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Abstract

By means of probabilistic graphical models, in this paper, we present a new framework for ex-

ploring relationships among indicators commonly included in the Multidimensional Poverty Index

(MPI). In particular, we propose an Ising model with covariates for modeling the MPI as an undi-

rected graph. First, we prove why Ising models are consistent with the theoretical distribution of

MPI indicators. Then, a comparison between our estimates and the association measures typically

used in the literature is provided. Finally, we show how undirected graphs can complement the

MPI policy relevant properties, apart from discovering further insightful patterns that can be useful

for policy purposes. This novel approach is illustrated with an empirical application for the global

MPI indicators of Guinea and Ecuador, taking living areas and monetary poverty as covariates,

respectively.
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1 Introduction

The idea of poverty as an intrinsically multidimensional phenomenon has gained consensus in

academic and policy circles over the last decades. As a result, diverse methodologies of multidi-

mensional poverty measurement have emerged with the aim of providing a more comprehensive

assessment of poverty. In particular, the framework proposed by Alkire and Foster (2011) has

received the most prominent scientific and political weighing due to its simplicity and functionality.

A Multidimensional Poverty Index (MPI) based on Alkire-Foster (AF) method satisfies a set

of properties that are insightful for policy purposes. Namely, it can be disaggregated into very

informative and consistent partial indices such as the incidence and the intensity of poverty. In

addition, the MPI can be decomposed by different population subgroups (age, gender, region, or

ethnic group) as well as broken down by the indicators that composite the MPI. In particular,

these two properties provide a deeper understanding of multidimensional poverty and contribute

to determining the priorities and the needs of specific groups for policy action (Alkire, 2020).

These informative properties are derived from the fact that the MPI contemplates the joint

distribution of deprivations. In line with recognizing that the poor may face multiple deprivations

simultaneously, each indicator included in the MPI is computed using the same benchmark popula-

tion. This aspect is important from the first steps of building the MPI to the later coordination of

policies as well. Therefore, capturing the joint distribution of deprivations is one of the cornerstones

of the institutionalization of a MPI.

Firstly, before launching a MPI, there are significant normative decisions to make, such as

determining the dimensions of poverty and which indicators are representative of those dimensions

(Alkire, 2013). Multiple indicators may mean comprehensiveness. However, the more indicators,

the greater the risk of including redundant measures. This is impractical for the further policy

uses of the MPI. Hence, it is a matter of interest to study the composition of the indicators also by

exploring their overlaps in deprivations.

Even when an already published MPI is used for establishing policy goals, it must be recognized

that building a MPI intrinsically engages an eclectic list of stakeholders (different government levels

- from ministries to local communities-, statistical offices, NGOs, private sector, etc.). This means

that MPI-oriented poverty reduction agenda requires a schematic coordination to efficiently achieve

policy objectives.

The Colombian MPI (C-MPI) is considered a good example of how a MPI is designed with the

view of facilitating multisector public policy coordination for poverty reduction (Angulo, Dı́az, &

Pardo, 2016). The C-MPI was included as part of the National Development Plan. Since diverse
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stakeholders are involved, the overall goal on the C-MPI levels coordinates sector-specific strategies

and actions. The coordination process is set by the National Roundtable to Reduce Poverty and

Inequality which performs the monitoring role of the C-MPI and involves all the ministries directly

related to the national poverty reduction strategy as well as several institutions that operate social

programs in Colombia (Angulo, 2016). How coordination works depends on the context, but it is

always facilitated by the MPI for addressing interconnected deprivations and managing changes

over time (Alkire, 2020).

Evidently, an analysis of the joint distribution of indicators is central throughout the whole

process of an MPI (from design to implementation). Notwithstanding, in the academic literature,

joint deprivations analysis is based mostly on bivariate statistical techniques (two-way contingency

tables, Venn diagrams, crosstab-based measures of associations, as well as factor analysis). These

techniques study the relationship between each pair of indicators ignoring the rest and, as a conse-

quence, not contemplating the whole picture.

Unveiling this missing information is not trivial and can be explained as follows. Since each

MPI indicator is represented by a binary variable, it is possible to assume that they jointly have

a Multivariate Bernoulli distribution (MBD). Then, the issue is that the joint distribution of q

binary variables requires 2q − 1 parameters to be specified since the MBD probability density

function involves terms of third and higher order moments of the binary random variables (Dai,

2013; Koller & Friedman, 2009). In this vein, the so-called Ising models (1925) emerged as a more

parsimonious way of modeling interactions among binary variables.

In this paper, we will model the joint distribution of the MPI indicators using an Ising Model,

i.e., where the interaction between indicators is modeled and estimated conditioned on the rest.

Then we will show how this carries advantages for designing the MPI as well as for policy making.

In particular, we depart from the model proposed by Cheng, Levina, Wang, and Zhu (2014) which

also permits studying how exogenous variables, such as living area, have influence on the asso-

ciation between a pair of indicators complementing the relevant-for-policy property of subgroup

decomposability.

An Ising model is one type of a wider set of methods for modeling conditional dependencies

between random variables called Probabilistic Graphical Models. Among these, directed graphs,

also called Bayesian networks, can be distinguished from undirected ones in which Ising Models are

included. All interactions in a Bayesian Network assume a causal relationship, whilst in undirected

graphs, estimated relationships between variables are symmetrical. Both are characterized by

their flexibility in encoding probability distributions over complex domains (from bioinformatics to
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statistical physics).

In fact, there also has been an interest in modeling interactions among different socioeconomic

well-being indicators (Stiglitz, Sen, & Fitoussi, 2009). More recently, Ceriani and Gigliarano (2020)

adopted a Bayesian Network approach to study relationships between multiple dimensions of well-

being based on the Life in Transition Survey (LITS II). They showed how the estimated dependence

structure helps to simulate the impact of policies and suggested that the strength of the interactions

may be used to build a composite multidimensional index. Although it seems promising, in terms

of policy guidance, the idea of assuming a causal relationship between indicators, specially in the

MPI approach, is difficult to sustain. Furthermore, they also included control variables (age and

household size) as if they were additional indicators which is methodologically questionable. Duarte,

Forzani, Garćıa Arancibia, Llop, and Tomassi (2021), on the other hand, used the Ising model to

represent socioeconomic binary variables and combine them with other types of variables, not to

investigate conditional dependencies between those variables, but rather to develop a framework

for supervised dimension reduction for predictive indices.

By estimating MPI indicators with an Ising model it is possible to preserve the symmetri-

cal nature of the interconnections between all deprivations. In addition, the model proposed by

Cheng et al. (2014) permits exploring how associations between indicators change conditioned on

an exogenous variable without taking it as another indicator.

We apply this model in two countries: Guinea and Ecuador. In the former, we explore relation-

ships between MPI indicators in a context of high marginal probabilities, high levels of poverty, and

a predominantly rural country. We will show that the association measures used in the literature

are not robust to this issue, as it is the Ising model, and later we will explore how this association

changes by conditioning on rural-urban areas.

