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Abstract

Previous works have reached widely divergent conclusions on the macroeconomic
relevance of uncertainty shocks. We show that this disagreement reflects
identification problems linked to the use of financial data in low-frequency VAR
models. To bypass this difficulty, we identify uncertainty shocks using daily data and
use their monthly averages as instruments in VARs. This novel identification
approach captures within-month interactions between uncertainty and asset prices,
providing a full picture of the pivotal role of financial markets in propagating
uncertainty to the real economy. Once these interactions are accounted for, the
disagreement disappears: uncertainty shocks have a small but significant impact on
economic activity across specifications and identification schemes.
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1 Introduction

Isolating the role of uncertainty in the business cycle is challenging because spikes in

uncertainty often coincide with a deterioration of the macroeconomic outlook. This

problem is particularly apparent when considering the interaction between financial

markets and the real economy. High stock market volatility, rising credit spreads and

economic slowdowns often materialize together, but researchers disagree on the

interpretation of this coincidence, interpreting uncertainty either as an independent

source of fluctuations or as an endogenous by-product of the business cycle.

We examine this puzzle using a novel empirical strategy that is specifically designed

to identify uncertainty shocks from fluctuations in asset prices. To isolate the role of

aggregate uncertainty, we identify the shocks in a daily VAR, average them to the

monthly frequency, and then use this average as an instrument in a monthly VAR model.

This procedure delivers consistent estimates of the low-frequency impact of the shocks

because, in linear VARs, the causal effect of the sum of daily shocks coincides with the

sum of their individual (daily) effects. Furthermore, it allows us to (i) control for

changes in expectations at the daily frequency, accounting for the quick response of

market investors to macroeconomic news, and (ii) leave the relation between financial

and real variables unrestricted at the monthly frequency. In our framework the validity

of the restrictions at the monthly frequency can be tested rather than assumed ex ante.

The procedure requires the standard invertibility assumption to hold in the daily VAR

model (Forni and Gambetti, 2014; Miranda Agrippino and Ricco, 2018). In our
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application we study its validity empirically and in simulations based on the general

equilibrium models of Basu and Bundick (2017), Berger et al. (2019) and Bloom et al.

(2018).

After discussing our identification approach , we revisit three influential studies that

reach different conclusions on the relation between aggregate uncertainty and the

business cycle. We start with Berger et al. (2019) (BDG), who focus specifically on the

interaction between uncertainty and asset prices. BDG identify uncertainty shocks as

perturbations that explain the largest share of the forecast error variance (FEV) of the

expected (option-implied) volatility of the stock market but have no contemporaneous

impact on its realized volatility, interpreted as a proxy of changes in macroeconomic

fundamentals. We then consider Caldara et al. (2016) (CFGZ), where uncertainty and

financial shocks are identified jointly as orthogonal perturbations that maximize

respectively the responses of the VXO and the Excess Bond Premium. Finally, we

broaden the scope of the analysis by revisiting the work of Baker et al. (2016) (BBD), in

which uncertainty is captured by the Economic Policy Uncertainty (EPU) index rather

than a financial volatility indicator, and identification relies on more traditional recursive

schemes. In all cases we exploit our strategy to impose the identification restrictions on

daily rather than monthly data, leaving the responses in the monthly VARs unrestricted.

The exercise leads to three conclusions. First, aggregate uncertainty shocks cause a small

but statistically significant decline in economic activity in all models. Under a daily

identification, the responses are also more robust to the specific assumptions embedded
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in the identification schemes, such as the ordering of the shocks. Second, the quantitative

relevance of the shocks for the business cycle turns out to be similar across specifications:

the elasticities of employment and industrial production to aggregate uncertainty are 4%

and 10% at the one-year horizon, and uncertainty shocks explain about 5% of the

forecast error variance of both variables. Third, capturing the behavior of financial

markets is critical to understand the overall transmission mechanism. As other scholars

noted, aggregate uncertainty can respond endogenously to changes in financial

conditions, but it can also have a strong impact on stock prices, bond spreads and market

volatility. Daily models broadly agree on the relevance and relative weight of these two

mechanisms, while monthly models disagree and tend to emphasize one of the two at

the expense of the other.

Related literature. This paper makes two main contributions to the literature. The

first one is a reappraisal of the influence of aggregate uncertainty on the business cycle.1

Very different views have emerged on the identification of uncertainty shocks and on the

implications of such shocks for the real economy (see, for example, Caggiano et al., 2014;

CFGZ; Carriero et al., 2018; Ludvigson et al., 2018; BDG; Caggiano et al., 2021). Our

paper shows that temporal aggregation can completely cloud causality in this context,

and that capturing the interaction between uncertainty and asset markets is key to

estimate the effects of uncertainty on real outcomes. In developing a deeper and more

comprehensive view on uncertainty shocks, our work is inspired by similar efforts

1See e.g. Fernandez-Villaverde et al. (2011), Jurado et al. (2015), Baker et al. (2016), Basu and Bundick
(2017), Arellano et al. (2019). Extensive reviews of the literature can be found in Bloom (2009) and
Fernandez-Villaverde and Guerron-Quintana (2020).
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carried out by Coibion (2012) and Barnichon et al. (2022) on monetary policy and

financial shocks, respectively. Few other works have employed daily or weekly data to

identify uncertainty shocks. Ferrara and Guerin (2018) find that a mixed-frequency VAR

with weekly and monthly data closely mimics a standard monthly VAR, while

Paccagnini and Parla (2021) uncover significant temporal aggregation biases in a similar

model estimated with Bayesian methods. Both papers rely on recursive identification

schemes at weekly frequency that are unlikely to accurately describe the feedbacks

between uncertainty and macroeconomic conditions, or more generally between

financial and real variables.2 Piffer and Podstawski (2018) use variations in gold prices

around specific events as external instruments in a VAR, concluding that uncertainty

shocks are a major driver of the business cycle. We propose a robust and flexible

alternative to event-based identification strategies that allows us to control for a broad

range of factors at the daily frequency, delivering far more conservative estimates of the

overall impact of uncertainty shocks.

Our second contribution is to show how to exploit high-frequency information to

construct proxies that can be used in lower-frequency VAR models. The estimation of

dynamic effects based on external information has recently spread in the empirical

macroeconomics literature (Stock and Watson, 2012; Mertens and Ravn, 2013). We

demonstrate theoretically and through simulations that, as long as the data-generating

process is a VAR, averaging the high-frequency proxy to a lower frequency delivers

2See e.g. Stock and Watson (2012), Baker and Bloom (2013), Baker et al. (2016), Cascaldi-Garcia and
Galvao (2021) and Ludvigson et al. (2018).
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consistent estimates of the responses in a broad range of empirical setups and model

specifications. The strategy we propose is computationally simple and highly flexible:

the shocks obtained from high-frequency data can be employed as external or internal

instruments, included in an exogenous block of the VAR, or used in a local projection

setup.3 Hence, it can be used in a broad range of cases where identification restrictions

imposed at “low” frequencies could bias the results.4 Daily VARs have been used to

identify, among others, monetary policy shocks (Wright, 2012) and shocks to growth

expectations and risk premia (Cieslak and Pang, 2021). We show that researchers can

combine daily identification schemes of this type with a lower-frequency estimation of

the macroeconomic impact of the shocks, gaining a significant degree of empirical

flexibility.

