̂τ(x)− ξτ(x)|) is scalar-valued and collects all the terms from x′op(|ξ̂τ(x)−
ξτ(x)|). Now, Q̂Y[τ]−QY[τ] = Op(n−1/2) by Assumption 1.4. Also, by Assumption 1.3 β̂(ξ̂τ(x))−
β(ξ̂τ(x)) ≤ supη∈[ε,1−ε] |β̂(η)− β(η)| = Op(n−1/2). Therefore, since x′ β̇(ξτ(x)) 6= 0, we have that
|ξ̂τ(x)− ξτ(x)| = Op(n−1/2).

Finally to obtain the asymptotic distribution, we go back to (A.2), and using the stochas-
tic equicontinuity guaranteed by Assumption 1.3, we replace β̂(ξ̂τ(x) − β(ξ̂τ(x) by β̂(ξτ(x) −
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β(ξτ(x)) + op(n−1/2). Therefore, we obtain

ξ̂τ(x)− ξτ(x) = − 1
x′ β̇(ξτ(X))

x′
(

β̂(ξτ(x))− β(ξτ(x))
)
+

1
x′ β̇(ξτ(x))

(
Q̂Y[τ]−QY[τ]

)
+ op(n−1/2)

= − 1
x′ β̇(ξτ(x))

1
n

n

∑
i=1

x′Ψi(ξτ(x)) +
1

x′ β̇(ξτ(x))
1
n

n

∑
i=1

ψi(τ) + op(n−1/2).

To obtain the main statement of the theorem we write

β̂1(ξ̂τ(x))− β1(ξτ(x)) = β̂1(ξ̂τ(x))− β1(ξ̂τ(x)) + β1(ξ̂τ(x))− β1(ξτ(x))

= β̂1(ξτ(x))− β1(ξτ(x)) + β̇1(ξτ(x))(ξ̂τ(x)− ξτ(x)) + op(n−1/2).

A.3 Proof of Theorem 2

To alleviate notation, we write:

m̂1(q, b, e) :=
1
n

n

∑
i=1

Kh(yi − q) · b(e(xi))

m̂2(q) :=
1
n

n

∑
i=1

Kh(yi − q).

Thus, our estimator of UQPEX1(τ) can be written as

̂UQPEX1(τ) =
m̂1(Q̂Y[τ], β̂1, ξ̂τ)

m̂2(Q̂Y[τ])
.

The unfeasible version is then

˜UQPEX1(τ) =
m̂1(QY[τ], β1, ξτ)

m̂2(QY[τ])
.

Consider the difference

̂UQPEX1(τ)− ˜UQPEX1(τ) =
m̂1(Q̂Y[τ], β̂1, ξ̂τ)

m̂2(Q̂Y[τ])
− m̂1(QY[τ], β1, ξτ)

m̂2(QY[τ])

=
m̂2(QY[τ])m̂1(Q̂Y[τ], β̂1, ξ̂τ)− m̂2(Q̂Y[τ])m̂1(QY[τ], β1, ξτ)

m̂2(Q̂Y[τ])m̂2(QY[τ])

=
m̂1(Q̂Y[τ], β̂1, ξ̂τ)− m̂1(QY[τ], β1, ξτ)

m̂2(Q̂Y[τ])

− m̂1(QY[τ], β1, ξτ)

m̂2(Q̂Y[τ])m̂2(QY[τ])

(
m̂2(Q̂Y[τ])− m̂2(QY[τ])

)
. (A.3)
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First we focus on the second term of (A.3). We note that

m̂2(Q̂Y[τ]) :=
1
n

n

∑
i=1

Kh(yi − Q̂Y[τ]) = f̂Y(Q̂Y[τ])

is an estimator of the density of Y evaluated at Q̂Y[τ], the estimator of QY[τ]; while

m̂2(QY[τ]) :=
1
n

n

∑
i=1

Kh(yi −QY[τ]) = f̂Y(QY[τ])

is an estimator of the density of Y evaluated at QY[τ]. We now show that

m̂2(Q̂Y[τ])− m̂2(QY[τ]) = f̂Y(Q̂Y[τ])− f̂Y(QY[τ])

= f ′Y(QY[τ])(Q̂Y[τ]−QY[τ]) + op(n−1/2h−1/2), (A.4)

which implies that m̂2(Q̂Y[τ])− m̂2(QY[τ]) = op(n−1/2h−1/2).
By Taylor’s theorem, we have that for some Q̃Y[τ] between Q̂Y[τ] and QY[τ]

f̂Y(Q̂Y[τ])− f̂Y(QY[τ]) = f̂ ′Y(QY[τ])(Q̂Y[τ]−QY[τ]) +
1
2

f̂ ′′Y (Q̃Y[τ])(Q̂Y[τ]−QY[τ])
2

= f ′Y(QY[τ])(Q̂Y[τ]−QY[τ])

+ ( f̂ ′Y(QY[τ])− f ′Y(QY[τ]))(Q̂Y[τ]−QY[τ])

+
1
2

f̂ ′′Y (Q̃Y[τ])(Q̂Y[τ]−QY[τ])
2.

We need to show that the second and third terms are op(n−1/2h−1/2). We start with the third
term. The second derivative of the kernel estimator is

f̂ ′′(q) =
1

nh3

n

∑
i=1

K′′
(

yi − q
h

)
.

Since the second derivative K′′ is bounded by Assumption 2: supu |K′′(u)| < ∞, then

f̂ ′′(Q̃Y[τ]) ≤
1

nh3

n

∑
i=1

sup
u
|K′′(u)| = 1

h3 sup
u
|K′′(u)|,

therefore

f̂ ′′(Q̃Y[τ]) = Op(h−3).

This means that

1
2

f̂ ′′(Q̃Y[τ])(Q̂Y[τ]−QY[τ])
2 = Op(n−1h−3).
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Now,

n1/2h1/2 1
2

f̂ ′′(Q̃Y[τ])(Q̂Y[τ]−QY[τ])
2 = n1/2h1/2Op(n−1h−3) = Op(n−1/2h−5/2) = op(1),

because nh5 → ∞ by Assumption 4. Therefore,

1
2

f̂ ′′(Q̃Y[τ])(Q̂Y[τ]−QY[τ])
2 = op(n−1/2h−1/2).

Now, for the other term, ( f̂ ′Y(QY[τ])− f ′Y(QY[τ]))(Q̂Y[τ]−QY[τ]), we focus on the derivative.
The first derivative of the kernel estimator is

f̂ ′(q) = − 1
nh2

n

∑
i=1

K′
(

yi − q
h

)
.

We approximate its mean and variance under Assumption 2. We will use the fact that, by As-
sumption 2,

´
K′(u)du = 0,

´
K′(u)udu = −1,

´
K′(u)ujdu = 0 for j = 2, ..., r, and

´
K′(u)ur+1du <

∞. In the following, f (j)
Y denotes the jth derivative.

E[ f̂ ′(q)] = − 1
h2 E

[
K′
(

Y− q
h

)]
= − 1

h2

ˆ
R

K′
(

y− q
h

)
fY(y)dy

= −1
h

ˆ
R

K′(u) fY(q + hu)du

= −1
h

ˆ
R

K′(u)

[
fY(q) +

r

∑
j=1

hjuj f (j)
Y (q)
j!

+
hr+1ur+1 f (r+1)

Y (q̃)
(r + 1)!

]
du

= f ′Y(q)−
hr

(r + 1)!

ˆ
R

K′(u)ur+1 f (r+1)
Y (q̃)du.

Since, by Assumption 3, the derivatives are bounded, the bias is

E[ f̂ ′(q)]− f ′Y(q) = O(hr).

39



For the variance term, we have

Var[ f̂ ′(q)] =
1

nh4 Var
[

K′
(

Y− q
h

)]
=

1
nh4 E

[
K′
(

Y− q
h

)2
]
− 1

nh4 E
[

K′
(

Y− q
h

)]2

=
1

nh4

ˆ
R

K′
(

y− q
h

)2

fY(y)dy− 1
nh4

[ˆ
R

K′
(

y− q
h

)
fY(y)dy

]2

=
1

nh3

ˆ
R

K′(u)2 fY(q + hu)du− 1
nh2

[ˆ
R

K′(u) fY(q + hu)du
]2

=
1

nh3

ˆ
R

K′(u)2 [ fY(q) + hu f ′Y(q̃)
]

du−O(n−1h−2)

=
fY(q)
nh3

ˆ
R

K′(u)2du + o(n−1h−2)−O(n−1h−2).

Therefore,

f̂ ′(q)− f ′(q) = Op(n−1/2h−3/2 + hr).

Finally, we have

n1/2h1/2( f̂ ′Y(QY[τ])− f ′Y(QY[τ]))(Q̂Y[τ]−QY[τ]) = n1/2h1/2Op(n−1/2h−3/2 + hr)Op(n−1/2)

= Op(n−1/2h−1 + hr+1/2)Op(1)

= op(1),

since n1/2h = (nh2)1/2 → ∞ since nh2 → ∞ because by Assumption 4 nh5 → ∞. Putting all the
results together, we obtain

f̂Y(Q̂Y[τ])− f̂Y(QY[τ]) = f ′Y(QY[τ])(Q̂Y[τ]−QY[τ]) + op(n−1/2h−1/2).

Thus, we obtain that

m̂2(Q̂Y[τ])− m̂2(QY[τ]) = op(n−1/2h−1/2). (A.5)

Now we focus on the first term of (A.3). For the numerator, consider the following decompo-
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sition

m̂1(Q̂Y[τ], β̂1, ξ̂τ)− m̂1(QY[τ], β1, ξτ) =
1
n

n

∑
i=1

Kh(yi − Q̂Y[τ]) · β̂1(ξ̂τ(xi))−
1
n

n

∑
i=1

Kh(yi −QY[τ]) · β1(ξτ(xi))

=
1
n

n

∑
i=1

[
Kh(yi − Q̂Y[τ])− Kh(yi −QY[τ])

]
· β1(ξτ(xi))︸ ︷︷ ︸

:=T1

+
1
n

n

∑
i=1

Kh(yi −QY[τ]) ·
[
β̂1(ξ̂τ(xi))− β1(ξτ(xi))

]
︸ ︷︷ ︸

:=T2

+
1
n

n

∑
i=1

[
Kh(yi − Q̂Y[τ])− Kh(yi −QY[τ])

]
·
[
β̂1(ξ̂τ(xi))− β1(ξτ(xi))

]
︸ ︷︷ ︸

:=T3

= T1 + T2 + T3. (A.6)

We start with T1 and we do a second order Taylor expansion:

T1 :=
1
n

n

∑
i=1

[
Kh(yi − Q̂Y[τ])− Kh(yi −QY[τ])

]
· β1(ξτ(xi))

=
(
Q̂Y[τ]−QY[τ]

) 1
n

n

∑
i=1

∂Kh(yi − q)
∂q

∣∣∣∣
q=QY [τ]

· β1(ξτ(xi))

+
1
2
(
Q̂Y[τ]−QY[τ]

)2 1
n

n

∑
i=1

∂2Kh(yi − q)
∂2q

∣∣∣∣
q=q̃
· β1(ξτ(xi)). (A.7)

Consider the first term. Let f (j)
Y,X(y, x) denote the jth partial derivative of fY,X(y, x) with respect

to y. The expected value is

E

[
1
n

n

∑
i=1

∂Kh(Yi − q)
∂q

∣∣∣∣
q=QY [τ]

· β1(ξτ(Xi))

]
= E

[
∂Kh(Y− q)

∂q

∣∣∣∣
q=QY [τ]

· β1(ξτ(X))

]

= − 1
h2 E

[
K′
(

Y−QY[τ]

h

)
· β1(ξτ(X))

]
= − 1

h2

ˆ ˆ
K′
(

y−QY[τ]

h

)
β1(ξτ(x)) fY,X(y, x)dydx

= −1
h

ˆ ˆ
K′(u)β1(ξτ(x)) fY,X(QY[τ] + hu, x)dudx

= −1
h

ˆ ˆ
K′(u)β1(ξτ(x))

[
fY,X(QY[τ], x)

+
r

∑
j=1

hjuj f (j)
Y,X(QY[τ], x)

j!
+

hr+1ur+1 f (r+1)
Y,X (Q̃Y[τ], x)
(r + 1)!

]
dudx,

where we used Assumption 3 to expand the joint density. The properties of the kernel of As-
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sumption 2 yield

E

[
1
n

n

∑
i=1

∂Kh(Yi − q)
∂q

∣∣∣∣
q=QY [τ]

· β1(ξτ(Xi))

]
= −1

h

ˆ ˆ
K′(u)β1(ξτ(x))

[
fY,X(QY[τ], x)

+
r

∑
j=1

hjuj f (j)
Y,X(QY[τ], x)

j!
+

hr+1ur+1 f (r+1)
Y,X (Q̃Y[τ], x)
(r + 1)!

]
dudx

=

ˆ
β1(ξτ(x)) f (1)Y,X(QY[τ], x)dx

− hr
ˆ ˆ

K′(u)β1(ξτ(x))ur+1 f (r+1)
Y,X (Q̃Y[τ], x)β1(ξτ(x))dxdu.

Therefore, the bias is of order O(hr):

E

[
1
n

n

∑
i=1

∂Kh(Yi − q)
∂q

∣∣∣∣
q=QY [τ]

· β1(ξτ(Xi))

]
=

ˆ
β1(ξτ(x)) f (1)Y,X(QY[τ], x)dx + O(hr).

For the variance, we have

Var

[
1
n

n

∑
i=1

∂Kh(Yi − q)
∂q

∣∣∣∣
q=QY [τ]

· β1(ξτ(Xi))

]
=

1
nh4 Var

[
K′
(

Y−QY[τ]

h

)
β1(ξτ(X))

]

=
1

nh4 E

[
K′
(

Y−QY[τ]

h

)2

β1(ξτ(X))2

]

− 1
nh4 E

[
K′
(

Y−QY[τ]

h

)
β1(ξτ(X))

]2

.

We take care of each term at a time.

1
nh4 E

[
K′
(

Y−QY[τ]

h

)2

β1(ξτ(X))2

]
=

1
nh4

ˆ ˆ
K′
(

y− q
h

)2

β1(ξτ(x))2 fY,X(QY[τ], x)dydx

=
1

nh3

ˆ ˆ
K′(u)2β1(ξτ(x))2 fY,X(QY[τ] + hu, x)dudx

=
1

nh3

ˆ ˆ
K′(u)2β1(ξτ(x))2

[
fY,X(QY[τ], x) + hu f (1)Y,X(Q̃Y[τ], x)

]
dudx

=
1

nh3

ˆ ˆ
K′(u)2β1(ξτ(x))2 fY,X(QY[τ], x)dudx + o(n−1h−2).

For the other term, we have

1
nh4 E

[
K′
(

Y−QY[τ]

h

)
β1(ξτ(X))

]2

=
1

nh4

[ˆ ˆ
K′
(

y−QY[τ]

h

)
β1(ξτ(x)) fY,X(y, x)dydx

]2

=
1

nh2

[ˆ ˆ
K′(u)β1(ξτ(x)) fY,X(QY[τ] + hu, x)dudx

]2

= O(n−1h−2).
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Combining the bias and variance results, we obtain

E

[
1
n

n

∑
i=1

∂Kh(Yi − q)
∂q

∣∣∣∣
q=QY [τ]

· β1(ξτ(Xi))

]
−
ˆ

β1(ξτ(x)) f (1)Y,X(QY[τ], x)dx = Op(n−1/2h−3/2 + hr).

For the remaining term in (A.7) we use the fact that by Assumption 2, the second derivative
of the kernel is bounded:

1
n

n

∑
i=1

∂2Kh(yi − q)
∂2q

∣∣∣∣
q=q̃
· β1(ξτ(xi)) =

1
nh3

n

∑
i=1

K′′
(

yi − q̃
h

)
· β1(ξτ(xi))

≤
supu∈R |K′′(u)|

h3 · 1
n

n

∑
i=1

β1(ξτ(xi))

= Op(h−3),

since 1
n ∑n

i=1 β1(ξτ(xi)) = Op(1).
Now we show that T2 in (A.6) satisfies

T2 :=
1
n

n

∑
i=1

Kh(yi −QY[τ]) ·
[
β̂1(ξ̂τ(xi))− β1(ξτ(xi))

]
= op(n−1/2h−1/2).

We use the following decomposition, similar to the one in Theorem 1:

β̂1(ξ̂τ(x))− β1(ξτ(x)) = β̂1(ξ̂τ(x))− β1(ξ̂τ(x)) + β1(ξ̂τ(x))− β1(ξτ(x)).

We have

T2 :=
1
n

n

∑
i=1

Kh(yi −QY[τ]) ·
[
β̂1(ξ̂τ(xi))− β1(ξτ(xi))

]
=

1
n

n

∑
i=1

Kh(yi −QY[τ]) ·
[
β̂1(ξ̂τ(xi))− β1(ξ̂τ(xi))

]
+

1
n

n

∑
i=1

Kh(yi −QY[τ]) ·
[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]
≤ sup

η∈[ε,1−ε]

|β̂(η)− β(η)| 1
n

n

∑
i=1

Kh(yi −QY[τ]) +
1
n

n

∑
i=1

Kh(yi −QY[τ]) ·
[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]
.

Here we use supη∈[ε,1−ε] |β̂(η)− β(η)| = Op(n−1/2) and 1
n ∑n

i=1 Kh(yi − QY[τ]) = Op(1), to con-
clude that the first term is op(n−1/2h−1/2). By the Cauchy-Schwarz inequality, the second term is
bounded by

1
n

n

∑
i=1

Kh(yi −QY[τ]) ·
[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]
≤

1√
h

[
1

nh

n

∑
i=1

K
(

yi −QY[τ]

h

)2
]1/2

·
[

1
n

n

∑
i=1

[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]2
]1/2

.
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Here

1
nh

n

∑
i=1

K
(

yi −QY[τ]

h

)2

= Op(1).

For the other term, we use Markov’s inequality

Pr

[
1
n

n

∑
i=1

[β1(e(Xi))− β1(ξτ(Xi))]
2 > ε

] ∣∣∣∣
e=ξ̂τ

≤ 1
nε

E

∣∣∣∣∣ n

∑
i=1

[β1(e(Xi))− β1(ξτ(Xi))]
2

∣∣∣∣∣
∣∣∣∣
e=ξ̂τ

≤ 1
ε

E
[
[β1(e(Xi))− β1(ξτ(Xi))]

2
] ∣∣

e=ξ̂τ
.

Since by Assumption 5, E
[(

n1/4 [β1(e(Xi))− β1(ξτ(Xi))]
)2
] ∣∣

e=ξ̂τ
= op(1), then

T2 :=
1
n

n

∑
i=1

Kh(yi −QY[τ]) ·
[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]
= op(n−1/2).

Hence,

T2 :=
1
n

n

∑
i=1

Kh(yi −QY[τ]) ·
[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]
= op(n−1/2h−1/2).

For T3 in (A.6), we have

T3 :=
1
n

n

∑
i=1

[
Kh(yi − Q̂Y[τ])− Kh(yi −QY[τ])

]
·
[
β̂1(ξ̂τ(xi))− β1(ξτ(xi))

]
≤ sup

η∈[ε,1−ε]

|β̂(η)− β(η)| 1
n

n

∑
i=1

[
Kh(yi − Q̂Y[τ])− Kh(yi −QY[τ])

]
+

1
n

n

∑
i=1

[
Kh(yi − Q̂Y[τ])− Kh(yi −QY[τ])

]
·
[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]
.

By (A.5) we have that

sup
η∈[ε,1−ε]

|β̂(η)− β(η)| 1
n

n

∑
i=1

[
Kh(yi − Q̂Y[τ])− Kh(yi −QY[τ])

]
= Op(n−1/2)op(n−1/2h−1/2)

= op(n−1h−1/2).

44



For other term we have

1
n

n

∑
i=1

[
Kh(yi − Q̂Y[τ])− Kh(yi −QY[τ])

]
·
[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]
= (Q̂Y[τ]−QY[τ])

1
nh2

n

∑
i=1

K′
(

yi − Q̃Y[τ]

h

)
·
[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]
≤ (Q̂Y[τ]−QY[τ])

1
h

[
1

nh2

n

∑
i=1

K′
(

yi − Q̃Y[τ]

h

)2]1/2

·
[

1
n

n

∑
i=1

[
β1(ξ̂τ(xi))− β1(ξτ(xi))

]2
]1/2

= Op(n−1/2)
1
h

op(n−1/4)

= op(n−3/4h−1),

since

1
nh2

n

∑
i=1

K′
(

yi − Q̃Y[τ]

h

)2

= Op(1).

Now, n1/2h1/2n−3/4h−1 = n−1/4h−1/2, so we need nh2 → ∞, which is satisfied by Assumption 4
which states nh5 → ∞. Therefore, T3 is op(n−1/2h−1/2). This means that

m̂1(Q̂Y[τ], β̂1, ξ̂τ)− m̂1(QY[τ], β1, ξτ) = op(n−1/2h−1/2). (A.8)

Therefore, (A.5) and (A.8) imply that (A.3) is actually

̂UQPEX1(τ)− ˜UQPEX1(τ) = op(n−1/2h−1/2).

A.4 Proof of Corollary 1

Recall that by equation (11), we have that

UQPEX1(τ) = E [β1(ξτ(X))|Y = QY[τ]] ,

and that we defined

Uτ := β1(ξτ(X))− E [β1(ξτ(X))|Y]

and, by construction, E[Uτ|Y] = 0 a.s. and, by Assumption 6, E[U2
τ|Y = y] = σ2

τ(y) < ∞ for
every y in the support of Y. Moreover, for (xi, yi), we have

uτ,i := β1(ξτ(xi))− E [β1(ξτ(X))|Y = yi] . (A.9)
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We focus on

√
nh
(

˜UQPEX1(τ)−UQPEX1(τ)
)
=
√

nh
(

∑n
i=1 Kh(yi −QY[τ]) · β1(ξτ(xi))

∑n
i=1 Kh(yi −QY[τ])

−UQPEX1(τ)

)
=
√

nh
(

∑n
i=1 Kh(yi −QY[τ]) · [β1(ξτ(xi))−UQPEX1(τ)]

∑n
i=1 Kh(yi −QY[τ])

)
=
√

nh
(

∑n
i=1 Kh(yi −QY[τ]) · uτ,i

∑n
i=1 Kh(yi −QY[τ])

)
+
√

nh

(
1
n ∑n

i=1 Kh(yi −QY[τ]) · [E [β1(ξτ(X))|Y = yi]−UQPEX1(τ)]
1
n ∑n

i=1 Kh(yi −QY[τ])

)
.

(A.10)

Consider the first term:

√
nh
(

∑n
i=1 Kh(yi −QY[τ]) · uτ,i

∑n
i=1 Kh(yi −QY[τ])

)
=

1
f̂Y(QY[τ])

n

∑
i=1

1√
nh

K
(

yi −QY[τ]

h

)
· uτ,i.

For this term we use the Lindberg-Feller CLT. First we compute the variance of the sum.

Var

[
n

∑
i=1

1√
nh

K
(

Yi −QY[τ]

h

)
· uτ,i

]
=

1
h

E

[
K
(

Y−QY[τ]

h

)2

σ2
τ(Y)

]

=
1
h

ˆ
K
(

y−QY[τ]

h

)2

σ2
τ(y) fY(y)dy

=

ˆ
K(u)2σ2(QY[τ] + hu) fY(QY[τ] + hu)du

→ σ2
τ(QY[τ]) fY(QY[τ])

ˆ
K(u)2du.

because σ2
τ(y) and fY(y) are continuous, and are bounded. The conclusion follows from the

dominated convergence theorem. We write

σ2
τ,n := Var

[
n

∑
i=1

1√
nh

K
(

Yi −QY[τ]

h

)
· uτ,i

]
→ σ2

τ,0.

To apply the Lindberg-Feller CLT, we define

ωin :=
1√
nh

K
(

Yi −QY[τ]

h

)
.

We need to show that, for some δ > 0,

lim
n→∞

n

∑
i=1

E
∣∣∣∣ωinUτ,i

στ,n

∣∣∣∣2+δ

= 0.
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We have

n

∑
i=1

E
∣∣∣∣ωinUτ,i

στ,n

∣∣∣∣2+δ

=
n

∑
i=1

∣∣∣∣στ,0

στ,n

∣∣∣∣2+δ

E
∣∣∣∣ωinuτ,i

στ,0

∣∣∣∣2+δ

.

It will be sufficient to focus on

n

∑
i=1

E
∣∣∣∣ωinUτ,i

σ0,τ

∣∣∣∣2+δ

=
n

|σ0,τ|2+δ
E |ωinUτ,i|2+δ

=
n

|σ0,τ|2+δ
E
[
|ωin|2+δE[|Uτ,i|2+δ|Yi]

]
≤ C

n
|σ0,τ|2+δ

E
[
|ωin|2+δ

]
=

Cn
|σ0,τ|2+δ

(nh)−1−δ/2
ˆ

K
(

y−QY[τ]

h

)2+δ

fY(y)dy

=
Cn

|σ0,τ|2+δ
(nh)−1−δ/2h

ˆ
K(u)2+δ fY(QY[τ] + hu)du

=
c

(nh)δ/2

ˆ
K(u)2+δ fY(QY[τ] + hu)du,

which goes to 0 since (nh)1/2 → ∞ and fY(y) is continuous at y = QY[τ]. We have used
the bound of the higher order conditional expectation of Uτ: E[|Uτ,i|2+δ|Yi] < C a.s., and that´
|K(u)|2+δdu < ∞. Therefore,

1
f̂Y(QY[τ])

n

∑
i=1

1√
nh

K
(

yi −QY[τ]

h

)
· uτ,i

d→ N
(

0, σ2
τ(QY[τ]) fY(QY[τ])

−1
ˆ

K(u)2du
)

(A.11)

since f̂Y(QY[τ]) = fY(QY[τ]) + op(1).

The second term in the expansion of
√

nh
(

˜UQPEX1(τ)−UQPEX1(τ)
)

is a bias term. We
now find its rate of convergence. We start with the numerator.

E

[
1
n

n

∑
i=1

Kh(Yi −QY[τ]) · [E [β1(ξτ(X))|Y = Yi]−UQPEX1(τ)]

]

=
1
h

ˆ
Y

K
(

y−QY[τ]

h

)
[E [β1(ξτ(X))|Y = y]−UQPEX1(τ)] fY(y)dy

=

ˆ
K(u) [E [β1(ξτ(X))|Y = QY[τ] + hu]−UQPEX1(τ)] fY(QY[τ] + hu)du

=

ˆ
K(u) [E [β1(ξτ(X))|Y = QY[τ] + hu]−UQPEX1(τ)] fY(QY[τ] + hu)du

=

ˆ
K(u)E [β1(ξτ(X))|Y = QY[τ] + hu] fY(QY[τ] + hu)du

−UQPEX1(τ)

ˆ
Y

K(u) fY(QY[τ] + hu)du.
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We do a Taylor expansion on the density and the conditional expectation and we use the fact
that

´
K(u)du = 1,

´
ujK(u)du = 0 when j = 1, . . . , r− 1, and

´
urK(u)du < ∞. Let (E fY)

(j)(q)
denote the j-derivative with respect to y of the product E [β1(ξτ(X))|Y = y] fY(y) evaluated at
y = q. The first term is

ˆ
K(u)E [β1(ξτ(X))|Y = QY[τ] + hu] fY(QY[τ] + hu)du

= UQPEX1(τ) +

ˆ
K(u)

r−1

∑
j=1

hjuj(E fY)
(j)(QY[τ])

j!
du

+
hr

r!

ˆ
K(u)ur(E fY)

(j)(Q̃Y[τ])du

= UQPEX1(τ) + O(hr),

since the derivatives are uniformly bounded. Now, for the other term we do a similar expansion
of the density.

UQPEX1(τ)

ˆ
Y

K(u) fY(QY[τ] + hu)du

= UQPEX1 +

ˆ
Y

K(u)
r−1

∑
j=1

hjuj f (j)
Y (QY[τ])

j!
du +

hr

r!

ˆ
K(u)ur f (r)Y (Q̃Y[τ])du

= UQPEX1(τ) + O(hr).

Therefore, we obtain that the bias is of order O(hr):

E

[
1
n

n

∑
i=1

Kh(Yi −QY[τ]) · [E [β1(ξτ(X))|Y = Yi]−UQPEX1(τ)]

]
= O(hr).

Now, for the variance we have

Var

[
1
n

n

∑
i=1

Kh(Yi −QY[τ]) · [E [β1(ξτ(X))|Y = Yi]−UQPEX1(τ)]

]

=
1

nh2 Var
[

K
(

Yi −QY[τ]

h

)
[E [β1(ξτ(X))|Y = Yi]−UQPEX1(τ)]

]
≤ 1

nh2 E

[
K
(

Yi −QY[τ]

h

)2

[E [β1(ξτ(X))|Y = Yi]−UQPEX1(τ)]
2

]

=
1

nh2

ˆ
K
(

y−QY[τ]

h

)2

[E [β1(ξτ(X))|Y = y]−UQPEX1(τ)]
2 fY(y)dy

=
1

nh

ˆ
K(u)2 [E [β1(ξτ(X))|Y = QY[τ] + hu]−UQPEX1(τ)]

2 fY(QY[τ] + hu)du

=
1

nh

ˆ
K(u)2[huE(1) [β1(ξτ(X))|Y = Q̃Y[τ]

]
]2
[

fY(QY[τ]) + hu f (1)Y (Q̃Y[τ])
]

du.
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This implies that

Var

[
1
n

n

∑
i=1

Kh(Yi −QY[τ]) · [E [β1(ξτ(X))|Y = Yi]−UQPEX1(τ)]

]
= O(n−1h).

Therefore, we obtain that

1
n

n

∑
i=1

Kh(Yi −QY[τ]) · [E [β1(ξτ(X))|Y = Yi]−UQPEX1(τ)] = Op(hr + n−1/2h1/2).

Under Assumption 4, this term is op(n−1/2h−1/2), since

(nh)1/2Op(hr + n−1/2h1/2) = Op((nh)1/2hr + h1/4) = op(1),

since (nh)1/2hr → 0, and h→ 0 as n→ ∞. Therefore, the bias term is

√
nh

(
1
n ∑n

i=1 Kh(yi −QY[τ]) · [E [β1(ξτ(X))|Y = yi]−UQPEX1(τ)]
1
n ∑n

i=1 Kh(yi −QY[τ])

)
=

op(1)
fY(QY[τ]) + op(1)

= op(1).

Combining this fact with (A.11), we obtain

√
nh
(

˜UQPEX1(τ)−UQPEX1(τ)
)

d→ N
(

0, σ2
τ(QY[τ]) fY(QY[τ])

−1
ˆ

K(u)2du
)

.

In view of the result in Theorem 2, we have

√
nh
(

̂UQPEX1(τ)−UQPEX1(τ)
)

d→ N
(

0, σ2
τ(QY[τ]) fY(QY[τ])

−1
ˆ

K(u)2du
)

.

A.5 Inference for the matching function

By Theorem 1, we have that

ξ̂τ(x)− ξτ(x) = − 1
x′ β̇(ξτ(x))

1
n

n

∑
i=1

x′Ψi(ξτ(x)) +
1

x′ β̇(ξτ(x))
1
n

n

∑
i=1

ψi(τ) + op(n−1/2).

We use this influence function representation to estimate the asymptotic variance. First, consider
the term x′ β̇(ξτ(x)). Assumptions 1.1 and 1.2, allow us to write FY|X(x′β(η)|x) = η, so that
x′ β̇(η) = fY|X(x′β(η)|x)−1, and hence

x′ β̇(ξτ(x)) =
1

fY|X(x′β(ξτ(x))|x) .

The function η 7→ fY|X(x′β(η)|x)−1 is usually called the sparcity function. It plays a central role
in inference for quantile regression, see Section 3.4.2 in Koenker (2005), but also in (conditional)
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mode estimation as in Ota, Kato, and Hara (2019). The estimator is

̂x′ β̇(ξτ(x)) =

[
x′ β̂(ξ̂τ(x) + hKM)− x′ β̂(ξ̂τ(x)− hKM)

2hKM

]−1

.

In the case where either ξ̂τ(x) + hKM > 1 or ξ̂τ(x)− hKM < 0, the implementation is

̂x′ β̇(ξτ(x)) =

[
x′ β̂(ξ̂τ(x) + min

{
hKM, τmax − ξ̂τ(x)

}
)− x′ β̂(ξ̂τ(x)−min

{
hKM, ξ̂τ(x)− τmin

}
)

min
{

hKM, τmax − ξ̂τ(x)
}
) + min

{
hKM, ξ̂τ(x)− τmin

} ]−1

,

where hKM is the bandwidth of Koenker and Machado (1999), τmin = ε, and τmax = 1− ε for
some small 1/2 > ε > 0.

Now we focus on the term x′Ψi(ξτ(x)), where

Ψi(η) = E
[

fY|X(X′β(η)|X)XX′
]−1 (

η − 1
{

yi ≤ x′i β(η)
})

xi.

By Powell (1991), it can be estimated by

̂x′Ψi(ξτ(x)) = x′
[

1
2nhP

n

∑
j=1

1
{
|yj − x′j β̂(ξ̂τ(x))| ≤ hP

}
xjx′j

]−1 (
ξ̂τ(x)− 1

{
yi ≤ x′i β̂(ξ̂τ(x))

})
xi.

where hP is given in Section 3.4.2 in Koenker (2005). Finally,

ψi(τ) = fY(QY[τ])
−1 (τ − 1 {yi ≤ QY[τ]})

can be estimated by

ψ̂i(τ) = f̂Y(Q̂Y[τ])
−1 (τ − 1 {yi ≤ Q̂Y[τ]

})
.

So, the estimator of the asymptotic variance is

1
n

1

̂x′ β̇(ξτ(x))
2

n

∑
i=1

(
− ̂x′Ψi(ξτ(x)) + ψ̂i(τ)

)2
.
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