In the latter, we estimate conditional associations between indicators in a context of low multi-

dimensional poverty levels. Furthermore, Ecuador’s available data allows computing both multidi-

mensional and monetary poverty. In particular, studying the relationships between these measures

has been a matter of interest in the poverty studies literature. Since policy programs are determined

by how people is identified as poor it is important to learn if monetary measures are still enough

to capture the poor shortfalls and how the MPI identifies deprivations to a larger extent. Recent

empirical studies found that the relationship between monetary and multidimensional poverty mea-

sures are far from being perfect (e.g. Iceland & Bauman, 2007; Roelen, 2017; Suppa, 2016; Tran,

Alkire, & Klasen, 2015; Wang, Feng, Xia, & Alkire, 2016). In general, the association analysis in

these kinds of papers are mainly performed using contingency tables, correlation measures such as
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Cramer’s V or Redundancy (R) indices between pairs of indicators (e.g. Evans, Nogales, & Robson,

2020; Santos & Villatoro, 2018; Tran et al., 2015, among others). Others analyze the relationship

between each MPI indicator and monetary poverty using logistic regression models where each

non-monetary indicator is modeled as a function of monetary poverty (e.g. Salecker, Ahmadov, &

Karimli, 2020; Wang et al., 2016). Unlike all these studies, in this paper, what is being modeled is

the level of conditional association between pairs of non-monetary indicators as a function of mon-

etary poverty as a novel way of studying how these two measurement methodologies are related

and how they can be complemented in social programs.

This paper is structured as follows. In section 2, we first enumerate the AF method steps for

building an MPI and briefly describe the properties that are relevant for policy uses. Subsequently,

we mention the most generally used measures in the literature to analyze the relationship between

MPI indicators and the associated deficiencies of each one. Section 2.3 justifies why we assume

the MPI indicators to have a Multivariable Bernoulli distribution and its properties. Section 2.4

presents the Ising Model used in this study and how it is estimated. Next, we present the data for

both countries and carry out an analysis based on MPI disaggregation properties and how they can

be informative for policy purposes. In section 4, it is possible to find the results for the estimated

graphs and a comparison with other measures of association used in the literature. Before ending

with concluding remarks, in section 5, we briefly discuss how this framework may be suitable for

building the MPI and implementation of policies.

2 Methodology

2.1 Multidimensional Poverty Index: measurement and policy relevant

properties

Alkire and Foster (2011) proposed a multidimensional poverty measurement method (AF method)

based on a “dual cutoff counting approach” for identification and aggregation of the poor. In a

nutshell, constructing a MPI based on AF method consists of the following steps (see, for example,

Alkire & Santos, 2014):

1. Defining a set dimensions considered relevant for human development. For measuring pur-

poses, each dimension is represented by a subset of indicators.

2. Defining a set of q indicators to be included in the MPI. Data source should be the same for

all indicators.
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3. Establishing a deprivation cutoff zj for each indicator j, where zj represents a level of achieve-

ment considered sufficient in order not to be considered deprived in the j-th indicator for

j = 1, . . . , q.

4. Applying each cutoff zj to determine whether the i-th observation is deprived or not in each

indicator for i = 1, . . . , n and building a deprivation matrix D0
n×q = [dij ] where dij = 1 if

xij < zj and dij = 0 otherwise, and xij is the achievement of the i-th individual or household

in the j-th indicator. We define di 1×q as the deprivation vector for i-th observation.

It is important to note that, in the population, each cutoff define a vector of binary random

variables D = (D1, . . . , Dq) which in its sample version is represented by the deprivation

matrix D0
n×q.

5. Setting a vector of indicator relative weights w = w1, . . . , wq such that
∑q

j=1 wj = 1.

6. Determining a poverty cutoff k as the proportion of weighted deprivations an individual or

household needs to experience to be considered multidimensionally poor.

7. Calculating the deprivation score for each observation, ci =
∑q

j=1 wj dij and comparing it

with k to identify the poor. If ci ≥ k, the i-th unit of analysis is multidimensionally poor.

From the identification step, it is possible to obtain the censored measures such as the censored

deprivation matrix D0
n×q(k), where each element is defined as follows:

dij(k) =

 dij if ci≥k

0 otherwise.

8. Computing the Adjusted Headcount Ratio (MPI or M0):

M0 =
1

n

n∑
i=1

q∑
j=1

wj dij(k) =
nd

n
× 1

nd

n∑
i=1

q∑
j=1

wj dij(k) = H ×A (1)

where nd is the number of individuals or households identified as poor; H and A are the

incidence (proportion of individuals or households who are multidimensionally poor) and the

intensity (average deprivation share across the poor) of multidimensional poverty, respectively.

Policymakers may use either H or A to reduce overall poverty. If they aim to mitigate levels

of deprivation of the poorest, A is a useful measure for monitoring poverty reduction. Whereas, if

they focus on the number of poor people, H is a more appropriate guideline.

Furthermore, the MPI can be disaggregated by population subgroups, i.e., overall poverty can

be expressed as the population-share weighted sum of the subgroup Adjusted Headcount Ratios.
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M0 =

L∑
l=1

nl

n
M l

0 (2)

where nl is the population and M l
0 is the poverty measure in the l-th population subgroup for

l = 1, . . . , L.

On the other hand, it is possible to break down the MPI by indicator and examine the contri-

bution of each indicator to overall poverty and the composition of multidimensional poverty. We

can rewrite equation (1) as follows:

M0 =

q∑
j=1

wj
1

n

n∑
i=1

dij(k) =

q∑
j=1

wj hj(k) (3)

where hj(k) is the censored headcount ratio of the j-th indicator (the proportion of people

who are both deprived in that indicator and multidimensionally poor). The contribution of each

indicator to the MPI can be expressed as:

ϕj = wj
hj(k)

M0
(4)

Decomposition by population subgroup or indicators are two policy relevant properties because

they help to establish intervention priorities. Both properties have been used for coordinating policy

programs, improving budget allocation and access to public services by sector or geographical area,

as well as doing group-based or geographically-based household targeting of social programs (Alkire,

2020).

2.2 Joint analysis of deprivations and relationships among indicators

One of the major advantages of MPI is that it accounts for the joint distribution of the deprivations

due to the use of a single dataset. Consequently, it is possible to examine all the interlinkages

between indicators. This is relevant from the first moment of building a consistent MPI (i.e., are

two indicators capturing different aspects of poverty or are they redundant?) to the further policy

uses (social programs design and coordination).

Since the focus is mainly on the joint deprivations, the most widely used measure in MPI

construction literature is the redundancy R coefficient (Alkire et al., 2015) which exclusively con-

centrates on deprivations overlappings. For any j and j′ indicators (with j, j′ = 1 . . . , q, j ̸= j′),
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this redundancy measure is given by

R = pjj
′

11 /min {pj
′

+1, p
j
1+} ∈ [0, 1] (5)

where pjj
′

11 is the proportion of people simultaneously deprived in j and j′ and pj
′

+1 and pj1+ are

the proportion of people deprived only in indicator j′ and j, respectively, also named as the un-

censored headcount ratios of each indicator and represented by hj and hj′ (alternatively: marginal

distributions or prior probabilities).

Apart from focusing on the joint distribution of two indicators, the R redundancy measure

provides easy-to-interpret results. For example, if R = 0.7, it means that 70% of the people

suffering deprivations in the indicator with the lowest headcount ratio are also deprived in the

other indicator.

High levels of R may indicate that two indicators are redundant. If they capture the same

poverty phenomenon, it may be considered to drop one of them. Nevertheless, this measure is

affected by indicators with high headcount ratio values. Hence, two indicators may reflect absolutely

different aspects of poverty (namely, School Attendance and Cooking Fuel) and show high values

of R if 90% of people are deprived in one of them. In these cases, there are normative reasons to

preserve both indicators since they capture different deprivations despite the high redundancy.

As a consequence, in spite of being useful for achieving a consistent MPI, the R measure

may state that there are a number of redundant indicators that are based on different normative

decisions which undermines its utility for informing policy afterwards. The well-known Cramer’s V

as a correlation measure for nominal variables seems to be an alternative. However, it misses the

focus on joint deprivations pjj
′

11 when overlappings between indicators are high in the simultaneously

non-deprived, pjj
′

00 .

On the other hand, factor analysis has been used for an empirical analysis on how comprehensive

the included indicators are, assuming poverty as a common cause latent phenomenon (Santos &

Villatoro, 2018). Estimated factors yield an interpretation on how indicators are associated, but

these results are highly sensitive to the selected factors rotation technique (Alkire et al., 2015).

Even more importantly, note that all these methods take the joint distribution only between

pairs of indicators, but not all of them. R and V measures are built from a two-way contingency

table and factor analysis estimates correlations between indicators assuming an underlying bivariate

normal distribution.

In this context, we will show that there is a better way to represent the joint distribution of
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the MPI indicators in a tractable manner in order to analyze the conditional associations between

pairs of indicators, i.e., if being deprived in the j-th indicator is likely to being deprived in another

indicator j′ given the rest of the indicators.

2.3 The Joint Distribution of MPI indicators

In the theoretical construction of a MPI (according to the steps 2 to 4 in subsection 2.1) we have q in-

dicators that jointly conform a vector D of q binary variables that describe the different dimensions

of poverty; that is, D = (D1, . . . , Dq) where Dj ∈ {0, 1} indicating whether an individual or house-

hold is deprived in the j-th indicator. Given this definition of D, it is natural to assume a Multivari-

ate Bernoulli distribution (MBD) to model it. Let pd1,d2,...,dq
= P (D1 = d1, D2 = d2, . . . , Dq = dq)

with d1, d2, . . . , dq = 0, 1, then the joint probability function of MPI indicators is given by

P (D = d) = p
∏q

j=1(1−dj)

0,0,...,0 × p
∏q

j=2 d1(1−dj)

1,0,...,0 × p
∏q

j=3(1−d1)d2(1−dj)

0,1,...,0 × . . .× p
∏q

j=1 dj

1,1,...,1 , (6)

with d = (d1, d2, . . . , dq). Following Dai, Ding, and Wahba (2013), equation (6) can be written as

member of exponential family distribution as follows

P (D = d) = exp

 q∑
k=1

 ∑
1≤j1≤j2≤...≤jk≤q

f j1j2...jkBj1j2...jk(d)

− log
1

p0,0,...,0

 (7)

where f1, f2, . . . , fq, f12, . . . , f1,...,q are the natural parameters and B is called interaction func-

tion, where Bj1j2...jk(d) = dj1dj2 . . . djk . To understand what natural parameters are, suppose

we have q = 3 indicators, then f1 = log p100

p000
,f2 = log p010

p000
,f3 = log p010

p000
, f12 = log p110p000

p100p010
,

f13 = log p101p000

p100p001
,f23 = log p011p000

p010p010
and f123 = log p111p100p010p001

p110p101p011p000
. Then, as Dai et al. (2013)

proved, the independence of indicators can be viewed from these natural parameters. Specifi-

cally, the components of the random vector D are independent if and only if f j1j2...jk = 0 for all

1 ≤ j1 ≤ j2 ≤ . . . jk ≤ q with k ≥ 2.

With this formulation we can see that the Multivariate Bernoulli distribution involves not only

pairwise interactions but also those of higher order (among more than two indicators), which,

in addition to being complex to represent, it could be computationally unfeasible to estimate

(Duarte, 2016). For this reason, it is sought to obtain a simplified version of such distribution. For

this purpose, and mainly in the field of computational statistics and machine learning, in recent

years the so-called Ising graphical model has been widely used (Wainwright, Jordan, et al., 2008).

This model can be viewed as a special case of the multivariate Bernoulli with f j1j2...jk = 0 for all
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1 ≤ j1 ≤ j2 ≤ . . . jk ≤ q and k ≥ 3. Therefore, with such a graph, it is possible to model the

pairwise correlations between the variables/indicators, contemplating their joint distribution. In

fact, as highlighted by Ravikumar, Wainwright, and Lafferty (2010), this assumption of pairwise

interactions does not imply a loss of generality since higher order interactions can be taken into

account by introducing additional variables in the same framework of the Ising model. Details of

such a procedure to include higher order interactions can be found in Wainwright et al. (2008).

Taking this into account, we consider that a good strategy to model the joint distribution of the

MPI indicators is through undirected graphical models, where the associations between pairs are

modeled in conditional terms (i.e., conditioning the rest of the indicators), and such conditional

distributions are distributed as Bernoulli, which is derived from the multivariate distribution of all

the indicators (Dai et al., 2013). In the following subsections, we will present this approach in more

detail.

2.4 Modeling the joint distribution of deprivations: the MPI as a graph

2.4.1 Probabilistic Graphical Models

Probabilistic graphical models aim to find a graph structure that compactly encodes a joint proba-

bility distribution over a high-dimensional space. They are composed by a set of random variables

D and a graph G = (V, E) where V is the set of vertexes or nodes, each one associated with a

random variable Dj ∈ D and E is the set of edges or links that expresses dependence relationships

between pair of variables in D. Estimated graphs provide a simple way to visualize the structure

of a probabilistic model and obtain insights about relationships among a set of random variables

(Bishop, 2006). Thus, graphs preserve the simple communicative essence of the MPI.

Graphs can be distinguished between directed (also known as Bayesian Networks) or undirected

(also known as Markov Random Fields). The former takes into account the directionality of the

links to explain causality, whereas in the latter, associations between variables have no direction.

Since there are no a priori reasons to set causality among the MPI indicators, it is assumed their

interactions are described in a symmetric manner. Therefore, undirected graphs are preferable

for exploring the joint distribution of deprivations. Besides, forcing directionality may give rise to

models that are unintuitive and incapable of capturing independencies in the domain (Koller &

Friedman, 2009).
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2.4.2 Undirected graphs for binary variables: the Ising Model

As it was emphasized earlier, the MBD involves all q-order intersections among variables, so to

obtain a more parsimonious representation of the joint distribution of D, in the context of graphical

models, it is usual to take the special specification given by the so-called Ising model (Cheng et

al., 2014; Dai, 2013; Dai et al., 2013). The Ising model includes only the second-order interactions

between pairs of binary indicators. Additionally, the dependency between variables contained in D

could depend on other variables, resulting in different empirical graphs according to the value of

these conditioning co-variables. In this way, the graph can be enriched by including possible effects

of other socioeconomic, demographic, and/or regional variables on the association between pairs of

MPI indicators. Therefore, let Y ∈ Rr with r ≥ 1 being a vector of covariates. Following Cheng

et al. (2014), conditioning on Y , the vector of q binary variables DT = (D1, D2, . . . , Dq) has the

following joint density function

P (D | Y = y) = P (D1, . . . , Dq | Y = y)

=
1

G(Θy)
exp

 q∑
j=1

θyjjDj +
∑

1≤j<j′≤q

θyjj′DjDj′

 , (8)

where the θ’s are the model parameters that depend on the values of the covariates Y = y and

G(Θy) ensures that all 2q probabilities add up to 1. For j, j′ = 1, . . . , q we have

θyjj = log

(
P (Dj = 1 | D−j = 0, y)

1− P (Dj = 1 | D−j = 0, y)

)
,

θyjj′ = log

(
P (Dj = 1, Dj′ = 1 | D−j,−j′ = 0, y)P (Dj = 0, Dj′ = 0 | D−j,−j′ = 0, y)

P (Dj = 1, Dj′ = 0 | D−j,−j′ = 0, y)P (Dj = 0, Dj′ = 1 | D−j,−j′ = 0, y)

)
,

G(Θy) =

q∑
j=1

∑
{Dj=0,1}

exp

 q∑
j=1

θyjjDj +
∑

1≤j<j′≤q

θyjj′DjDj′

 ,

withD−j = (D1, . . . , Dj−1, Dj+1, . . . , Dq),D−j,−j′ = (D1, . . . , Dj−1, Dj+1, . . . , Dj′−1, Dj′+1, . . . , Dq)

and Θy is a symmetric matrix with elements [Θy]jj′ = θyjj′ . Following Cheng, Li, Levina, and Zhu

(2017), each θyjj′ is modeled as a linear function of Y . Specifically, we assume that

θyjj′ = θ∗jj′,0 + θT
jj′Y, j, j′ = 1, . . . , q (9)
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where θT
jj′ = (θjj′,1, . . . , θjj′,r) is a parameters vector (independents of Y ) and θ∗jj′,0 is the intercept

for all (j, j′).

Using this parametrization (9), the joint distribution for the Ising model (8) can be written as

P (D | y) = 1

G(Θy)
exp

( q∑
j=1

θ∗jj0Dj +

q∑
j=1

θT
jjyDj

+
∑

1≤j<j′≤q

θ∗jj′0DjDj′ +
∑

1≤j<j′≤q

θT
jj′yDjDj′

)
. (10)

Considering a particular dichotomous indicator j and conditioning on the rest D−j and Y , we

obtain

log
P (Dj = 1 | D−j , Y )

P (Dj = 0 | D−j , Y )
= θ∗jj0 + θT

jjY +
∑
j ̸=j′

θ∗jj′0Dj′ +
∑
j<j′

θT
jj′Y Dj′ (11)

In this way, conditional log-odds of Dj are linear in the parameters, so that maximum likelihood

estimators can be obtained from logistic regression of Dj on (Y,D−j , YD−j). Therefore, by fitting

q uni-variate logit models, we can obtain estimators for θ0 and θ. These parameters inform us

about which edges exist and if they depend on covariates (e.g. income poverty or population

subgroups). In particular, if the vector
(
θ∗jj′0,θjj′

)
is zero, then the MPI indicators Dj and Dj′ will

be conditionally independent given Y and the rest of MPI indicators. Additionally, θjj′ describes

the size of the conditional contribution of the predictors Y on the edge between Dj and Dj′ , and

θjj′k = 0 being zero (for some k = 1, . . . , r) implies that the conditional association between those

MPI indicators does not depend on Yk.

In particular, for a sample of households with n i.i.d. observations (di, yi) ≡ (di1, . . . , diq, yi)

with i = 1, . . . , n, for each poverty dimension j, with j = 1, . . . , q, the log-likelihood is given by

ℓj(θ0,θ;di, yi) =
1

n

n∑
i=1

logP (dij | di,−j , yi) =
1

n

n∑
i=1

(dijϵij − log(1 + exp(ϵij))) (12)

with

ϵij = log
P (dij = 1 | di,−j , yi)

P (dij = 0 | di,−j , yi)
= θ∗jj0 + θT

jjyi +
∑
j ̸=j′

θ∗jj′0dij′ +
∑
j ̸=j′

θT
jj′yidij′ .

Therefore, we can obtain an estimator for (θ0,θ) in order to maximize (12) for all j. By

symmetry, θyjj′ = θyj′j , so we have two estimators for the same parameter, i.e., one from the logistic

regression of Dj on (Y,D−j , YD−j) and another one from the regression of Dj′ on (Y,D−j′ , YD−j′)

given that Dj′ ∈ D−j and Dj ∈ D−j′ . As there are no guarantees that the estimates we obtain

satisfies θ∗jj′0 = θ∗j′j0 and θjj′ = θj′j , we need to select some criteria so that the symmetry is
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fulfilled (Cheng et al., 2014; Meinshausen & Bühlmann, 2006).

2.4.3 Estimation

Cheng et al. (2014) proposed two algorithms that induce sparsity in the fitted graphs and in the

number of selected covariates. This is a good strategy given that the dimension of θ can be large

in some applications and the gains in terms of interpretability can be very important as it is

emphasized by empirical studies of networks. Specifically, using regularization with the L1-norm,

they propose two methods to maximize (12). In both, only θ is penalized, but one does it separately

for each j, while the other does it jointly (for more details see Cheng et al., 2014). In this paper

we apply the joint regularization, estimating (θ0,θ) from

min
(θ0,θ)

q∑
j=1

−ℓj(θ0,θ;di, yi) + λ∥θ∥L1
. (13)

An advantage of joint regularization is that the symmetry is automatically imposed solving (13)

but with a higher computational cost. In the present paper, we only have q = 10 binary indicators,

so we use the joint method using a Matlab code to estimate the Ising model which was provided

by the authors1. Then we use the R package qgraph to plot graphs of conditional dependencies

between pairs of indicators of the MPI.

We exemplify the application of the Ising model for the MPI indicators in two countries: Guinea

and Ecuador. We take q = 10 MPI indicators presented in Table 4 in Appendix 6.1, and including

a different covariate (i.e. Y ) in each case. Specifically, for Guinea we consider the living area (i.e.,

urban or rural) and for Ecuador the monetary poverty. Therefore, in both cases we have r = 1

with Y as a dummy or binary covariate.

3 Data and Multidimensional Poverty Analysis

This section describes data for two selected countries: Guinea and Ecuador. For the former we

use the 2017/2018 Demographic and Health Survey (DHS). This country provides a good example

about how the presence of very high uncensored headcount ratios in some indicators bias redundancy

measures as it occurs with Cooking Fuel indicator in most Subsaharian countries. The latter is

based on an official household survey (Encuesta de Condiciones de Vida - ECV 2013/2014) which

1Matlab code available in http://onlinelibrary.wiley.com/doi/10.1111/biom.12202/
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permits to calculate both multidimensional and monetary poverty. Hence, it is possible to examine

the linkages between these poverty measurement approaches2.

Selected dimensions, indicators, weights and cutoffs are based on the global MPI which is an

international measure of acute multidimensional poverty for the developing world proposed by

Alkire and Santos (2014). All these parameters were originally established following international

comparability purposes subjected to the available datasets for most developing countries. They are

described in Table 4 in Appendix 6.13.

Table 1 shows the sample size, the share of the population and the multidimensional poverty

estimates for Guinea and Ecuador disaggregated by their population subgroups: living areas and

monetary poverty, respectively.

At a glance, we can appreciate that the multidimensional poverty in Guinea is higher than

in Ecuador. In the former, the multidimensional poverty level is 0.369 whilst in the latter, it is

0.018. This is mainly because 65.60 % of the Guinean population are multidimensionally poor (H)

while only 4.56 % of Ecuador’s people are poor according to the global MPI indicators. However,

both countries exhibit high levels of intensity (A). The poor are deprived in more than half of the

indicators on average (56.28 %) in Guinea and poor Ecuadorians are deprived in more than one

dimension on average (39.88 %).

Table 1: Disaggreated multidimensional poverty measures

Country Subgroup n % Population MPI H % A %

National level 24215 100 0.369 65.60 56.28
Guinea Rural 15821 65.30 0.501 86.18 58.14

Urban 8394 34.70 0.121 26.87 45.05

National level 109694 100 0.018 4.56 39.88
Ecuador Non-poor 91385 90.11 0.011 2.82 37.96

Poor 18309 9.89 0.086 20.40 42.30

Source: Own elaboration based on 2017/2018 DHS data for Guinea
and ECV 2013/2014 for Ecuador.

Deeper insights can be obtained with the subpopulation decomposition property. Briefly,

Guineans who live in rural areas are poorer than people from urban areas mostly because of

2The data for Guinea and Ecuador that support the findings of this study are available in the DHS website (https://
dhsprogram.com/methodology/survey/survey-display-539.cfm) and in the official ECV 13-14 website (https://www
.ecuadorencifras.gob.ec//documentos/web-inec/ECV/ECV 2015/)

3The code to compute the global MPI is available in https://cloud-ophi.qeh.ox.ac.uk/index.php/s/

7WCbyFaeHPaq78f
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considerably high levels of incidence of poverty. With regard to the intensity of poverty, urban

areas also face less deprivations on average than their rural counterparts.

In the Ecuadorian case, large mismatches between multidimensional and monetary poverty

measures are observed. Only 20.40 % of the monetary poor are also poor from a multidimensional

perspective (according to $1.90 a day and k = 33% poverty thresholds). These results are in line

with other empiral studies. Evans et al. (2020) found that average identification overlap (either

poor or non-poor by both measures) reaches 84% in Ecuador largely due to a vast majority of the

population being classed as non-poor by both approaches to poverty.

On the other hand, Tables 2 and 3 show the disaggregated uncensored and censored headcount

ratios (hj and hj(k)) for each indicator in Guinea and Ecuador, respectively. In Guinea, the

Cooking Fuel and Sanitation indicators yield the higher levels of deprivation, which is also reflected

in the high R measure values (see Appendix 6.3), i.e., the rest of the indicators exhibit high

redundancy values against these two indicators due to the high uncensored headcount ratios. This

is not informative on how these pair of indicators are related.

The censored headcount ratios are always lower (or equal) than the uncensored headcount ratios,

as should be noted. The magnitudes of these differences can be very informative for targeted

policy. For instance, in rural areas, if a person is deprived in one indicator, she is very likely

to be multidimensionally poor since hj(k) is close to hj except in Cooking Fuel and Sanitation.

This is not the case in urban areas where differences are greater (e.g., only half of the households

deprived of nutrition are multidimensionally poor). In Ecuador, it is remarkable that those who are

both multidimensional and monetary poor show higher levels of deprivation in terms of Nutrition,

Cooking Fuel, Sanitation, Drinking Water and Housing than those who are multidimensional but

not monetary poor.

Additional insights can be drawn from these tables. However, most of this information is con-

densed in the relative contribution of indicators (Figures 1 and 2) which also takes into account

the weight of each indicator. In terms of policy guidance, this simple graphical tool provides infor-

mation about which indicators policymakers should focus on in order to achieve a greater impact

on poverty reduction by means of household targeting or community-based programs, readjusting

budget allocation in specific areas, and improving access to public services.

The contribution of each indicator in Guinean rural areas is similar at a national level (Fig-

ure 1). Years of Education, Sanitation, Nutrition are the indicators that contribute the most to

multidimensional poverty in rural Guinea. Even larger than Cooking Fuel despite showing lower

censored headcount ratios. This occurs due to the fact that these indicators receive higher rel-
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Table 2: Uncensored and censored headcount ratios (%) for
Guinea

National Rural Urban
Indicators hj hj(k) hj hj(k) hj hj(k)

Nutrition 41.31 35.31 46.55 45.48 31.24 16.20
Child Mortality 12.56 11.95 16.19 15.85 5.71 4.62
Years of Education 48.46 45.67 65.58 63.98 16.23 11.24
School Attendance 43.40 39.46 53.16 51.91 25.03 16.04
Cooking Fuel 97.48 65.14 99.80 86.08 93.10 25.73
Sanitation 73.57 54.93 83.09 74.14 55.63 18.76
Drinking water 42.94 36.57 56.10 51.28 18.17 8.88
Electricity 54.98 48.57 76.79 69.64 13.92 8.90
Housing 42.55 38.79 59.96 56.01 9.79 6.38
Assets 26.36 23.92 36.43 33.96 7.42 5.03

Source: Own elaboration based on 2017/2018 DHS data for Guinea
and ECV 2013/2014 for Ecuador.

Table 3: Uncensored and censored headcount ratios (%) for
Ecuador

National Non-Poor Poor
Indicators hj hj(k) hj hj(k) hj hj(k)

Nutrition 13.69 2.93 11.56 1.58 33.07 15.22
Child Mortality 5.19 1.48 4.6 1.02 10.51 5.60
Years of Education 4.68 1.61 4.33 1.24 7.92 5.06
School Attendance 2.05 0.96 1.36 0.45 8.33 5.59
Cooking Fuel 4.45 1.70 2.38 0.71 23.31 10.78
Sanitation 14.22 2.84 11.69 1.64 37.25 13.84
Drinking water 14.31 2.46 12.14 1.45 34.10 11.70
Electricity 1.25 0.70 0.60 0.31 7.14 4.27
Housing 11.09 2.37 8.79 1.45 31.99 10.78
Assets 4.11 1.67 2.54 0.81 18.39 9.44

Source: Own elaboration based on 2017/2018 DHS data for Guinea
and ECV 2013/2014 for Ecuador.
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Figure 1: Indicator Contribution to Multidimensional Poverty by Area in Guinea

Figure 2: Dimension Contribution to Multidimensional Poverty by Monetary Porverty in Ecuador
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ative weights, as it can be appreciated from equation (4) and Table 4. Years of Education and

Nutrition also contribute proportionally more to poverty in urban than in rural Guinea. In urban

areas, contributions show different patterns. Here Nutrition and School Attendance contribute the

most to the MPI. This invites to coordinate existing programs in urban areas oriented to reduce

malnutrition and to improve access to education.

As shown in Figure 2, Nutrition is clearly the indicator that has more influence in Ecuador’s

poverty and even greater for monetary poor people. For those who are multidimensionally poor, but

monetary non-poor, deprivations are mostly explained by Years of Education. Hence, in Ecuador,

policies aim to reduce indicators from Health and Education dimension will have greater impact

on multidimensional poverty.

4 Results

In this section we present the estimated graphs Ĝ of the deprivation matrix D conditioned on rural-

urban areas in the case of Guinea and specified with monetary poverty for Ecuador. The estimated

parameters of the Ising model used in the graphs’ construction are presented in Tables 5 and 6 in

Appendix 6.2.

4.1 Results for Guinea

Figure 3 shows the estimated graphs for Guinea, where each node represents a MPI indicator.

The links or edges between nodes, indicate the presence of a conditional association between the

two variables. The thicker the edge, the greater the association. Conversely, the absence of edges

between nodes means that both indicators are independent given the rest of the MPI indicators.

In addition, the estimated conditional associations can be either positive or negative, which is

shown in the graph by the color and style of the edges, which are either blue-solid or red-dashed,

respectively.

Left-hand panel of Figure 3 shows the main graph represented by the intercept θ̂0. In order to

explore how relationships among indicators change if we conditioned by living areas, we include a

binary covariate with value 0 if the household lives in a rural area and 1 if it is located in an urban

area. Hence, the right-hand panel of Figure 3 presents the effects of living in a urban context on the

conditional dependencies of the MPI indicators, quantified by the θ̂ij for all i, j = 1, . . . , q. Here

blue edges mean that the conditional association between MPI indicators is positively stronger than

those revealed in the main graph of Figure 3(a) whereas red dashed edges mean more negative or
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weaker association between those nodes.

(a) Main Graph (b) Urban areas effects
M: Mortality; N: Nutrition; SA: School Attendance; YS: Years of Schooling; E: Electricity; W: Water; S:
Sanitation; H: Housing; CF: Cooking Fuel; A: Assets.

Figure 3: Conditional dependency between MPI deprivations in Guinea

In the main graph we find a strong positive conditional dependency between Electricity (E)

and the Assets (A) indicators (E−−A). This means that, given the rest of the MPI indicators,

if a household has no access to electricity, it is very likely that it is also poor in terms of assets.

Considering that several household assets are electrical, this high revealed association is reasonable.

A similar high conditional association occurs between Electricity (E) with Housing Materials (H)

and Sanitation (S). In fact, Housing (H) has positive associations with every indicator except for

Cooking Fuel (CF). Therefore, if a household is deprived in the housing indicator, it is likely that

it is also deprived in another indicator, with the exception of Cooking Fuel (CF).

Striking results are obtained with respect to Cooking Fuel (CF) indicator. First, it is condition-

ally independent or has a very weak relationship with almost all the indicators. Secondly, Cooking

Fuel (CF) has a strong negative conditional association with the Assets (A) indicator, which can

be interpreted as if a household is poorly endowed with assets, it is likely to compensate with a

better supply of cooking fuel. Considering that in this country the vast majority of households

(more than 95%) use solid fuels for cooking, the conditional association result seems to respond
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more to deprivation in Assets (A). This result reveals how robust sparse graphical models are to

high-valued uncensored headcount ratio indicators and how new insights may emerge in comparison

with R measure.

We identify a positive but weak conditional association between Child Mortality (M) and Nu-

trition (N), two indicators of the Health dimension. In fact, the conditional odd ratio of the edge

connecting the two nodes is less than 1.5 which is consistent with a small association in terms of ef-

fect size of Cohen’s d (Chen, Cohen, & Chen, 2010; Cohen, 2013). This low conditional association

could reveal that these indicators are not redundant, but instead each of them seems to provide

additional information to characterize that dimension of poverty. Furthermore, with respect to the

other dimensions, low or null associations are also observed between indicators. This means that

if a household is deprived in any aspect of Health dimension, little can be inferred from its level

of poverty in terms of Education or Living Standards dimensions. When non-null associations are

revealed, these are generally positive (M−−SA, M−−YS, N−−SA), with some exceptions such as

between Child Mortality (M) and Assets (A).

On the other hand, as in Health dimension, indicators of Education dimension also show low

conditional association between them and the rest of the indicators. In particular, for School At-

tendance (SA) we find lower or null conditional associations with the rest of the MPI indicators.

However, a relevant positive relationship between Years of Schooling (YS) and Assets (A) is esti-

mated. Given the other MPI indicators, this indicates that if a household lacks assets, it is likely

to have members with low level of education.

Finally, if we consider urban areas’ effects, some changes in conditional associations are detected.

First, it can be appreciated that in urban areas, the positive conditional association between the

Housing (H) and Electricity (E) indicators is strongly accentuated. Therefore, if a household has no

electricity, it is very likely that it also lives in a materially precarious dwelling, and this is revealed

to a greater extent in urban areas. Other positive relationships increase in an urban area context,

albeit to a lesser extent, such as E−−W, YS−−S and YS−−A. Nonetheless, we see that in urban areas,

the positive relationship between housing material deprivation (H) and improved sanitation (S) is

weakened, as it is indicated by the thick red dashed line. This could be explained by the fact that

in urban areas there are generally better sanitary conditions, covering households with significant

deprivations in terms of housing quality or access to electricity. This is further supported by the

fact that all of the indicators of the living standards dimension greatly decline in urban households,

therefore it is expected that fewer matches will be found between pairs when conditioned on the

rest (see Table 2). However, this is not trivially so. As it occurs between Electricity (E) and
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Housing (H) or Water (W), although poor households according to such indicators are smaller in

urban areas, the conditional dependencies between them increase. This shows that Ising models

can reveal new interesting patterns that are not possible to deduce from the MPI decomposition

properties.

Finally, for the Nutrition indicator (N) we find that in urban areas the conditional dependencies

with respect to Water (W) and Electricity (E) are now negative, while the main graph exhibits

conditional independence. This indicates that even if an urban household does not suffer depriva-

tions in terms of Nutrition, it is likely to have no access to drinking water or electricity, which is

another intriguing aspect discovered by the MPI graph.

4.2 Results for Ecuador: The Role of Monetary Poverty on MPI asso-

ciations

We estimate an Ising model for Ecuador for non-monetary indicators of the MPI considering mon-

etary poverty as a covariate. Specifically, we include the binary indicator Y of monetary poverty

based on the $1.90 a day poverty line for income as a covariate in the graph, in order to investigate

its effect on the conditional association of non-monetary poor indicators.

In Figure 4(a) we show the main graph of conditional associations between indicators. Here

we can observe a strong conditional dependence between Assets (A) and Electricity (E). In other

words, given the rest of the MPI indicators, if a household is deprived in terms of assets, it is

very likely that it is also deprived in terms of electricity. Furthermore, highly positive conditional

associations are observed between the Assets and Years of Schooling (A−−YS) and Assets with

Cooking Fuel (A−−CF) indicators. Also, among the indicators of the Living Standards dimension,

positive conditional relationships are observed, although of lesser magnitude than those mentioned

above. In addition, we highlight the conditional independence that Mortality (M), Nutrition (N)

and School Attendance (SA) indicators have with respect to the rest of the MPI indicators.

On the other hand, when we conditioned by monetary poverty (see Figure 4(b)), interesting

patterns emerge. Firstly, for monetary poor people, we find a strong positive dependency between

Nutrition (N) and School Attendance (SA). This means that in monetary poor households where

there is a child not attending school, they are very likely to have at least one child with a nutritional

deficit. Remarkably, positive relationships in the main graph between A−−YS, CF−−YS, H−−W,

H−−S become negative when we condition by monetary poverty. These estimated relationships by

the graph enable characterizing monetary poverty with respect to multidimensional poverty indica-

tors. For example, monetary poor households with adequate housing materials are likely to have no
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(a) Main Graph (b) Monetary Poor Effects
M: Mortality; N: Nutrition; SA: School Attendance; YS: Years of Schooling; E: Electricity; W: Water; S:
Sanitation; H: Housing; CF: Cooking Fuel; A: Assets.

Figure 4: Conditional dependency between MPI deprivations in Ecuador taking monetary poverty as
covariate

access to drinking water or improved sanitation. This result may be useful for household targeting

in the improvement of access to public services since housing materials are easy-to-observe features

(Kidd & Wylde, 2011; Klasen & Lange, 2015). Analogously, monetary poor households, although

with sufficient educational attainments (i.e., no deprivations in terms of Years of Schooling) are

very likely to face deprivations in terms of Assets (A) and Cooking Fuel (CF). Other new associa-

tions are revealed by conditioning on monetary poverty, but to a lesser extent than those described

above.

4.3 Comparison with Unconditional Measures of Association

We compare the results of the main estimated graphs and the Cramer’s V and Redundancy R

measures for Guinea and Ecuador (see Appendix 6.3). First of all, since the latter are measures of

unconditional association between indicators, the results can differ from those found from condi-

tional graphs. In fact, this will always happen when at least one indicator is connected to the pair

of indicators whose association is being analyzed.
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In the Guinean case, we observe that estimated Cramer’s V values are generally very low. Most

of the values are close to zero or indicate weak association, and the highest three values are between

0.30 and 0.44. However, we can notice some similarities with the graphs. For example, despite

being low, the highest values for the V measure are E and H; E and A; E and YS in that order.

In the estimated graph, we found very strong and positive conditional associations in E−−A and

E−−H but weaker in E−−YS.

A strong association A−−YS is estimated in the graph but not in the V . Besides, although

Cramer’s V pairwise associations are very low, we can identify that relationships between Housing

(H) and the rest of the indicators follow similar behaviors in Ĝ and V . Some low associations

computed by Cramer’s V (M with N and SA both with YS and the two health dimension indicators)

show positive non-negligible associations in the graph. Other very low or close to zero V values

(W with M or N, YS with N or H with CF to mention a few) are ruled out from the graph due to

the induced sparsity in the graphical model. This indicates conditional independence between the

indicators and it is better in terms of interpretability.

With respect to the R measure, we first observe the extremely high redundancy values between

Cooking Fuel (CF) and the rest of the indicators. Similarly, it occurs with Sanitation (S). This

happens due to the high uncensored headcount ratios in these two indicators for the case of Guinea

and the fact that the R measure focuses on overlapping deprivations. In this case, it is possible

to see that graphs are robust to this problem. Observing Ĝ, the conditional independence between

CF and almost all of the indicators shows one of the advantages of estimating the association of

a pair of indicators conditioned on the rest. On the other hand, considering that 0.70 is taken as

a high redundancy value, the graph can also capture these positive associations (see for example

the edges and R values of YS−−E, YS−−A, E−−W, E−−H, E−−A). Low redundancy values are

seen in the low positive conditional associations of N−−SA and N−−H, which are very close to

zero in V values. Interestingly, cases such as W with N or M and A with N or SA or W show

almost null V values and low R values. This indicates that the two indicators are not highly

associated considering overlapping deprivations. The graph estimates are also enough robust to

detect conditional independencies among these pairs of indicators.

Finally, we highlight that the strong negative conditional association A−−CF in the graph is

captured neither by the Cramer’s V nor by the R measure as well as the negative association

A−−M. Moreover, the conditional independence of CF and almost all of the rest of the indicators

is a clear difference between the graph and the unconditional pairwise measure. We tend to think

that one or more indicators are connected to those pairs of indicators where remarkable differences
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with the graph are found.

More interesting results can be drawn from Ecuador. Again, Cramer’s V heatmap states very

low associations between variables. The highest values for the V measure are sortly E with A,

A with CF, CF with E, and A with S, having a rank between 0.34 and 0.45. In spite of these

low values, estimated associations from the graphs and V measures follow a similar pattern. In

the estimated graph Ĝ, strong positive conditional associations A−−E, A−−CF are contemplated

whilst CF−−E and A−−S in a lesser extent. Moreover, bearing in mind their differences, Cramer’s

V measures follow similar behavior to Cooking Fuel (CF) estimated associations in the graph, with

the remarkable difference that a Sparse Ising Model can shrink to zero those negligible associations.

Other very low Cramer’s V associations are reflected by conditional independences in the graph

such as Electricity with indicators from Health and Education dimensions and between each pair

of indicators in these mentioned dimensions. Interestingly, the very weak negative relationship

between N and A computed by V is also present in the graph.

On the other hand, the R values greater than 0.7 are E with S, E with A ,and E with W. These

high redundancies are reflected mainly in the strong association E−−A and the weaker positive

relationships E−−S and E−−W estimated by the graph. Other similarities can be found between

relatively high redundancies and the positive associations A−−S and E−−CF. On the contrary,

the low redundancy values among all pairs of Health and Education indicators are shrunk to zero

in the graph, i.e., given the rest of indicators, these ones are independent of each other. Other

positive associations estimated by the graph are represented with low R values: H−−S, H−−CF,

and H−−YS.

Last but not least, neither Cramer’s V nor redundancy can capture the relatively strong as-

sociation YS−−A revealed by the graph. Crearly, other indicators are having an influence in the

association between YS and A. This is not not possible to capture with the unconditional measures

used in the literature.

Finally, we do not carry out a factor analysis and compare the results mainly because, as we

mentioned earlier, the interpretability of the MPI indicators’ relationships depends on the selected

factor rotation technique and the list rotation methods is large. Not to mention that factor analysis

comes with a theoretical assumption, that the MPI indicators are manifest (observed) variables of a

latent (unobserved) phenomenon: poverty. Some researchers may not agree with this perspective.

As Kruis and Maris (2016) proved, the observed associations between variables estimated with

Ising models can be explained by three distinct theoretical frameworks: 1) common cause (latent

variables cause co-variation in observed variables), 2) reciprocal affect (observed associations are a
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consequence of mutualistic relationships between these variables) and 3) common effect (variables

are marginally independent with respect to each other, yet observed relationships lead to the

occurrence -or absence- of some common effect). This is a remarkable property and a solid reason

for using Ising models to examine how MPI indicators are related to each other.

5 Discussion

From the previous section, it is possible to identify some advantages of using an undirected graph

for modeling the joint distribution of the MPI indicators. In this section, we continue with further

comments.

Despite its limitations, the Redundancy coefficient has been a useful measure for studying how

two indicators are associated to build a consistent MPI. The Ising model can accomplish this task

as well. By construction, it can detect two redundant indicators. Furthermore, it proved to be

robust in cases where one indicator shows high headcount ratio levels, which severely affect the R

measure.

On the other hand, the Ising model used in this study (Cheng et al., 2014) permits estimating

the association between indicators conditioned not only on the rest but also on exogenous variables,

which can be very informative for policies.

In the field of policy design, for instance, we found in both countries that, even if we condition

by living area or monetary poverty, there is a strong positive conditional relationship between

Electricity and Assets. Departing from this information, it is possible to deduce that the lack of

asset endowments in some households is due to lack of access to electricity. Hence, policies oriented

to improving access to electricity could increase households assets acquisition (such as refrigerator,

TV or mobile phones). As another example, Ecuador’s results show that monetary poor households

where there is at least one child with a nutritional deficit are more likely to have a child who is not

attending school. This information could suggest the creation of a conditional cash transfers (CCT)

scheme targeted to the poorest households with children oriented to improve food security with

the condition of children to attend school. In both examples, the reduction of multidimensional

poverty may be larger and they illustrate how the Ising model used in this study can broaden the

scope of the MPI as a policy relevant tool.

In terms of policy coordination, we emphasized that capturing joint deprivations enables us

to design the best coordinated policy action for poverty reduction and that effective coordination

requires each stakeholder’s responsibility on the MPI to be clearly defined. Notwithstanding, the
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information platform for these schemes is limited. In this context, conditional associations between

two indicators estimated by the graph definitely call for a synergetic complementation of the pro-

grams designed to tackle that pair of indicators. In addition, conditional independences between

indicators help to consolidate each stakeholder’s responsibility within the overall poverty reduction

goal.

In sum, the MPI as a graph provides a more insightful understanding of what poverty means and

results in a useful tool for developing cost-efficient and high-impact policies while moving towards

an integrated poverty eradication agenda.

6 Conclusion

In this paper, we first highlighted how the MPI works as a high-resolution lens on poverty. All

the MPI disaggregation properties (equations (1), (2), (3), (4)) provide a prominent information

platform for policy purposes and we illustrated this by taking two structurally different countries

as examples: Guinea and Ecuador.

We mentioned how the disaggregation property by incidence and intensity can guide overall

poverty reduction goals and how new insights are revealed by means of the subgroup decompos-

ability property (differences in the number of poor people and the intensity of the suffered depriva-

tions between subgroups). In addition, we presented how this property conveys informative aspects

for policy when it is combined with indicator breakdown property. For example, to what extent

differences between hj and hj(k) could be useful for targeting, and how each indicator’s relative

contribution could be used to coordinate different programs.

These useful properties are derived from the contemplation of the joint distribution of the indi-

cators, for which we provided grounded reasons why we can assume that it follows a Multivariate

Bernoulli distribution. We showed that the Ising Model is a more parsimonious way for studying

interactions among indicators and that modeling the MPI as a graph carries a number of advan-

tages: 1) All associations are condensed into a graphical structure that is simple to understand.

This preserves the structural and communicational simplicity of the AF measurement method. 2)

Estimating the associations between indicators considering the rest may come up with new power-

ful insights hidden in data. 3) The graph can be used throughout the entire operative process of

an MPI, from the index construction to policy recommendations. 4) In particular, in this paper

we used the Ising model proposed by Cheng et al. (2014) which can be specified with covariates.

We proved how this framework can complement, for example, the subgroup decomposability prop-
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erty. Revealing outcomes may emerge if we can estimate how the conditional associations between

indicators change while also considering the influence of, for example, belonging to a population

subgroup.

Further research can be done by modeling the joint distribution of the MPI indicators with

undirected graphs. 1) In this study, we only used one dummy covariate to examine how conditional

associations change. More interesting analysis may emerge by incorporating other demographic

features (such as, age or ethnic group, household head’s sex, and regions or provincies). 2) For

two main reasons, we estimated the graph on the uncensored deprivation matrix. Firstly, it helped

to compare the graph estimate with the unconditional association measures used in the literature.

Secondly, the censored deprivation matrix depends on the poverty cutoff k which is a decision

based on analysis or policy goals. Therefore, we focused on the uncensored deprivation matrix

to present this novel approach. Nevertheless, it would be interesting to study how interactions

also change by censoring observations for different poverty cutoffs k. 3) In the graph, we estimate

the conditional log-odds ratio between pairs of indicators, given the rest. This information could

be used for predictive purposes in targeted poverty alleviation programs. 4) Finally, although the

Ising model is the more parsimonious way to represent a MBD, it estimates only up to second-order

interactions. Future analysis should explore the possibility of developing a hierarchically penalized

graphical model for estimating higher order interactions.
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Appendices

6.1 The global MPI

The global MPI has been published annually by OPHI and UNPD since 2010 and covers more than

100 developing countries with the aim of complementing globally comparable monetary poverty

measures such as the $1.90 day line. Table 4 describes all the selected dimensions, indicators,

deprivation cutoffs and weights.

Poverty cutoff k is equal to 0.33. This means that a person is identified as poor if she is deprived in

a third or more of ten (weighted) indicators or, in other words, if she is deprived in one dimension.
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Table 4: MPI Dimensions, Indicators, Deprivation cutoffs, and Weights

Dimensions of poverty Indicator Deprived if living in a
household where. . .

Weight

Health (1/3) Nutrition Any person under 70
years of age for whom
there is nutritional in-
formation is undernour-
ished.

1/6

Child mortality A child under 18 has died
in the household in the
five-year period preceding
the survey.

1/6

Education (1/3) Years of schooling No eligible household
member has completed
six years of schooling.

1/6

School attendance Any school-aged child is
not attending school up
to the age at which
he/she would complete
class 8.

1/6

Living Standards (1/3) Cooking fuel A household cooks using
solid fuel, such as dung,
agricultural crop, shrubs,
wood, charcoal, or coal.

1/18

Sanitation The household has unim-
proved or no sanitation
facility or it is improved
but shared with other
households.

1/18

Drinking water The household’s source of
drinking water is not safe
or safe drinking water is a
30-minute or longer walk
from home, roundtrip.

1/18

Electricity The household has no
electricity.

1/18

Housing The household has inad-
equate housing materials
in any of the three com-
ponents: floor, roof, or
walls.

1/18

Assets The household does not
own more than one of
these assets: radio, TV,
telephone, computer, an-
imal cart, bicycle, motor-
bike, or refrigerator, and
does not own a car or
truck.

1/18

29



6.2 Parameters Estimates of Ising Models

Tables 5 and 6 show the parameters estimates of the graphs for Guinea and Ecuador, respectively.
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6.3 Redundancy Measures

Figures 5 and 6 show the estimated unconditional association measures (Cramer’s V and Redun-

dancy R) for Guinea and Ecuador, respectively.

(a) Cramer’s V

(b) Redundancy R

Figure 5: Heatmaps of unconditional association measures for Guinea
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(a) Cramer’s V

(b) Redundancy R

Figure 6: Heatmaps of unconditional association measures for Ecuador.
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