Outline. The remainder of this paper is organized as follows. Section 2 describes our

strategy, illustrating its theoretical properties and its performance in Monte Carlo

simulations based on VAR and general equilibrium models. Section 3 presents three

empirical applications in which we revisit BDG, CFGZ and BBD identifying uncertainty

shocks on daily rather than monthly data. Section 4 concludes.

3The use of external information in VARs is recently discussed in Miranda Agrippino and Ricco (2018)
and Paul (2020). See Plagborg-Moller and Wolf (2021) and Herbst and Johannsen (2020) for a discussion
of the relation between VARs and local projections.

4The temporal aggregation bias is discussed by Sims (1971), Christiano and Eichenbaum (1987), Marcet
(1991), and Marcellino (1999) among others.
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2 Identification Approach

We propose a new strategy to exploit high-frequency data (obtained for instance from

financial markets) in order to estimate the effects of structural shocks on variables that

are only available at lower frequencies (such as economic activity or inflation indicators).

Our proposal is motivated by the consideration that the use of high-frequency

observations can significantly improve the structural identification of VAR models that

combine financial and macroeconomic variables. Macroeconomists routinely use

monthly or quarterly series to examine the implications of various structural shocks.

However, insofar as investors react quickly to economic news, these shocks are likely to

propagate across markets and asset classes in far shorter time intervals. Trading in the

US stock market has been highly fluid at least since the early 1980s, with institutional

investors generating a cumulative turnover of up to 100 trades per day on thousands of

single-label shares (Boehmer and Kelley, 2009). The flow of information associated to

these activities implies that in a monthly or quarterly dataset exogenous shocks and

endogenous responses might be inextricably mixed, and even theoretically sound

identification strategies may fail to disentangle them. We argue that this is a critical

lesson for a very broad set of VAR models based on financial data. The simple strategy

proposed in this paper can be easily exploited in other contexts where researchers lack

external instruments (based e.g. on event-studies) but can apply plausible identification

restrictions to high-frequency datasets in which the endogenous feedbacks between

variables are less pervasive. After summarizing the logic of our approach below, we
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prove its general validity in Section 2.2 and provide an analytical example of its

application to a stylized VAR model in Section 2.3. Section 2.4 documents the

performance of the strategy through Monte Carlo tests based on a range of alternative

VAR and DSGE models.

2.1 A three-step Identification strategy

Our strategy to identify uncertainty shocks is a three-step one: I) estimate

high-frequency (HF) VAR and apply the appropriate identification strategy; II)

aggregate the shocks at the lower frequency (LF) of macroeconomic aggregates through

averaging; III) compute the dynamics effects by employing the averaged shocks as an

instrument for the LF-VAR. Before explaining those steps in detail, we discuss the

omission of macroeconomic aggregates from the HF-VAR.

0) On the omission of macro-variables from the HF-VAR. The omission of

macroeconomic aggregates from the HF-VAR may seem to be problematic at a first

glance, as SVARs practitioners are used to incorporate macroeconomic variables into

them to address macroeconomic or macro-financial questions. We explain in what

follows that, actually, omitting the macro aggregates from the HF-VAR does not

constitute a problem per se. The ability of any VAR model to identify a shock of interest

rests upon the concept of invertibility that has been widely studied in the literature.

Invertibility is a very strong, although commonly made, assumption: the structural

shock(s) of interest have to be linearly mapped by the reduced form residual obtained by
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the VAR. Fernandez-Villaverde et al. (2007) formulate the “Poor’s man invertibility

condition” that needs to be satisfied to allow a VAR analysis to recover the shocks of

interest.5 In the words of Stock and Watson (2018) “under invertibility, a forecaster using

a VAR would find no value in augmenting her system with data on the true

macroeconomic shocks, were they magically to become available.” Forni and Gambetti

(2014) put it differently, yet equivalently: “There are no state variables that Granger

cause the variables included in the VAR”. The VAR should incorporate enough

information on the state variables of the underlying structural model as to allow the

correct identification of the structural shocks. The presence of macro aggregates among

the observables does not automatically yield invertibility. In the same fashion, the

omission of these variables does not constitute a violation of invertibility per se. On the

contrary, in several cases, appending VAR models with asset prices has been proposed as

a remedy to achieve invertibility. In the popular case of fiscal foresight, Leeper et al.

(2013) argue: “If asset markets are efficient, the information contained in asset prices

should coincide with all available information to agents, and adding asset prices to a

VAR should help align the information sets of the econometrician and agent.” The

informational sufficiency of the VAR for a shock of interest (or vice-versa its invertibility

with respect to a candidate VAR model) should be investigated case by case. Some

authors have used purely financial structural VARs, implicitly relying on the invertibility

5In what follows we will use the term invertibility as including also the concepts of partial and
approximate invertibility Partial invertibility refers to invertibility holding only for a subset of the shocks
driving the system but that may be the only one of interest (in our case, uncertainty shocks). Approximate
invertibilitymeans instead that although theVAR residualsmay span the structural shock to a certain degree,
which may be still sufficient to characterize their dynamic causal effects (Beaudry et al. 2019; Forni et al.
2019).
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assumption (Wright, 2012; Cieslak and Pang, 2021).

Empirically, Forni and Gambetti (2014) propose to proxy the state variables of the

economy by estimating factors from large macro-financial dataset and perform a Granger

causality test for the shocks of interested. Related to our work, Miranda Agrippino and

Ricco (2018) suggest to apply the Forni and Gambetti (2014) test to monetary policy

surprises that constitute a proxy for monetary policy shocks. The shocks we employ in

our empirical applications always pass the Forni and Gambetti (2014) test (see also point

II below).In a simulated environment, one can also use general equilibrium models to

test whether a VAR estimated on financial data is informationally sufficient and,

consequently, the estimated residuals span the structural shock of interest. In our case ,

simulations based on the leading general equilibrium models of Basu and Bundick

(2017), Bloom et al. (2018), and Berger et al. (2019) (see Section 2.4) confirm the validity

of the informational sufficiency assumption.

I) Identification of the shocks on high-frequency data. The first step of our

strategy consists of recovering the structural shock(s) of interest by applying an

appropriate identification strategy to a VAR model estimated on ’high-frequency’ (HF)

data. We deliberately use the HF label in a loose sense: the label simply indicates a

frequency for which the identification restrictions are reasonable. This is often higher

than the (monthly or quarterly) frequency of the macroeconomic aggregates for which

one intends to estimate impulse-response functions. In the empirical applications of

Section 3 we use daily data for the identification step. Higher-frequency observations
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might be preferable in other contexts, although moving to narrower intra-daily time

windows entails a complex trade-off between the exogeneity and the statistical power of

the estimated shocks (see Nakamura and Steinsson, 2018). The specification of the VAR

must of course allow the identification of the shock of interest.

II) Temporal aggregation of the shocks. The second step consists of computing

low-frequency (LF, e.g. monthly or quarterly) averages of the high-frequency shocks

obtained in (I). One strength of our approach is its robustness: if the underlying HF data

generating process is a VAR, then averaging is the correct temporal aggregation filter for

the shocks irrespective of the gap between the two frequencies and the type of variables

employed in the analysis (prices, flows, stocks, etc.; see subsections 2.3–2.4). This result

on the optimal aggregation filter is also relevant for VARs identified using external

information (i.e. proxies), which have recently become very popular in the applied

macroeconomics literature (see e.g. Gertler and Karadi, 2015; Ramey and Zubairy,

2018). Our analysis demonstrates that there are indeed good reasons to stick to simple

within-period averaging rather than using alternative filters, such as moving averages,

large shocks, or shocks that occur at the beginning or the end of each month/quarter

(see Section 2.2). The averaged LF shocks are tested as in Forni and Gambetti (2014): in

our applications we show that they are orthogonal to past information obtained from

large auxiliary data sets.
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III) Estimation of the impact of the shocks on low-frequency variables. The third

and last step consists of employing the series of LF shocks obtained in (II) as a proxy or

instrument to estimate the causal effects on the endogenous variables of interest. The

estimation can be carried out using a VAR model or through local projections (Jorda,

2005; Stock and Watson, 2018) . In a VAR setup, the LF shocks can be treated as ’external’

or ’internal’ instruments. In the first case, if the proxy does not Granger-cause the

residuals of the LF-VAR invertibility is not rejected and standard inference applies.

Otherwise, inference based on the Proxy-SVAR is not valid, but the relative IRFs can still

be estimated by including the proxy and its lags as an exogenous variable in the VAR

(Paul, 2020). In the second case, the proxy is included as an additional endogenous

variable in the VAR and ordered first in a Cholesky decomposition (see e.g.

Plagborg-Møller and Wolf, Forthcoming, Miranda Agrippino and Ricco, 2018 for

extensive discussions of advantages and disadvantages of all these alternative methods).

2.2 General Proposition

The strategy described in the previous section is underpinned by a general theoretical

result on identification under temporal aggregation. Consider the general structural VAR

process given by A(L)yt = Bεt, where L is the lag operator and A(L) a lag polynomial of

order p. The SVAR corresponds to a multiplicity of reduced-form VAR representations of

the form A(L)yt = ut. Temporal aggregation can be expressed as a two-step filter. First,

the data are made observable only once everym periods, which represents the frequency
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mismatch, via the filter D(L) = I + D1L + D2L
2 + ... + Dpm−pL

pm−p. The specification

of D(L) has to be such that the elements of D(L)A(L) are powers of Lm, meaning that

only the observable data points enter the transformed process. The conditions for the

existence of such a filter and theDi matrices are derived inMarcellino (1999). The second

filter, denoted by W (L), depends on the temporal aggregation scheme considered; skip-

sampling (or point-in-time sampling) is usually applied to stock variables (e.g. prices)

whereas averaging is typically applied to flow variables (e.g. volumes). Our approach

rests on the following proposition:

Proposition I. Let yt follow an underlying high-frequency (HF) VAR process with

structural shocks εt and reduced-form innovations ut, with t = 1, 2, ...T ; and let yτ represent the

low-frequency (LF) version of the process obtained by applying the filters D(L) and W (L) to yt,

with τ = m, 2m, ..., T . A consistent estimate of the contemporaneous impact of εt on yτ can be

recovered by projecting the LF residuals uτ on the averages of the HF shocks that occurred within

the LF periods, i.e. ετ =

∑τ
t=τ−m+1 εt

m for every τ .

Proof: see Appendix B. ■

Proposition I implies that the causal effects of structural shocks in a low-frequencyVAR

can be recovered using simple averages of the structural shocks identified using high(er)

frequency data. This procedure is appropriate irrespective of how the underlying series

are aggregated over time, and hence it can be safely applied to VARs that include stocks,

flows, or any combination of the two. This result hinges on the linearity of VAR models,

which implies that the sum of the causal effect of the HF shocks εt in a given time window
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τ is equal to the causal effect of their average ετ .6

Comparison with Mixed-Frequency models. VAR models with mixed frequency data

are typically studied using a state-space representation (Schorfheide and Song, 2015) or

a stacked VAR approach (Ghysels, 2016). In state-space models low-frequency variables

are treated as high-frequency variables with missing observations and recovered with

the Kalman filter. While in principle this approach is optimal conditional on employing

the right model specification, its performance depends in practice on the model’s

accuracy in reconstructing the high-frequency dynamics of the low-frequency variables.

This procedure can be inaccurate when the frequency mismatch is high and the

information on the missing states is scarce. Our identification strategy does not suffer

from these shortcomings because it does not require a reconstruction of the full

high-frequency dataset. In the stacked VAR approach, a high-frequency variable is

decomposed into several low-frequency variables and directly employed in the VAR.

This prevents the implementation of more sophisticated identification restrictions,

forcing researchers to use recursive identification strategies (as in Ferrara and Guerin,

2018 and Paccagnini and Parla, 2021) that are not generally suited to capturing

macro-financial interactions, and particularly unsound in the case of uncertainty shocks

(Kilian et al., 2022). Moreover, there is no trivial way to obtain a unique measure of the

impact of a high-frequency shock on low-frequency variables (Ghysels, 2016). Our

6Although we do not deal explicitly with shocks identified using narrative sources and event studies,
our results on temporal aggregation are also relevant for this strand of literature. One implication of our
work, for instance, is that the practice of aggregating HF shocks by taking a moving average or a weighted
average of within-period observations is inconsistent if the true data-generating process is a HF VAR.
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identification strategy can exploit any type of identification restrictions, and it is

particularly well-suited to setups with a daily-monthly frequency mismatch and a

potentially large set of daily series. As such, it has a strong comparative advantage in a

broad range of macro-financial applications that rely on asset price data.

2.3 Illustrative VAR(1) case

Assume that the data generating process is a bivariate VAR(1) at the high frequency t,

Yt = AYt−1 +Bεt, or equivalently:

 xt

yt

 =

 a11 a12

a21 a22


 xt−1

yt−1

+

 b11 0

b21 b22


 εxt

ε
y
t

 , (1)

where [xt yt]
′
are scalar endogenous variables and εt =

[
εxt ε

y
t

]′
is a vector of structural

shocks , with E
[
εtε

′
t

]
= I2.7 The reduced-form residuals ut = Bεt are correlated, with

E
[
utu

′
t

]
= Σut = BB′. Assume further that the goal of the empirical analysis is to

identify the effect of the shock εy on x, but y is observed in every period t = 1, 2, .., T

whereas x is observed every two periods, i.e. in τ = 2, 4, ..., T . This frequency mismatch

generates an estimation problem as the SVAR in Eq.(1) is not observable. If the variables

are aggregated using end-of-period values, the low-frequency system is defined by

Yτ = A2Yτ−1 + uτ , where E [uτuτ ] = Σuτ = ABB′A′ + BB′ (see Appendix B). In this

model a Cholesky decomposition does not recover the impulse-response functions

7We use for simplicity a lower-triangular impact matrix B but the results can be generalized to the case
where b12 ̸= 0 .
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because the DGP is still a VAR(1) but its residual covariance matrix is not diagonal. The

same problem arises if the data is aggregated using averages rather than end-of-period

values. In other words, temporal aggregation prevents a correct identification of the

shocks.8 Suppose the researcher estimates a (suitably defined and informationally

sufficient) VAR at the frequency t, recovering the high-frequency shock ε
y
t or at least a

proxy of the shock, zt = ε
y
t + ηt where ηt ⊥ ε

y
t represents noise. In Appendix B.5 we

demonstrate that, in line with Proposition I, the impact on xτ of the average

within-period shock ε
y
τ =

(
ε
y
t + ε

y
t−1

)
/2 can be recovered using an average of this proxy,

zτ = (zt + zt−1)/2, as an instrument in the low-frequency VAR. Under the standard

assumptions of exogeneity and strength of the proxy (E
[
ztε

x
t

]
= 0, E

[
ztε

y
t

]
̸= 0), by

regressing uτ on zτ the researcher correctly identifies [0 b22]
′
up to a scale factor µ and

obtains an unbiased estimate of the IRF ratio 0/b22 . This is not the case for alternative

aggregation schemes. In particular, aggregations of the high-frequency shocks that rely

on moving averages, or on weights based on the number of days left in a month (e.g.

Kuttner, 2001; Gertler and Karadi, 2015), are formally inconsistent with an underlying

high-frequency VAR structure.

2.4 Monte Carlo Validation

Our strategy raises three related questions. The first one is whether invertibility can hold

in HF VAR models that omit by construction low-frequency macroeconomic indicators.

This requires the high-frequency variables included in the model to capture all the

8See Marcellino (1999) for a more general discussion of the temporal aggregation bias.
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relevant structural shocks in the economy, which is not trivial. The second one is

whether, subject to the HF VAR being invertible, our three-step strategy delivers better

IRF estimates than alternatives approaches. The third one is whether the strategy

successfully retrieves uncertainty shocks, which are known to raise particularly delicate

identification issues. In the three subsections below we investigate these issues using

data generated from a range of alternative VARs as well as widely-known DSGE models.

2.4.1 Invertibility

For the first set of tests we rely on the workhorse macroeconomic model by Smets and

Wouters (2007), as extended in Kliem and Uhlig (2016). Our objective is to check

whether a VAR based on a set of high-frequency variables allows identification in a

standard economic model driven by a realistic combination of structural shocks

(technology, labor supply, capital adjustment, wage markup and government spending).

We assume that only 4 of the variables featured in the model can be observed or proxied

at high frequency: risk-free interest rate, return on physical capital, excess return on

equity and stochastic discount factor.9 In order to assess invertibility we estimate the

VAR and compute the R2 coefficients in regressions where the true structural shocks are

projected onto the VAR residuals (Beaudry et al., 2019; Forni et al., 2019).10 With 5

structural shocks and 4 variables the VAR cannot by construction achieve invertibility for

all the shocks. Furthermore, the VAR is only an approximation to the solution of the

9Risk free rate, return on capital and excess return on equity are directly observable; stochastic
discount factors can be obtained from asset prices under various assumptions on market completeness and
segmentation (see e.g. Sandulescu et al., 2021).

10We repeat the exercise 1000 times employing samples of 500 observations generated by the model.
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DSGE model, which has a VARMA structure. The results in the first column of Table 2

show that, despite these limitations, the VAR is highly invertible with respect to

technology (0.95), labor supply (0.77), and capital adjustment shocks (0.96). For

comparison, we also report a similar set of statistics for two models that exploit the

information contained in all the endogenous variables of the DSGE model. The second

column refers to a FAVAR based on 4 factors extracted from all the endogenous variables

(a model that includes again less variables than shocks, and is thus structurally

informationally deficient like the previous VAR). Invertibility drops for labor supply and

wage markup shocks and increases substantially for fiscal shocks. The third column

shows instead the results for a FAVAR with 5 variables, which represents the upper

bound of what linear VAR models can achieve in this context: all R2 coefficients lie in

this case around 0.95. The exercise shows that, on average, asset prices capture the

information on the aggregate shocks in the economy fairly well, implying that financial

VARs can be reliably used for identification. However, it also shows that invertibility can

vary significantly across shocks. This motivate the analysis in Section 2.4.3, where our

strategy is tested using DSGE models with uncertainty shocks.

2.4.2 Comparison with VAR and mixed-frequency models

In this section we use VAR-generated data to compare our strategy to (i) a naive VAR

based on low-frequency data only, and (ii) the mixed-frequency models proposed by

Schorfheide and Song (2015) and Ghysels (2016). Invertibility holds by construction in

these tests (see section 2.4.1); the key question is how the models perform in estimating
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IRFs in small samples (see Annex C.3 for details). In the first test we simulate data using

the VAR(1) model of equation 1 under alternative assumptions on sample size,

frequency mismatch and temporal aggregation schemes. Our strategy (HF+LF VAR)

consistently outperforms a VAR based on low-frequency data (LF VAR), generating

accuracy gains in the estimation of the impulse-responses that range between 20% and

85% (see Table C1). By misestimating the contemporaneous impact of the shock, the LF

VAR can generate distortions that spread across variables and over time causing the

responses to be biased up to a one-year horizon, as in the example of Section 2. In the

second test we employ a four-variable VAR(1) system to compare the HF+LF VAR to the

mixed-frequency models proposed by Schorfheide and Song (2015) and Ghysels

(2016).11 The results confirm that the HF+LF VAR is a valid alternative to these models:

the HF+LF VAR features a lower Mean Absolute Distance (MAD) between true and

estimated IRFs in all the combinations of frequency mismatches and data aggregation

schemes considered in the tests (see Table C2). Our strategy is particularly attractive in

datasets that combine daily and monthly series, for which mixed-frequency and

state-space models are either non-viable or subject to an extremely large estimation

uncertainty. With daily data, these models generate MADs that can be up to 10 times

larger than those of the HF+LF VAR.

11The model must include at least 4 variables in order to have a multivariate (i.e. bivariate) high-
frequency block and a multivariate low-frequency block.
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2.4.3 DSGE models with uncertainty shocks

The final piece of our validation analysis represents the most direct test of the empirical

strategy employed in the next section, and it consists of Monte Carlo tests based on

leading DSGE models with aggregate uncertainty shocks (see Appendix C for details).

We use the general equilibrium models of Basu and Bundick (2017) (BB), Bloom et al.

(2018) (“Really Uncertain Business Cycle”, RUBC) and Berger et al. (2019) (“Really

Skewed Business Cycle”, RSBC), relying throughout on the calibrations originally

employed by the authors. The test is designed in the same way in the three cases. We

first define a “high-frequency” dataset for each of the DSGE models: this includes

alternatively VXO, stock price and interest rate (BB) or realized stock market volatility

and VXO index (RSBC and RUBC). The data is monthly in RSCB and quarterly in BB and

RUBC. We then aggregate the series into “low-frequency” datasets that are quarterly for

RSBC and annual for BB and RUBC. High- and low-frequency variables are defined here

purely on the basis of which information is available to the econometrician: we assume

that the financial variables included in the models can be observed at both frequencies,

whereas the macroeconomic variables are only observed at low frequency.12 Finally, we

compare the performance of HF+LF VARs (where high-frequency financial instruments

are used for identification in HF-VAR and then aggregated to estimate its causal effect on

variables only available at the lower frequency) to the performance of counterfactual HF

12Using a daily high-frequency benchmark would be more appealing, but it would also be problematic
because it would require re-calibrating the three DSGE models to the daily frequency. These daily
calibrations would be inevitably arbitrary and they could significantly alter the dynamics of the models
relative to the original specifications, rendering the Monte Carlo tests less informative.
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VARs (where both macro and financial series are assumed to be available at high

frequency) in recovering uncertainty shocks in the simulated data. In these comparisons

all the models employ identification schemes that are consistent with the underlying

DSGE structures: the difference is that the HF+LF VARs identify structural shocks using

a smaller set of high-frequency variables. Table 1 displays the correlations between true

and estimated shocks in the three models.

The correlations between true and estimated shocks in the HF-VAR are respectively

0.87, 0.88 and 0.98 for RSBC, BB and RUBC. Owing to the nonlinearity of the

data-generating processes, even this model faces limitations in recovering the shock

series. More importantly, however, the correlations are virtually identical for HF VARs

and HF+LF VARs. This implies that the informational content of the financial indicators

is sufficient for identification; or, put differently, that the unobservability of the macro

series at high frequency is not a first-order problem for the identification of uncertainty

shocks in any of the three DSGE models. A comparison between the estimated IRFs

reinforces this message (see Figures 1 and 2). The HF+LF VARs accurately track the

responses of both financial and real variables, with performances that are comparable to

those of the counterfactual HF VARs. The method works well both in the BB model, in

which uncertainty has a sizable impact on output, and in the RSBC model, in which it

has no impact.
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3 Uncertainty, Volatility, and Financial Markets

The debate on the role of uncertainty in the business cycle is open and fluid. Earlier

studies documented a strong impact of aggregate uncertainty on investment and output,

but recent contributions have cast doubt on those conclusions showing that uncertainty

is often an endogenous response to changes in fundamentals rather than an independent

source of fluctuations. This ambiguity is particularly evident when considering the

interactions between financial markets and the real economy. Recessions in the US

typically coincide with spikes in the volatility of the stock market, but researchers are

very much at odds on the interpretation of this coincidence. Baker et al. (2016) (BBD)

show that policy uncertainty generates volatility in firm-level equity evaluations, a drop

in stock prices and a significant decline in economic activity. Caldara et al. (2016)

(CFGZ) find that both policy uncertainty and stock market volatility can have an adverse

impact on the economy. Ludvigson et al. (2018) point out that ’financial’ uncertainty

shocks are a specific and quantitatively important source of business cycle fluctuations

(see also Carriero et al., 2018). At the other extreme of the spectrum, Berger et al. (2019)

(BDG) argue that, once they are properly isolated from concurrent changes in

fundamentals, exogenous shifts in the expected volatility of the stock market have no

impact on output and employment. In this section we contribute to this debate by

combining our approach with the identification schemes proposed by BBD, BDG and

CFGZ. In all cases we take the identification schemes as given and simply shift the

restrictions from the monthly frequency used in the original papers to the daily
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frequency. The motivation for this test is straightforward: if investors respond to

uncertainty and macroeconomic news on a daily basis, then monthly data may return a

partial and potentially misleading picture of the effects of uncertainty on the real

economy.

3.1 Berger, Dew-Becker and Giglio (2019)

Berger et al. (2019) (BDG) point out that, since financial market volatility reflects

changes in fundamentals as much as uncertainty about the future, a rise in volatility can

predict an economic slowdown even if it does not cause it in any way. To solve the

problem BDG identify “uncertainty shocks” as innovations to expected volatility that are

orthogonal to the realized volatility of the US stock market within a given month (a

proxy of market reactions to changes in other macroeconomic fundamentals). BDG

employ a VAR model that includes realized volatility (rv), an option-implied volatility

measure constructed by the authors (v1), the Fed Funds rate (ffr), industrial

production (ip), and employment (emp). The model is estimated over the period

between 1983 and 2014. Following a strategy originally used for TFP news shocks (see

e.g. Barsky and Sims, 2011), uncertainty shocks are identified as the linear combination

of the reduced-form residuals that maximizes the two-year ahead forecast error variance

(FEV) of v1 but has no contemporaneous effect on rv. The authors find that realized

volatility shocks cause a significant decline in economic activity while uncertainty shocks

have no effects on the real economy.
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The BDG restrictions can be easily exploited within our three-step procedure. Like

BDG, we estimate a monthly VAR that includes a constant and four lags of rv, v1, ffr, ip

and emp (all expressed in natural logarithms but for ffr). Following the procedure

described in Section 2, we then: (I) estimate a daily VAR including rv and v1, applying

the BDG identification scheme to recover realized and implied volatility shocks (and

using an identical horizon, adjusted to the daily frequency, for the forecast error variance

maximization); (II) calculate monthly averages of the daily shocks; and (III) use these

averages as external instruments for the residuals of the monthly VAR model. The daily

model employs the BDG measure for v1 and the squared daily return on the S&P500

index as a proxy of realized market volatility rv.13 The relation between v1 and rv is not

affected by the switch to daily observations: in particular, v1 is a powerful predictor of rv

for horizons of up to 6 months (see Table Table A.1 of the Appendix). Two modeling

issues are worth commenting on. The first one is informational sufficiency. Although

BDG rely on two financial indicators only, we find that the shocks obtained from a

bivariate daily VAR based exclusively on rv and v1 fail the Forni and Gambetti (2014)

test. We consequently replace the bivariate specification in step (I) with a richer model

that includes a range of daily indicators for bond, equity and commodity markets.14 The

13Our sample starts in 1986 rather than 1983 because the daily v1 series constructed by BDG, unlike its
monthly counterpart, is only available from 1986 onward. This change does not distort the comparison:
BDG show indeed that their results also hold for the 1988-2014 period. Squared daily returns (an unbiased
but noisy measure of daily market volatility) are not used in the applications of sections 3.2 and 3.3.

14The expanded daily VAR includes (in logs) s&p500 price index, Fed Funds rate, BAA corporate bond
spread, euro-dollar exchange rate, Economic Policy Uncertainty index, the s&pGoldman Sachs Commodity
Index (GSCI) - gold spot price. If these variables are included in a forecasting regression for rvt, the R2

increases from 0.46 to 0.68, see table Table A.1 of the Appendix. The shocks identified in this specification
pass the information sufficiency test: see Table Table A.2 of the Appendix.
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second issue relates to invertibility. The shocks obtained from high-frequency data can

be used indifferently as internal or external instruments in the monthly VAR model (see

Section 2): since we find no evidence of Granger-causality running from the shocks to

the reduced-form residuals of the monthly VAR, following Paul (2020) and Noh (2018),

we employ the shocks as external instruments for the residuals of the rvt and v1,t

equations.

Figure 3 compares the impulse-response obtained from our strategy (Daily+Monthly

VAR, left column) to those obtained from our replication of the monthly BDG model

(Monthly VAR, right column). In the monthly setup the contemporaneous response of rv

to a v1 shock is zero by construction. In our model, by contrast, this response is large and

positive, suggesting that rv rises significantly during the month in which the shock takes

place (see top row of the figure). This result is important because the identification

scheme per se says nothing about the time interval over which the rv response should be

held constant at zero. BDG argue that, since prices respond in opposite directions to

positive and negative uncertainty shocks, realized volatility (a function of squared price

changes) should not respond to the shock on impact. The question is what ’on impact’

means in practice. In financial markets a one-month horizon is likely to capture short- or

medium-term adjustments rather than contemporaneous adjustments. Hence, fixing the

daily response of rv is more sensible and far less restrictive that fixing its monthly

response. Figure 3 shows that the difference matters: once the shock is identified using

daily observations, the data reveals a strong within-month response of realized volatility
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to uncertainty shocks.15 The rest of Figure 3 shows that switching to a daily

identification has first-order implications for the other variables in the system too. The

responses of ffr, ip and emp are now consistently negative, and the shock causes a small

but statistically significant drop in both industrial production and employment. Unlike

the Monthly VAR, the Daily+Monthly VAR rejects the null hypothesis that a rise in

uncertainty has no real economic implications.16 This rejection reflects both a bias and a

variance factor. On the one hand, the point estimates of the ffr, emp and ip responses

are negative at all horizons. The change in the sign of the response is particularly visible

for ffr, which is instead estimated to rise on impact and remain above zero for over a

year (albeit not significantly) in the original setup. On the other hand, the confidence

bands are narrower than in the monthly model. This result, however, depends on how

the IRFs are bootstrapped. The confidence intervals in figure 3 are based on the recursive

homoskedastic bootstrap of Plagborg-Møller and Wolf (Forthcoming), which allows a

straightforward computation of forecast error variance decomposition (see below). If

this is replaced by a wild or moving-block bootstrap, the IRFs remain significant but the

confidence bands become more similar to those of the monthly model (see Appendix

15This result is extremely robust to an “agnostic” set-identification procedure: out of 1 million random
draws of the impact matrix of the daily VAR, not even one is compatible with rv remaining constant for 21
business days. The persistence of the rv and v1 responses in figure 3 may appear puzzling at first (efficient
stock and option markets should in principle adjust instantaneously to all shocks, uncertainty included),
but it is consistent with a large body of empirical evidence. Financial economists have long documented
’momentum’ andpersistence in asset prices using reduced-formmodels (Fama and French, 2015, Ehsani and
Linnainmaa, 2021); and stock and bond yields often display gradual and persistent responses to monetary
policy shocks in structural VAR models (Nakamura and Steinsson, 2018, Miranda-Agrippino and Ricco,
2021). These VAR responses are based on ex-post estimates, so they do not necessarily imply the existence
of forms of return predictability that could have been exploited in real time.

16BDG acknowledge that high-frequency dynamics could invalidate their monthly identification
procedure and propose a robustness test on this issue in Section 6.1.3 of the paper: the relation between
their test and our results is discussed in Appendix D.1.3.
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D.1). Furthermore, narrower bands only appear in the BDG setup: in the applications of

sections 3.2 and 3.3 our strategy corrects the point estimates of the responses without

affecting the standard errors around them.

We conclude this section with a comment on the implications of our analysis for the

overall relevance of uncertainty shocks in the business cycle. The peak responses of emp

and ip to an rv shock are respectively twice and thrice the size of those associated to a v1

shock; as a result, rv shocks explain a significantly larger fraction of the forecast error

variance of both employment and industrial production (see figures A.4 and A.5 of the

Appendix). Our strategy shows that uncertainty shocks ’matter’, but it also corroborates

the conclusion that first-moment shocks ’matter more’. As we show in the next

subsections, these conclusions emerge clearly in setups that use different identification

restrictions and uncertainty proxies.

3.2 Caldara, Fuentes-Albero, Gilchrist and Zakrajsek (2016)

Caldara et al. (2016) (CFGZ) focus on the interactions between uncertainty and credit

conditions, proposing an identification strategy that avoids contemporaneous

restrictions on asset prices. CFGZ estimate a range of Bayesian VAR(6) models using

monthly data for the period January 1975–March 2015. The specifications include 10

variables: industrial production (IPM), private payroll employment (EMPL), real

personal consumption expenditures (PCE), PCE deflator (PPCE), the S&P Goldman

Sachs (SPGS) Commodity Index, stock market returns (all in log-differences), the 2-year
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and 10-year Treasury bond yields, the Excess Bond Premium of Gilchrist and Zakrajsek

(2012) and an aggregate uncertainty proxy (in logarithms). The estimation relies on a

standard Minnesota prior on the reduced-form parameters. To account for the

simultaneity between asset prices and uncertainty, CFGZ use the penalty function

approach (PFA) developed by Faust (1998) and Uhlig (2005). The authors identify

uncertainty (resp. financial) shocks as the linear combination of reduced-form residuals

that maximize the response of the uncertainty (resp. financial condition) indicator over

a predefined horizon. The identification is implemented sequentially, imposing an

orthogonality condition between the two structural shocks. Although the PFA leaves the

impact matrix of the VAR unrestricted, its results may depend on which shock is

identified first, pretty much as in a recursive identification scheme. CFGZ find indeed

that ’financial’ uncertainty shocks extracted from the VXO index matter if and only if

they are identified first: under the alternative ordering, a rise in uncertainty causes a

decline in stock prices with no implications for the real economy. This dichotomy is

problematic because there are no economic arguments to favor either of the two

orderings.

We revisit this conclusion applying the CFGZ restrictions to daily rather than

monthly data. Our monthly VAR is identical to the CFGZ model, except for the fact that

we replace EBP (which is not available at daily frequency) with the spread between BAA

corporate bond yields and the 10-Year Treasury yield (BAA10Y).17 The daily VAR is

17To ensure that this change does not influence the results, we (i) replicate the monthly analysis of CFGZ
using the BAA spread instead of EBP; and (ii) estimate an additional specification where identification is
based on the daily BAA spread but EBP is used as a proxy of financial conditions in the monthly VAR. The
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estimated using the financial indicators included in the monthly model (VXO, bond

spread, SPGS Commodity Index, stock market return, 2- and 10-year Treasury bond

yields). We use the CFGZ estimation sample and set the PFA maximization horizon in

the daily model to 120 business days to match the 6-month window used by the authors.

The estimated shocks pass the information sufficiency test of Forni and Gambetti (2014).

Unlike in section 3.1, however, the shocks Granger-cause the residuals of the VAR, so we

use them as internal rather than external instruments in the model.

Figure 4 compares the responses to an uncertainty shock obtained using our strategy

(Daily+Monthly VAR, left column) to those obtained from our replication of the monthly

CFGZ model (Monthly VAR, right column). To ease the comparison across models and

identification orderings, the shocks are normalized to generate a 3% increase in the VXO

index in all cases. We focus on the responses of the VXO index, the BAA spread and the

key macroeconomic aggregates included in the model (IPM, EMPL, PCEPPCE),

referring readers to Appendix D.2 for more details. The figure reports median responses

along with 90% credible sets; the IRFs obtained with uncertainty shocks ordered first are

shown in red (VXO-BAA case), while those obtained with uncertainty ordered second

are in green (BAA-VXO case). A first important result is that using daily data is sufficient

to resolve the ambiguity encountered in CFGZ. In the Monthly VAR the shock affects

credit spreads and economic activity if it is identified first (green bands), but becomes

completely irrelevant if not (red bands). In the Daily+Monthly VAR, by contrast, it causes

a sizable and persistent increase in the spread, a decline in industrial production and

results are reported in Annex D.2.
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employment and a fall in prices irrespective of the identification ordering. For most

variables the median responses are indeed almost indistinguishable across orderings.

The second result is that the behavior of credit spreads is key in explaining the

discrepancy between models. Under the BAA-VXO ordering, uncertainty shocks affect

VXO only after ’netting out’ the impact of financial shocks on both volatility and credit

spreads. This seemingly minor restriction has dramatic implications for the monthly

identification (which suggests that the spread falls on impact and is unaffected in the

longer term, two equally puzzling results) and no impact whatsoever for the daily

identification (for which the spread behaves pretty much as under the alternative

ordering).18 Bond markets presumably price uncertainty on a daily rather than a

monthly basis, with the bulk of portfolio adjustments taking place within a few days

after a shock. The daily model takes into account these endogenous market responses,

rendering the estimation robust to the identification sequence. The monthly model, by

contrast, interprets the change in spread observed in a given month as a consequence of

the shock that is identified first, rendering uncertainty irrelevant in the BAA-VXO case.

A third interesting result is the large negative response of the PCE price index. This

deflationary effect is far more pronounced than in the original CFGZ model, and it

corroborates the idea that uncertainty acts mainly through the demand side of the

economy (Leduc and Liu, 2016 and Basu and Bundick, 2017). The Daily+Monthly VAR

shows that uncertainty and credit shocks have qualitatively similar but quantitatively

18The negative initial response of the BAA spread in figure 4 is consistent with CFGZ, who find that EBP
also falls after a rise in uncertainty in models where financial shocks are identified first.
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different macroeconomic implications (see Appendix D.2). Both cause a rise in spreads

and an economic slowdown, but the real economy responses are roughly twice as big

after a credit shock: uncertainty shocks only accounts for 2% (4%) of the forecast error

variance of IMP (EMPL) in the medium term.

3.3 Baker, Bloom and Davis (2016)

Baker et al. (2016) (BBD) introduced a new and now widely used Economic Policy

Uncertainty (EPU) indicator based on the frequency of newspaper articles referring to

uncertainty and policy-related topics. To study the role of uncertainty in the business

cycle, BBD resort inter alia to VAR models where uncertainty shocks are identified

through a Cholesky decomposition. This setup is interesting for two reasons. The first

one is that the EPU index has an obvious high-frequency component (news come at all

times) but, unlike the uncertainty proxies used in sections 3.1 and 3.2, it does not rely on

financial data. The second one is that, in sharp contrast to BDG, the results point in this

case to a sizable influence of uncertainty on the real economy. By revisiting the BBD

analysis we can thus test our strategy using a news-based rather than a volatility-based

uncertainty indicator, and check to what extent the divergence between BBD and BDG

depends on distortions associated to the monthly identification schemes used in the two

papers. The baseline specification employs monthly U.S. data from January 1985 to

December 2014, including three lags of (in this order) the EPU index, the log of the

S&P500 index, the federal funds rate, log employment (EMP) and log industrial
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production (IP). Since the EPU index is available on a daily basis, the results can be

easily reassessed following the same logic of the previous subsections. To do so we

estimate an informationally sufficient daily VAR model using EPU, S&P500, Fed Funds

rate, 2, 5 and 10-year Treasury Bill yields and the GSCI commodity price index. The

estimation sample is 1985-2014. Following BBD, we then identify uncertainty shocks

using two alternative Cholesky orderings. In the baseline case EPU is ordered first, so

that uncertainty shocks are not orthogonalized with respect to the shocks that hit interest

rates and stock prices in the same day or month. In the alternative setup EPU is ordered

third, after the S&P500 price index and the fed funds rate.

The responses are shown in figure 5. The HF+LF VAR method estimates for both real

andfinancial variables responses that are virtually identical in the twoCholesky orderings.

A 1σ EPU shock leads to a fall in the policy rate and a contraction in IP and EMP of 0.2%

and 0.1% respectively. This is not the case for the monthly VAR, where the impact of the

shock on IP and EMP is roughly halved under the more restrictive ordering (EPU third)

compared to the one that gives more prominence to uncertainty (EPU first). The change

in the stock price response is particularly striking: equity valuations fall by 2% if EPU is

ordered first, but they actually rise in the medium term if EPU is ordered third (after the

stock price index itself). Qualitatively similar but even stronger quantitative implications

arise from the FEVD decomposition. Uncertainty shocks consistently explain about 4%

of the FEV for both IP and EMP in the HF+LF VAR model, whereas in the monthly VAR

these shares range between 5% and 15%.
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3.4 The real impact of uncertainty shocks: a summary

The macroeconomic implications of aggregate uncertainty shocks have proved to be hard

to pin down and highly variable across samples, models, and identification strategies.

Our work points to an important factor behind these conflicts: the ambiguity is largely

caused by daily interactions between news, stock returns, bond spreads, and market

volatility that seriously complicate identification in VAR models based on monthly or

quarterly data. In Figure 6 we make this point more explicit by bringing together the

results obtained in the previous subsections in our re-examination of Berger et al. (2019)

(BDG), Caldara et al. (2016) (CFGZ) and Baker et al. (2016)(BBD). Figure 6 shows the

estimated impact of uncertainty shocks on industrial production (left panel) and

employment (right panel) at the 12-month horizon. We focus on the BDG and CFGZ

models, in which uncertainty is captured using an implied stock market volatility

indicator (respectively v1 and the VXO index), and compute ratios between the

cumulated responses of industrial production and employment and the cumulative

change in v1 or V XO (i.e. a measure of the elasticity of economic activity to expected

volatility after a positive uncertainty shock). If the shocks are identified using monthly

data the responses vary substantially across models: the elasticities range between zero

and 20% for industrial production and between zero and 6% for employment. By

contrast, daily identification schemes deliver elasticities that are virtually identical across

models, with central estimates around 8% and 5% for the two variables. The figure

shows that temporal aggregation can affect the monthly VARs in either direction: the
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impact of uncertainty is underestimated in models that restrict tightly the financial

response to the shock (BDG, CFGZ EBP-VXO), and overestimated in models that

underplay the endogeneity of uncertainty to financial conditions (CFGZ VXO-EBP).

Once the bias is removed, the estimates become more similar and statistically more

distinguishable from zero.19

Figure 7 provides an analogous model comparison based on 12-month-ahead forecast

error variances (FEVs). Since this metric does not require a normalization of the shocks,

we can include in the comparison the BBD model, in which uncertainty is captured by

the EPU index rather than implied stock market volatility. FEVs also have the advantage

of providing more information on the overall relevance of the shocks for the business

cycle. The impact of switching to daily identification schemes is again clearly visible:

monthly VARs deliver central estimates that range between zero and 15-17%, whereas

daily schemes generate central estimates that are concentrated in a narrow 2-5% range

(with the only exception of BDG, for which the figure is higher but also more uncertain).

A striking result in 7 is the high level of confidence with which the monthly BDG and

CFGZ EBP-VXO setups rule out any influence of uncertainty on economic activity,

generating FEV distributions that lie almost entirely on the zero line. Uncertainty shocks

become irrelevant when the responses of stock market volatility and bond spreads are

cut off, shutting down the financial side of the transmission mechanism.

In summary, daily data allows a reassessment of the real impact of uncertainty shocks

19The higher significance generally results from a downward shift in the distribution of the coefficients.
The BDG case also shows an improvement in accuracy, but this is not robust to alternative bootstrapmethods
(see section 3.1).
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that is at once sharper, robust to the identifying assumptions within a given model, and

surprisingly similar across models. The correlation between the uncertainty shocks

estimated in the models we examine is indeed significantly higher if the shock is

identified using daily rather than monthly observations (see Appendix F). In the

Appendix F we also illustrate the convergence across models by comparing the

volatility-based uncertainty shock estimates obtained from the BDG and CFGZ models

in 2001 and around the global financial crisis of 2008. Under a daily identification, the

models agree that the largest increase in uncertainty of 2001 occurred in September.

With a monthly identification, by contrast, they suggest that an equally large shock

(CFGZ) or an even larger one (BDG) took place in October. In the case of the global

financial crisis, all estimates point to large rises in uncertainty in September and October

2008, around the bankruptcy of Lehman Brothers. What changes is the magnitude of the

shocks, which is stable under a daily identification (at about 4 standard deviations) but

changes across models and over time under a monthly identification (ranging between 2

and 6 standard deviations).

4 Conclusions

How strong is the influence of aggregate uncertainty on the real economy? Past research

has given very different answers to this question, alternatively characterizing uncertainty

as a key driver or an endogenous by-product of the business cycle. In this paper we

revisit the question using a new strategy that consists of three steps: we identify
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uncertainty shocks using daily observations on stock prices, bond yields, implied

volatility and/or text-based policy uncertainty indicators, we aggregate the shocks to the

monthly frequency, and we use the aggregated shock series as instruments in monthly

VAR models of the US economy. This procedure is motivated by a simple consideration:

if financial markets react to macroeconomic news and changes in risk on a continuous

basis, then using monthly or quarterly data may by construction prevent a correct

separation between exogenous shocks and endogenous responses. As long as the

economy is described by a VAR at a (suitably defined) ’high’ frequency, the problem can

be bypassed by identifying the shock of interest at that frequency and then using a

low-frequency average of the shock to estimate the impulse-response functions. We

show that this approach delivers consistent and unbiased estimates of the responses in a

broad range of data-generating processes, including general equilibrium models with

uncertainty shocks, and that it is a flexible and robust alternative to mixed frequency

methods.

Our empirical analysis shows that daily data delivers a different and more coherent

picture of the relation between uncertainty and economic activity. When combined with

the identification schemes of Baker et al. (2016), Caldara et al. (2016), and Berger et al.

(2019), our strategy reveals that the impact of uncertainty shocks on economic activity is

(i) negative and significant in all cases, (ii) fairly small relative to the impact of more

traditional drivers of the business cycle, and (iii) very similar across specifications and

identification strategies. Accounting for the within-month interactions between
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uncertainty, stock prices and bond yields is crucial in order to capture the transmission

mechanism. Uncertainty can cause large daily swings in asset prices but it can also

respond endogenously to financial shocks, and separating these mechanisms is virtually

impossible in a monthly dataset.

Future work on the effects of uncertainty should start from the premise that financial

markets are a key link in the transmission mechanism, and that using daily or

higher-frequency observations is necessary to separate the correlations in the data into

exogenous shocks and endogenous responses. More generally, researchers can resort to

the approach proposed in this paper in cases where imposing identification restrictions

on low-frequency data is problematic and high-frequency data, obtained for instance

from financial markets or textual sources, can be used to isolate the shocks of interest.
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Correlation coefficients

BB RSBC RUBC

HF+LF VAR 0.88 0.87 0.98

Counterfactual HF VAR 0.88 0.87 0.98

Table 1: Recovering uncertainty shocks in DSGE models
Correlations between true and estimated uncertainty shocks in Monte Carlo tests based on the general equilibrium models of Basu and Bundick,
2017 (BB), