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Abstract

In a one-commodity economy with single-peaked preferences and individual
endowments, we study different ways in which reallocation rules can be strategi-
cally distorted by affecting the set of active agents. We introduce and characterize
the family of monotonic reallocation rules and show that each rule in this class is
withdrawal-proof and endowments-merging-proof, at least one is endowments-splitting-
proof and that no such rule is pre-delivery-proof.
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1 Introduction

In the context of a variable population model of an economy consisting of one non-
disposable commodity and agents with individual endowments of that commodity,
we study different ways in which reallocation rules, i.e., systematic ways of selecting
reallocations for each possible configuration of agents’ preferences and endowments,
can be strategically distorted by affecting the set of active agents. We limit our analysis
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to the case where agents’ preferences are single-peaked: up to some critical level, called
the peak, an increase in an agent’s consumption raises her welfare; beyond that level,
the opposite holds. This model has been extensively studied (see, for example, Boni-
facio, 2015; Klaus et al., 1997, 1998). We allow for variable population as in Moreno
(1996, 2002).1 To illustrate this type of problem, consider the distribution of a task
(e.g., teaching hours) among the members of a group with concave disutility of labor
(which induces single-peaked preferences over the time they dedicate to work). From
one period to the next one, external factors (e.g., research and administrative duties)
might affect preferences and a reallocation of the time assigned to each agent in the
first period (taken as benchmark for the second period) could benefit everyone. An-
other application of this model is a pollution problem in which countries have different
rates of pollution and could trade via money transfers their pollution quotas.

Our analysis will be conducted over reallocation rules which are own-peak-only (the
sole information collected by the rule from an agent’s preference to determine her re-
allocation is her peak amount) and meet the endowments lower bound (no agent is made
worse off than at her endowment). Two monotonicity properties are appealing in this
model. First, a population monotonicity. Since variable population is allowed, it is nat-
ural to ask for a monotonicity condition requiring the arrival of new agents to affect all
agents present before the change in the same direction. Adding the proviso that agents
entering the economy do not change the sign of the excess demand of the economy,
we get the property of one-sided population monotonicity (see Thomson, 1995b). Second,
a resource monotonicity. If, in case of excess demand, the individual endowments de-
crease (or increase in case of excess supply), then no individual is better off after the
change. We call this property one-sided endowments monotonicity (see Thomson, 1994b).

Our first result is a characterization of the family of reallocation rules that satisfy the
four previously mentioned properties (Theorem 1). This family of reallocation rules,
which we call “monotonic”, resembles the family of weakly sequential reallocation
rules presented by Bonifacio (2015) in that each rule in the family can be described by
a procedure that, at each stage, guarantees levels of consumption to the agents that are
adjusted throughout the process.

Following Thomson (2014), we examine robustness of monotonic reallocation rules
to various types of manipulations by affecting the set of active agents. The manipula-
tions we consider are the following:

(i) Instead of participating, an agent withdraws with her endowment. The rule is
applied without her. She then trades with one of the agents that did participate
the resources they control between the two of them in such a way that both end
up better off.

1One-commodity economies with single-peaked preferences and a social endowment are studied, for
example, by Sprumont (1991) assuming a fixed population. The first studies of the extension of this
model to allow for variable populations are Thomson (1994a, 1995b).
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(ii) Two agents can merge their endowments, and one of them withdraw. The rule
is applied without this second agent. The agent who stays may be assigned an
amount that can be divided between the two in such a way that both become at
least as well off as they would have been without the manipulation, and at least
one of them is better off.

(iii) An agent may split her endowment with some outsider (an agent with no en-
dowment). The rule is applied and the guest then transfers her assignment to the
agent who invited her in. The first agent may prefer her final assignment to what
she would have received without the manipulation.

(iv) An agent may make a pre-delivery to some other agent of the trade the latter
would be assigned if she participated. The rule is applied without the second
agent. At her final assignment, the first agent may be better off than she would
have been without the manipulation.

A rule immune to the first type of manipulation is called withdrawal-proof, and a
rule immune to the second type of manipulation is endowments-merging-proof. It turns
out that all monotonic rules satisfy both properties (Corollary 1 and Lemma 4). Im-
munity to the third type of manipulation is called endowments-splitting-proofness, and is
satisfied by the proportional reallocation rule (Remark 2). Finally, a rule immune to the
last type of manipulation is pre-delivery-proof. No monotonic reallocation rule satisfies
this property (Corollary 2).

The rest of the paper is organized as follows. In Section 2 the model and some basic
properties of reallocation rules are presented. In Section 3, monotonic reallocation rules
are defined and characterized. The different variable population manipulations are
discussed in Section 4. Final comments are gathered in Section 5.

2 Preliminaries

2.1 Model

We consider the set of natural numbers N as the set of potential agents. Denote by N
the collection of all finite subsets of N. Each i ∈ N is characterized by an endowment
ωi ∈ R+ of the good and a continuous preference relation Ri defined over R+. Call
Pi and Ii to the strict preference and indifference relations associated with Ri, respec-
tively. We assume that agents’ preferences are single-peaked, i.e., each Ri has a unique
maximum p(Ri) ∈ R+ such that, for each pair {xi, x′i} ⊂ R, we have xiPix′i as long as
either x′i < xi ≤ p(Ri) or p(Ri) ≤ xi < x′i holds. Denote by R the domain of single-
peaked preferences defined on R+. Given N ∈ N , an economy consists of a profile
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of preferences R ∈ RN and an individual endowments2 vector ω = (ωi)i∈N ∈ RN
++

and is denoted by e = (R, ω). If S ⊂ N and R ∈ RN, let RS = (Rj)j∈S denote the
restriction of R to S. We often write N \ S by −S. Using similar notation for the vector
of endowments, e′ = (R′

S, R−S, ω′
S, ω−S) stands for the economy where the preference

and endowment of agent i ∈ S are R′
i and ω′

i , and those of agent i /∈ S are Ri and
ωi. Let EN be the domain of economies with agents in N. Given e = (R, ω) ∈ EN,
let z(e) = ∑j∈N(p(Rj) − ωj). If z(e) ≥ 0 we say that economy e has excess demand
whereas if z(e) < 0 we say that economy e has excess supply. Let E =

⋃
N∈N EN

denote the set of all potential economies. For each N ∈ N and each e ∈ EN, let
Z(e) = {z ∈ RN

+ : ∑j∈N zj = ∑j∈N ωj} be the set of reallocations for economy e, and
let Z =

⋃
e∈E Z(e). A reallocation rule is a function φ : E → Z such that φ(e) ∈ Z(e)

for each e ∈ E . For each N ∈ N , each i ∈ N, and each e ∈ EN, let ∆φi(e) = φi(e)− ωi

be agent i’s net trade at e.

2.2 Basic properties

The next informational simplicity property states that if an agent unilaterally changes
her preference for another one with the same peak, then her allotment remains un-
changed.

Own-peak-only: For each e = (R, ω) ∈ EN, each i ∈ N, and each R′
i ∈ R such that

p(R′
i) = p(Ri), if e′ = (R′

i, RN\{i}, ω) then φi(e′) = φi(e).

This property is weaker than the “peak-only” property,3 that has been imposed in a
number of axiomatic studies. Analyzing the uniform rule, Sprumont (1991) derives
the own-peak-only property from other axioms (see also Ching, 1992, 1994).

The following property requires respecting ownership of the resource, and also can
be seen as giving incentive to participate in the exchange process. It says that no agent
can get a reallocation that she finds worse than her endowment.

Endowments lower bound: For each e = (R, ω) ∈ EN, and each i ∈ N, φi(e)Riωi.

Next, we present our two monotonicity properties. The first one requires that as
population enlarges, and the new resources and preferences considered are not as dis-
ruptive as to modify the status of the economy from excess demand to excess supply or
vice versa, the welfare of each of the initially present agents should move in the same
direction.

One-sided population monotonicity: For each e = (R, ω) ∈ EN, each N′ ⊂ N, and
each e′ = (RN′ , ωN′) ∈ EN′

, z(e) z(e′) ≥ 0 implies either φi(e)Ri φi(e′) for each i ∈ N′

2Throughout the paper we assume that individual endowments of all agents are always strictly pos-
itive.

3Peak-only: For each e = (R, ω) ∈ EN and each R′ ∈ R such that p(R′
i) = p(Ri) for each i ∈ N, if

e′ = (R′, ω) then φ(e′) = φ(e).
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or φi(e′)Ri φi(e) for each i ∈ N′.

The second one requires all agents to benefit from a favorable change in the amount to
allocate. Given two vectors x, y ∈ RN, define x ⩾ y if and only if xi ≥ yi for each i ∈ N.

One-sided endowments monotonicity: For each e = (R, ω) ∈ EN, and each ω′ ∈ RN

such that ω′ ⩾ ω, if e′ = (R, ω′), then z(e′) ≥ 0 implies φi(e′)Ri φi(e) for each i ∈ N,
and z(e) ≤ 0 implies φi(e)Ri φi(e′) for each i ∈ N.

The usual Pareto optimality property states that, for each economy, the reallocation
selected by the rule should be such that there is no other reallocation that all agents
find at least as desirable and at least one agent prefers. In this model, it is equivalent
to the following same-sidedness condition:

Efficiency: For each e = (R, ω) ∈ EN, z(e) ≥ 0 implies φi(e) ≤ p(Ri) for each i ∈ N,
and z(e) ≤ 0 implies φi(e) ≥ p(Ri) for each i ∈ N.

Lemma 1 Each own-peak-only and one-sided endowments monotonic reallocation rule that
meets the endowments lower bound is efficient.

Proof. Let φ be an own-peak-only, one-sided endowments monotonic rule that meets the
endowments lower bound, and assume φ is not efficient. Then, there is e = (R, ω) ∈ EN

such that φ is not same-sided at e. Without loss of generality, assume z(e) ≥ 0 (the
other case is similar). Thus, there is i ∈ N such that φi(e) > p(Ri). This implies that

φi(e) ≤ ωi. (1)

To see that (1) holds, first assume p(Ri) ≤ ωi < φi(e). By single-peakedness, ωiPi φi(e),
contradicting the endowments lower bound. Second, assume ωi < p(Ri). Let R̃i ∈ R be
such that p(R̃i) = p(Ri), and ωiP̃i φi(e) and let ẽ = (R̃i, R−i, ω). By the own-peak-
only property, φi(ẽ) = φi(e). Hence, ωiP̃i φi(ẽ), contradicting the endowments lower
bound. Therefore, (1) holds. Next, let ω′

i ∈ R+ be such that ω′
i ≤ p(Ri), and let

e′ = (R, ω′
i , ω−i). By the endowments lower bound and the own-peak-only property, ω′

i ≤
φi(e′) ≤ p(Ri). Let Ri ∈ R be such that p(Ri) = p(Ri) and φi(e′)Pi φi(e), and let
e = (Ri, R−i, ω′

i , ω−i). By the own-peak-only property, φi(e)Pi φi(e), contradicting one-
sided endowments monotonicity since z(e) ≥ 0. □

The following result will be useful in the rest of the paper.

Lemma 2 Let φ be an efficient and own-peak-only reallocation rule that meets the endowments
lower bound. Let e = (R, ω) ∈ EN and i ∈ N. If either z(e) ≥ 0 and p(Ri) ≤ ωi, or
z(e) ≤ 0 and p(Ri) ≥ ωi, then φi(e) = p(Ri).

Proof. Let φ satisfy the properties in the lemma and let e ∈ EN and i ∈ N . Assume
z(e) ≥ 0 and p(Ri) ≤ ωi. Since z(e) ≥ 0, by efficiency, φi(e) ≤ p(Ri). If p(Ri) = ωi,
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φi(e) = p(Ri) by the endowments lower bound. Suppose, then, that p(Ri) < ωi and
φi(e) < p(Ri). Let R′

i ∈ R and xi ∈ R+ be such that p(R′
i) = p(Ri), φi(e) < xi < p(Ri)

and xi I′i ωi. Let e′ = (R′
i, RN\{i}, ω). By the own-peak-only property, φi(e′) = φi(e). Then,

ωiP′
i φi(e′), contradicting the endowments lower bound. A similar reasoning establishes

the same conclusion when z(e) ≤ 0 and p(Ri) ≥ ωi. □

3 Monotonic reallocation rules

In this section we present a well-behaved class of reallocation rules. These reallocation
rules, which we call “monotonic”, resemble the weakly sequential reallocation rules
presented by Bonifacio (2015) in that each rule can be described by an easy step-by-
step procedure that, at each stage, guarantees levels of consumption to the agents that
are adjusted throughout the process.4

3.1 Definition

For each N ∈ N and each e = (R, ω) ∈ EN, let Q(e) ≡ {q ∈ RN : ∑j∈N qj = 0 and ω +

q ⩾ 0} be the possible net trades of endowments in economy e and let Q ≡ ⋃
e∈E Q(e).

Next, define Q ≡ {(q, e) ∈ Q × E : q ∈ Q(e)}. Each element of Q specifies a net trade
in a particular economy. A monotonic reallocator is a function that, for each N ∈ N
and each economy e = (R, ω) ∈ EN, starting from the individual endowments of the
agents (i.e., from a net trade q0

i equal to zero for each agent i ∈ N), generates iteratively
a sequence of net trades q0, q1, . . . , q|N|−1, . . . Its iterative application is constrained to
follow monotonic features.

Definition 1 A monotonic reallocator is a function g : Q → Q such that g(q, e) ∈ Q(e)
and, for each N ∈ N , and each e = (R, ω) ∈ EN, if (qt, e) = g(qt−1, e) ≡ gt(0, e), then:5

(i) for each i ∈ N, and each t ≥ 1,

qt
i = p(Ri)− ωi whenever

z(e) ≥ 0 and p(Ri) ≤ ωi + qt−1
i

z(e) < 0 and p(Ri) ≥ ωi + qt−1
i .

(ii) for each i ∈ N, and each t ≥ 1,

qt
i ≥ qt−1

i whenever z(e) ≥ 0 and p(Ri) > ωi + qt−1
i

qt
i ≤ qt−1

i whenever z(e) < 0 and p(Ri) < ωi + qt−1
i .

4Weakly sequential reallocation rules, in turn, follow closely the definition of the sequential rules
presented in Barberà et al. (1997) for economies with a social endowment to be allotted.

5Here gt denotes g compose with itself t times.
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(iii) for each ẽ = (R, ω̃) ∈ EN such that ω̃ ⩾ ω and (q̃|N|−1, ẽ) = g|N|−1(0, ẽ),

ω̃ + q̃|N|−1 ≥ ω + q|N|−1 whenever z(e) ≤ 0 or z(ẽ) ≥ 0.

(iv) for each Ñ ⊂ N, each ẽ = (RÑ, ωÑ) ∈ E Ñ, and (q̃|Ñ|−1, ẽ) = g|Ñ|−1(0, ẽ),

[
q̃|Ñ|−1

i − q|N|−1
i

] [
q̃|Ñ|−1

j − q|N|−1
j

]
≥ 0 whenever

z(e) ≥ 0 and z(ẽ) ≥ 0

z(e) ≤ 0 and z(ẽ) ≤ 0

for each {i, j} ⊂ Ñ.

Let us put in words the above definition for the case of excess demand (this is,
when z(e) ≥ 0). The first two conditions relate to the behavior of the net trades of an
economy throughout the iterations of g. Condition (i) says that if at stage t − 1 agent i’s
peak is not higher than her endowment plus her net trade, i.e. p(Ri) ≤ ωi + qt−1

i , then
agent i’s net trade is set at p(Ri)− ωi from stage t onward. Condition (ii) establishes
that if at stage t − 1 agent i’s peak is higher than her endowment plus her net trade,
i.e. p(Ri) > ωi + qt−1

i , then her net trade should not decrease from stage t − 1 to stage
t, i.e. qt

i ≥ qt−1
i . The last two conditions relate to the behavior of the iterations of g

between two different economies. Condition (iii) states that, in another economy ẽ
with the same agents and preferences where no agent has lower endowment and the
increase in the resources is not disruptive, i.e. z(ẽ) ≥ 0, the resources available to each
agent in the last stage of the iterations cannot be smaller than the resources available to
each agent in the last stage of the iterations in the original economy. Finally, Condition
(iv) says that for any subeconomy with excess demand, if the net trade of one agent
in the last stage of the iteration is not smaller (bigger) than the net trade that same
agent gets in the original economy, then the net trade of each of the other agents in the
subeconomy should not be smaller (bigger) than the net trade that agent gets in the
original economy either.

Remark 1 Note that, as there are |N| agents in the economy, at most |N| − 1 adjust-
ments take place. Therefore, (q|N|+t−1, e) = g|N|+t−1(0, e) implies q|N|+t−1 = q|N|−1 for
each t ≥ 1.

Each monotonic reallocator induces a reallocation rule in a straightforward way:

Definition 2 A reallocation rule φ : E → Z is monotonic if there is a monotonic reallocator
g : Q → Q such that, for each N ∈ N and each e ∈ EN, (q|N|−1, e) = g|N|−1(0, e) implies
∆φ(e) = q|N|−1.

A prominent member of the class of monotonic reallocation rules is the uniform
reallocation rule, first studied by Thomson (1995a) (see also Klaus et al., 1997, 1998),
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that adapts the celebrated uniform rule characterized by Sprumont (1991) to the model
with individual endowments:

Uniform reallocation rule, u: for each N ∈ N , each e ∈ EN, and each i ∈ N,

ui(e) =

{
min{p(Ri), ωi + λ(e)} if z(e) ≥ 0
max{p(Ri), ωi − λ(e)} if z(e) < 0

where λ(e) ≥ 0 and solves ∑j∈N uj(e) = ∑j∈N ωj.

Within the class of monotonic reallocation rules, the uniform reallocation rule is the
only one that supports envy-free redistributions, meaning by this that for no N ∈ N ,
e ∈ EN, and pair of agents {i, j} ⊂ N such that ωi − ∆uj(e) ∈ R+, we have (ωi −
∆uj(e))Piui(e) (see Moreno, 2002, Theorem 1).

To see that the uniform reallocation rule is a monotonic reallocation rule, given e =
(R, ω) ∈ EN and q0 = (0, . . . , 0), consider the monotonic reallocator g : Q → Q defined
as follows. If (qt, e) = g(qt−1, e) then, for each i ∈ N and each t = 1, . . . , |N| − 1,

qt
i =

{
min{p(Ri)− ωi, λt} if z(e) ≥ 0
max{p(Ri)− ωi, λt} if z(e) < 0

where λ0 = 0,

λt =
t−1

∑
j=0

λj +
∑j∈Nt(ωj + λt−1 − p(Rj))

|N \ (∪t
s=1Ns)|

,

and

Nt =

{
{j ∈ N : p(Ri) ≤ ωj + qt−1

j } if z(e) ≥ 0

{j ∈ N : p(Ri) > ωj + qt−1
j } if z(e) < 0

It is easy to see that (q|N|−1, e) = g|N|−1(0, e) implies q|N|−1 = ∆u(e) for each N ∈ N
and each e ∈ EN.

Example 1 Consider e = (R, ω){1,2,3,4} with p(R1) = 0, p(R2) = 2, p(R3) = 3.5, and
p(R4) = 10; and ω1 = 9, ω2 = 1, ω3 = 0, and ω4 = 2. Then, as z(e) = 15.5 − 12 > 0,

λ1 = 3 and thus q1 = (−9, 3, 3, 3),

λ2 = 4 and thus q2 = (−9, 1, 4, 4),

λ3 = 4.5 and thus q3 = (−9, 1, 3.5, 4.5).

Therefore, u(e) = (0, 2, 3.5, 6.5). ♢

Another monotonic reallocation rule, that will be analyzed in Section 4.3, is the
proportional reallocation rule that we present next.

Proportional reallocation rule, φp: for each N ∈ N , each e ∈ EN, and each i ∈ N,
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φ
p
i (e) =

{
min{p(Ri), λ(e)ωi} if z(e) ≥ 0
max{p(Ri), λ(e)ωi} if z(e) ≤ 0

where λ(e) ≥ 1 and solves ∑j∈N φ
p
j (e) = ∑j∈N ωj.6

3.2 Characterization

The next result states that the class of monotonic rules is characterized by the own-
peak-only property, the endowments lower bound, one-sided endowments monotonicity and
one-sided population monotonicity:

Theorem 1 A reallocation rule satisfies the own-peak-only property, the endowments lower
bound, one-sided endowments monotonicity, and one-sided population monotonicity if and only
if it is a monotonic reallocation rule.

Proof. (=⇒) Let φ be an own-peak-only, one-sided endowments monotonic, and one-sided
population monotonic reallocation rule that meets the endowments lower bound. By Lemma
1, φ is also efficient. The monotonic reallocator g : Q → Q is constructed as follows.
Given (qt−1, e) ∈ Q, define qt such that (qt, e) = g(qt−1, e) as

qt = φ(et)− ω (2)

where economy et = (R, ωt) ∈ EN is such that, for each i ∈ N,

ωt
i =

{
p(Ri) if z(e)[p(Ri)− ωt−1

i − qt−1
i ] ≤ 0

ωt−1
i + qt−1

i otherwise,

with ω0
i = ωi and q0

i = 0.
Let us assume that e = (R, ω) ∈ EN is such that z(e) ≥ 0. The other case is similar.

We need to see that ∆φ(e) = q|N|−1 where q|N|−1 is such that (q|N|−1, e) = g|N|−1(0, e).
In order to do this, for each t = 1, . . . , |N| − 1, let qt be such that (qt, e) = g(qt−1, e) =
gt(0, e) (notice that q0 = 0).
Claim 1: Let t ∈ {1, . . . , |N| − 1}. If p(Ri) ≥ ωt−1

i + qt−1
i for each i ∈ N, then qt = ∆φ(e).

Consider first the case t = 1. As q0 = 0, by the hypothesis p(Ri) ≥ ωi for each i ∈ N.
The endowments lower bound, efficiency, and feasibility imply φ(e) = ω, and therefore
∆φ(e) = 0. Note that, since in e1 no agent’s peak is less than her endowment and
z(e1) ≥ 0, by the same reasoning as before φ(e1) = ω. Thus, q1 = ω − ω = 0. Next, as-
sume the claim is true for each t < T. Then qT−1

i = 0 for each i ∈ N and, again, since in
eT no agent’s peak is less than her endowment and z(eT) ≥ 0, we get qT

i = 0 = ∆φ(e).
This proves the claim.
Claim 2: Let t ∈ {1, . . . , |N| − 1}. If i ∈ N is such that p(Ri) ≤ ωt−1

i + qt−1
i , then

qt
i = ∆φi(e). Let i ∈ N be such that p(Ri) ≤ ωt−1

i + qt−1
i . First, notice that when t = 1,

6Note that, since individual endowments are always strictly positive, this rule is well-defined.
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p(Ri) ≤ ω0
i + q0

i implies, as q0
i = 0 and ω0

i = ωi, that p(Ri) ≤ ωi. Then, by Lemma 2,
φi(e) = p(Ri) and, therefore,

∆φi(e) = p(Ri)− ωi. (3)

Next, let t ∈ {1, . . . , |N|}. Since ωt
i = p(Ri) and z(et) ≥ 0, by Lemma 2 applied to

economy et, we have φi(et) = p(Ri) and then qt
i = p(Ri) − ωi. Hence, by (3), qt

i =

∆φi(e). This proves the claim.
Claims 1 and 2 show that if q|N|−1 is such that (q|N|−1, e) = g|N|−1(0, e), then

q|N|−1 = ∆φ(e). It remains to be checked that function g satisfies conditions (i)-(iv)
in Definition 1. Condition (i) is clear by Claims 1 and 2. Condition (ii) follows from the
next claim.
Claim 3: for each t = 1, . . . , |N| − 1, if i ∈ N is such that p(Ri) > ωt−1

i + qt−1
i , then

qt
i ≥ qt−1

i . Let i ∈ N be such that p(Ri) > ωt−1
i + qt−1

i . Consider first the case t = 1.
Since q0 = 0 and ω0

i = ωi, by the hypothesis p(Ri) > ωi. Then, ω1
i = ωi. This implies,

as z(e1) ≥ 0, that φi(e1) ≥ ω1
i by the endowments lower bound. Hence, q1

i = φi(e1) −
ωi ≥ 0 = q0

i and thus q1
i ≥ q0

i . Next, assume the claim is true for each t < T. Then
qT−1

i ≥ qT−2
i ≥ . . . ≥ q0

i = 0. Since p(Ri) > ωT−1
i + qT−1

i implies ωT
i = ωT−1

i + qT−1
i

and z(eT) ≥ 0, by the endowments lower bound φi(eT) ≥ ωT
i = ωi + ∑T−1

k=1 qk
i . Then,

qT
i = φi(eT)− ωi ≥

T−1

∑
k=1

qk
i ≥ qT−1

i .

This proves the claim.
Condition (iii) follows from the definition of g and one-sided endowments monotonic-

ity of φ, whereas condition (iv) is consequence of the definition of g and one-sided pop-
ulation monotonicity of φ.
(⇐=) Let φ be a monotonic reallocation rule. Then there exists a monotonic reallocator
g such that, for each e = (R, ω) ∈ EN, if q|N|−1 is such that (q|N|−1, e) = g|N|−1(0, e),
then ∆φ(e) = q|N|−1. We will consider only the case z(e) ≥ 0, since an analogous
argument can be used in the case z(e) < 0. Next, we prove that φ is efficient,7 one-sided
endowments monotonic, and one-sided population monotonic.

Efficiency: We need to show that φi(e) ≤ p(Ri) for each i ∈ N. Suppose φi(e) ̸= p(Ri).
Then ωi + q|N|−1

i ̸= p(Ri). If q|N|−1
i > p(Ri)− ωi, by (i) in Definition 1 we have q|N|

i =

p(Ri) − ωi. Then, q|N|−1
i ̸= q|N|

i , contradicting Remark 1. Thus, q|N|−1
i ≤ p(Ri) − ωi

implying ∆φi(e) = q|N|−1
i ≤ p(Ri)− ωi and φi(e) ≤ p(Ri).

One-sided endowments monotonicity: Let ẽ = (R, ω̃) ∈ EN be such that ω̃ ⩾ ω and
z(ẽ) ≥ 0, let q̃|N|−1 be such that (q̃|N|−1, ẽ) = g|N|−1(0, ẽ) and consider i ∈ N such
that p(Ri) > ω̃i. By condition (iii) in Definition 1, ω̃i + q̃|N|−1

i ≥ ωi + q|N|−1
i . Then,

φi(ẽ) ≥ φi(e) and, as by efficiency p(Ri) ≥ φi(ẽ), we have φi(ẽ)Ri φi(e).

7This is used to proof the two monotonicity properties.
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One-sided population monotonicity: Let Ñ ⊂ N and ẽ = (RÑ, ωÑ) ∈ E Ñ be such that

z(ẽ) ≥ 0. Take {i, j} ⊆ Ñ. By condition (iv) in Definition 1, [q̃|Ñ|
i − q|N|

i ][q̃|Ñ|
j − q|N|

j ] ≥ 0.

Assume, without loss of generality, that q̃|Ñ|
i ≥ q|N|

i . Then, q̃|Ñ|
j ≥ q|N|

j . This implies
φi(ẽ) ≥ φi(e) and φj(ẽ) ≥ φj(e). As z(ẽ) ≥ 0, by efficiency, p(Ri) ≥ φi(ẽ) and p(Rj) ≥
φj(ẽ). Thus, φi(ẽ)Ri φi(e) and φj(ẽ)Ri φj(e).

To complete the proof, notice that φ satisfies the own-peak-only property because g does,
and meets the endowments lower bound because, for each agent, the adjustment process
at each step guarantees an amount at least as good as the individual endowment. □

The independence of the axioms involved in the characterization of Theorem 1 is
analyzed in Appendix A.

4 Variable population manipulations

In this section, we analyze each of the four properties of immunity to manipulation
presented in the introduction and its relations with the family of monotonic realloca-
tion rules.

4.1 Withdrawal-proofness

Consider an economy and suppose that an agent withdraws with her endowment and
the reallocation rule is applied without her. It could be the case that the amount that
some other agent received in the reallocation together with the endowment of the agent
that withdrew could be re-divided between the two of them in such a way that both
agents get (strictly) better off with respect to the assignments they would have obtained
if the first agent had not withdrawn. We require immunity to this sort of behavior:

Withdrawal-proofness: For each e = (R, ω) ∈ EN, each {i, j} ⊂ N and each (xi, xj) ∈
R2

+ such that xi + xj = φi(e′) + ωj, where e′ = (RN\{j}, ωN\{j}), it is not the case that
xkPk φk(e) for each k ∈ {i, j}.

Each efficient, own-peak-only, and one-sided population monotonic reallocation rule that
meets the endowments lower bound satisfies this property.

Lemma 3 Each efficient, own-peak-only, and one-sided population monotonic reallocation rule
that meets the endowments lower bound is withdrawal-proof.

Proof. Let φ satisfy the hypothesis of the Theorem. By Lemma 1, φ is also efficient.
Assume φ is not withdrawal-proof. Then, there are e = (R, ω) ∈ EN, {i, j} ⊂ N, and
(xi, xj) ∈ R2

+ such that, if e′ = (RN\{j}, ωN\{j}), then

xi + xj = φi(e′) + ωj, (4)
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and
xkPk φk(e) for each k ∈ {i, j}. (5)

Assume z(e) ≥ 0. The case z(e) ≤ 0 can be handled similarly. By (5), z(e) > 0. By
efficiency, φk(e) ≤ p(Rk) for each k ∈ N. By (5), φk(e) < xk for each k ∈ {i, j} and
therefore, by (4),

φi(e) + φj(e) < xi + xj = φi(e′) + ωj. (6)

Claim: there is k⋆ ∈ N \ {i, j} such that φk⋆(e′) < φk⋆(e). Otherwise,

∑
k∈N\{i,j}

φk(e′) ≥ ∑
k∈N\{i,j}

φk(e) (7)

and, since ∑k∈N\{j} ωk = ∑k∈N\{j} φk(e′), by (6) and (7) we have

∑
k∈N

ωk = ∑
k∈N\{j}

φk(e′) + ωj > ∑
k∈N

φk(e) = ∑
k∈N

ωk,

which is absurd. This proves the Claim.
Now, by the Claim and efficiency, φk⋆(e′) < φk⋆(e) ≤ p(Rk⋆). This implies

φk⋆(e)Pk⋆ φk⋆(e′) (8)

and also, by efficiency, z(e′) ≥ 0. By (5), φj(e) ̸= p(Rj) holds. Then, by Lemma 2,
ωj ≤ p(Rj); and by the endowments lower bound, φj(e) ≥ ωj. It follows from this and
(6) that 0 ≤ φj(e) − ωj < φi(e′) − φi(e). Therefore, φi(e′) > φi(e). As z(e′) ≥ 0, by
efficiency, φi(e′) ≤ p(Ri). Thus, φi(e) < φi(e′) ≤ p(Ri) and

φi(e′)Pi φi(e). (9)

Note that, as z(e) ≥ 0 and z(e′) ≥ 0, (8) and (9) contradict one-sided population mono-
tonicity. We conclude that φ is withdrawal-proof. □

As a consequence of the previous result and Theorem 1, the whole class of monotonic
reallocation rules precludes this kind of manipulation.

Corollary 1 Each monotonic reallocation rule is withdrawal-proof.

4.2 Endowments-merging-proofness

Another manipulation involving variable population is the following. Consider an
economy and a pair of agents in that economy. One of those agents gives her endow-
ment to the other and withdraws. The reallocation rule is applied without the first
agent and with the second agent’s enlarged endowment. The allocation that the sec-
ond agent obtains could be divided between the two agents in such a way that each
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agent is at least as well off as she would have been if the merging had not taken place,
and at least one of them is better off. We require immunity to this sort of behavior:

Endowments-merging-proofness: For each e = (R, ω) ∈ EN, each {i, j} ⊂ N and
each (xi, xj) ∈ R2

+ such that xi + xj = φi(e′), where e′ = (RN\{j}, ω′
i , ωN\{i,j}) and

ω′
i = ωi + ωj, it is not the case that xkRk φk(e) for each k ∈ {i, j}, and xkPk φk(e) for at

least one k ∈ {i, j}.

Each rule in the class of monotonic reallocation rules precludes such manipulations.

Lemma 4 Each monotonic reallocation rule is endowments-merging-proof.

Proof. Let φ be a monotonic reallocation rule. By Theorem 1, φ is one-sided endowments
monotonic. By Lemma 1, φ is also efficient. Assume φ is not endowments-merging-proof.
Then, there are e = (R, ω) ∈ EN, {i, j} ⊂ N, and (xi, xj) ∈ R2

+ such that, if e′ =

(RN\{j}, ω′
i , ωN\{i,j}), then

xi + xj = φi(e′), (10)

xkRk φk(e) for each k ∈ {i, j}, (11)

and
xkPk φk(e) for at least one k ∈ {i, j}. (12)

Assume z(e) ≥ 0. By (12), z(e) > 0. By efficiency, φk(e) ≤ p(Rk) for each k ∈ N. By
(11) and (12), xk ≥ φk(e) for each k ∈ {i, j} and xk > φk(e) for at least one k ∈ {i, j}.
Therefore, by (10),

φi(e′) = xi + xk > φi(e) + φj(e). (13)

Claim 1: there is k⋆ ∈ N \ {i, j} such that φk⋆(e′) < φk⋆(e). Otherwise,

∑
k∈N\{i,j}

φk(e′) ≥ ∑
k∈N\{i,j}

φk(e) (14)

and, since ∑k∈N\{j} ωk = ∑k∈N\{j} φk(e′), by (13) and (14) we have

∑
k∈N

ωk = ∑
k∈N\{j}

φk(e′) > ∑
k∈N

φk(e) = ∑
k∈N

ωk,

which is absurd.
Now, by Claim 1 and efficiency, φk⋆(e′) < φk⋆(e) ≤ p(Rk⋆), which implies z(e′) ≥ 0.

Let e′′ = (RN\{j}, ωN\{j}). As z(e′) ≥ 0, it follows that z(e′′) ≥ 0. By Corollary 1, φ is
withdrawal-proof, which implies that

φi(e) + φj(e) ≥ φi(e′′) + ωj. (15)

Since (ω′
i , ωN\{i,j}) ⩾ ωN\{j}, by one-sided endowments monotonicity, φk(e′)Rk φk(e′′) for

each k ∈ N \ {j}. Then efficiency implies

φk(e′) ≥ φk(e′′) for each k ∈ N \ {j}. (16)
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Combining (13) and (15) we obtain

φi(e′) > φi(e′′) + ωj. (17)

Claim 2: there is k⋆⋆ ∈ N \ {i, j} such that φk⋆⋆(e′′) > φk⋆⋆(e′). Otherwise,

∑
k∈N\{i,j}

φk(e′′) ≤ ∑
k∈N\{i,j}

φk(e′) (18)

and, since ∑k∈N\{j} ωk = ∑k∈N\{j} φk(e′′), by (17) and (18) we have

∑
k∈N

ωk = ωj + ∑
k∈N\{j}

φk(e′′) < ∑
k∈N\{j}

φk(e′) = ∑
k∈N

ωk,

which is absurd.
Therefore, by Claim 2, there is k⋆⋆ ∈ N \ {i, j} such that φk⋆⋆(e′′) > φk⋆⋆(e′). This

contradicts (16). We conclude that φ is endowments-merging-proof. □

4.3 Endowments-splitting-proofness

Consider an economy and assume that an agent in the economy transfers some of her
endowment to another agent that was not initially present; the rule is applied, and the
guest transfers her assignment to the agent who invited her in. The first agent could
obtain an amount that she prefers to her initial assignment. We require immunity to
this type of behavior:

Endowments-splitting-proofness: For each e = (R, ω) ∈ EN, each i ∈ N, each j /∈ N,
each Rj ∈ R, and each (ω′

i , ω′
j) ∈ R2

+ such that ω′
i + ω′

j = ωi, we have φi(e)Ri[φi(e′) +
φj(e′)], with e′ = (R, Rj, ω′

i , ωN\{i}, ω′
j).

Not all monotonic reallocation rules satisfy this property. The following example
shows that the uniform reallocation rule violates endowments-splitting-proofness.

Example 2 Let e = (R, ω) ∈ E{1,2,3} be such that p(R1) = 4, p(R2) = 0, p(R3) = ω1 =

ω2 = 2 and ω3 = 1. Then, u1(e) = 3, u2(e) = 0, and u3(e) = 2. Next, let R4 ∈ R be such
that p(R4) = 4 and let ω′

4 = 1. Consider the economy e′ = (R, R4, ω′
1, ω{2,3}, ω′

4) ∈
E{1,2,3,4} with ω′

1 = 1 (notice that ω1 = ω′
4 + ω′

1). It follows that u1(e′) = u3(e′) =

u4(e′) = 5
3 , u2(e′) = 0, and u1(e′) + u4(e′) = 10

3 P13 = u1(e). This implies that u is not
endowments-splitting-proof. ♢

Priority reallocation rules8 violate the property as well.

8Given a linear ≺ order over the set of potential agents N, the priority reallocation rule φ≺ for
economies with excess demand (supply) satiates all suppliers (demanders) and demanders (suppliers)
according to order ≺, respecting the endowments lower bound. For economies with excess supply, a
symmetric procedure is performed. It is easy to see that such reallocation rules are monotonic in our
sense.
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Example 3 Consider ≺ as the usual “less than” order in N. Let e = (R, ω) ∈ E{1,3,4} be
such that p(R1) = 0, ω1 = 4, p(R3) = p(R4) = 6, and ω3 = ω4 = 2. Then, φ≺

1 (e) = 0,
φ≺

3 (e) = 6, and φ≺
4 (e) = 2. Next, let R2 ∈ R be such that p(R2) = 4 and let ω2 = 1.

Consider the economy e′ = (R, R2, ω{1,3}, ω2, ω′
4) ∈ E{1,2,3,4} with ω′

4 = 1 (notice that
ω4 = ω′

4 + ω2 = 2). It follows that φ≺
1 (e

′) = 0, φ≺
2 (e

′) = 4, φ≺
3 (e

′) = 3, and φ≺
4 (e

′) = 1.
However, φ≺

2 (e
′) + φ≺

4 (e
′) = 4 + 1 = 5 P4 2 = φ≺

4 (e). This implies that φ≺ is not
endowments-splitting-proof. ♢

However, the proportional reallocation rule is immune to endowments’ splitting:

Remark 2 The proportional reallocation rule is endowments-splitting-proof.

Proof. Suppose φp is not endowments-splitting-proof. Then, there are e = (R, ω) ∈ EN,
i ∈ N, j /∈ N, Rj ∈ R, and (ω′

i , ω′
j) ∈ R2

+ with ω′
i + ω′

j = ωi such that, if e′ =

(R, Rj, ω′
i , ωN\{i}, ω′

j), then

[φ
p
i (e

′) + φ
p
j (e

′)]Pi φ
p
i (e). (19)

Consider first the case z(e) ≥ 0. By (19), φ
p
i (e) < p(Ri) and therefore

λ(e)ωi = φ
p
i (e) < φ

p
i (e

′) + φ
p
j (e

′). (20)

Since z(e′) ≥ z(e) ≥ 0,

φ
p
i (e

′) + φ
p
j (e

′) ≤ λ(e′)ω′
i + λ(e′)ω′

j = λ(e′)ωi. (21)

By (20) and (21),
λ(e) < λ(e′). (22)

It follows that there is k ∈ N \ {i} such that φ
p
k (e

′) < φ
p
k (e). Otherwise, there is a

violation of feasibility by (20). Then, λ(e′)ωk = φ
p
k (e

′) < φ
p
k (e) ≤ λ(e)ωk, which

implies λ(e′) < λ(e), contradicting (22). If z(e) ≤ 0 and z(e′) ≤ 0, the proof is similar
to the previous one. Assume then that z(e) ≤ 0 and z(e′) ≥ 0. By (19), φ

p
i (e) > p(Ri) ≥

φ
p
i (e

′). This implies the existence of k ∈ N \ {i} such that φ
p
k (e) < φ

p
k (e

′). But then,

p(Rk) ≤ φ
p
k (e) < φ

p
k (e

′) ≤ p(Rk),

which is a contradiction. Therefore, φp is endowments-splitting-proof. □

4.4 Pre-delivery-proofness

Consider now the case in which one agent makes a “pre-delivery” to some other agent
of the trade that this second agent would be assigned if she had participated with
everyone else. After the rule is applied, the first agent may end up with an amount
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she prefers to his assignment if she had not carried out the pre-delivery. We require
immunity to this sort of behavior.

Pre-delivery-proofness: For each e = (R, ω) ∈ EN and each {i, j} ⊂ N such that
ωi + ωj − φj(e) ≥ 0, φi(e)Ri φi(e′) where e′ = (RN\{j}, ω′

i , ωN\{i,j}) and ω′
i = ωi + ωj −

φj(e).

As the following proposition shows, every efficient and own-peak-only reallocation
rule that meets the endowments lower bound violates pre-delivery-proofness.

Theorem 2 No efficient and own-peak-only reallocation rule that meets the endowments lower
bound is pre-delivery-proof.

Proof. Let reallocation rule φ satisfy the hypothesis of the Proposition. Let e = (R, ω) ∈
E{1,2,3} be such that 0 < p(R1) = ω2 = ω3 < ω1 < p(R2) = p(R3). Then z(e) >

0 and, as p(R1) < ω1, by Lemma 2 we have φ1(e) = p(R1). By feasibility, there is
i⋆ ∈ {2, 3} such that φi⋆(e) < ω1. Assume, without loss of generality, that i⋆ = 2. Let
ω′

2 = ω2 +ω1 − φ1(e). Then ω′
2 = ω1. Consider now the economy e′ = (R{2,3}, ω′

2, ω3).
It follows that z(e′) > 0. By efficiency, φ2(e′) ≤ p(R2), and since p(R2) > ω′

2, by the
endowments lower bound we have φ2(e′) ≥ ω′

2 = ω1. By feasibility then, φ2(e′) = ω1.
Therefore, φ2(e) < ω1 = φ2(e′) < p(R2), which implies φ2(e′)P2φ2(e). Thus, φ is not
pre-delivery-proof. □

Of course, the previous result extends to the whole class of monotonic reallocation
rules.

Corollary 2 No monotonic reallocation rule is pre-delivery-proof.

5 Final comments

We conclude with some remarks. One may ask whether the definition of withdrawal-
proofness can be made with just one of the agents involved in the manipulation strictly
improving. However, not even the uniform reallocation rule satisfies this variant, as
the following example shows:

Example 4 Consider e = (R, ω){1,2,3,4} with p(R1) = p(R4) = 1, p(R2) = 4, p(R3) = 3,
and ω1 = ω4 = 3, ω2 = ω3 = 1. Then, z(e) > 0 and u1(e) = u4(e) = 1, u2(e) =

u3(e) = 3. When agent 4 withdraws, if e′ = (R{1,2,3}, ω{1,2,3}), then u1(e′) = 1, u2(e′) =
u3(e′) = 2. So x2 = 4 P2 3 = u2(e), x4 = 1 R1 1 = u4(e), and x2 + x4 = 5 = u2(e′) + ω4.
♢

In Thomson (2014), the property of withdrawal-proofness is presented in this variant: one
of the agents involved in the manipulation can be indifferent between the amount she
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gets from the rule and the amount she gets after the manipulation is performed. How-
ever, in all the impossibility examples presented there both agents get strictly better off,
so our version does not hold in those examples (classical multi-commodity exchange
model with homothetic and quasi-linear preferences) either.

Finally, it is worth mentioning that the results obtained in our paper are in sharp
contrast with findings in models with several goods and classical preferences. The
Walrasian reallocation rule is neither withdrawing-proof, nor endowments-merging-proof,
nor endowments-splitting-proof. These negative results are obtained by Thomson (2014)
in two classical subdomains: (i) the domain of economies in which preferences are
homothetic and strictly convex, and individual endowments are proportional, and (ii)
the domain of economies in which preferences are quasi-linear and strictly convex. The
Walrasian reallocation rule, however, is pre-delivery-proof on the classical domain (see
Thomson, 2014). “Constrained dictatorial rules”, defined by maximizing the welfare
of a particular agent subject to each of the others finding their assignment at least as
desirable as their endowment, satisfy none of these various requirements either (see
Thomson, 2022).

A Independence of axioms in Theorem 1

In order to study the independence of axioms in the characterization of Theorem 1,
next we consider several reallocation rules. For each N ∈ N and each e ∈ EN, let
N+(e) = {i ∈ N : p(Ri) > ωi} be the set of demanders of e. Agents in N \ N+ are called
suppliers. Let S(e) ≡ ∑j∈N\N+(ωj − p(Rj)).

Given a linear ⪯ order over the set of potential agents N, the priority reallocation rule
φ⪯ for each economy with excess demand (supply) satiates all suppliers (demanders)
and demanders (suppliers) according to order ⪯, respecting the endowments lower
bound. So if e = (R, ω) ∈ EN is such that z(e) ≥ 0,

φ⪯
i (e) =

{
p(Ri) if i ∈ N \ N+(e)

min
{

p(Ri), ωi + S(e)− ∑j∈N+ :j≺i ∆φj(e)
}

otherwise

In case z(e) < 0, the rule is defined similarly. Priority reallocation rules allow the
definition of a reallocation rule which is not one-sided population monotonic.

Reallocation rule φ: for each N ∈ N , each e ∈ EN, and each i ∈ N,

φi(e) =

{
φ⪯

i (e) if |N| is odd
φ⪰

i (e) if |N| is even

where ⪰ is the dual of ⪯.

Next, let us recall the celebrated uniform rule, first characterized by Sprumont (1991).
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Uniform rule, φu: for each N ∈ N , each e ∈ EN, and each i ∈ N,

φu
i (e) =

{
min{p(Ri), λ(e)} if z(e) ≥ 0
max{p(Ri), λ(e)} if z(e) < 0

where λ(e) and solves ∑j∈N φu
j (e) = ∑j∈N ωj.

Since this rule does not take into account individual endowments, it trivially does not
meet the endowments lower bound.

The following rule satiates as many agents as possible. For economies with excess
demand, demanders are satiated according to their claims. First minimal demands are
satiated uniformly. If there is some supply left, then the next smallest demands are
satiated, and so on. This reallocation rule is not one-sided endowments monotonic.

Maximally satiating reallocation rule φmax: For each N ∈ N and each e ∈ EN such
that z(e) ≥ 0, partition N+(e) into subsets N1, N2, . . . , Ns such that (i) for each t ∈
{1, . . . , s}, p(Ri)− ωi = p(Rj)− ωj for each i, j ∈ Nt, and (ii) p(Ri)− ωi < p(Rj)− ωj

if i ∈ Nr, j ∈ Ns, and r < s. Then,

φmax
i (e) = p(Ri)

if i ∈ N \ N+, and

φmax
i (e) = min

p(Ri), ωi +
1

|Nt|

S(e)− ∑
j∈∪t−1

r=1Nr

∆φj(e)


if i ∈ Nt and t ∈ {1, . . . , s}. The formula when z(e) < 0 is obtained similarly.

Own-peak-only Endow LB OS endow mon OS pop mon

φ + + + −
φmax + + − +

φu + − + +

? − + + +

Table 1: Independence of axioms in the characterization of Theorem 1.

Each one of the previously presented rules satisfies all properties of the character-
ization in Theorem 1 except one. This is shown in Table 1. For example, reallocation
rule φu satisfies both monotonicity properties and the own-peak-only property, but does
not meet the endowments lower bound. Whether there is a reallocation rule that satisfies
all properties except the own-peak-only property remains an open question.
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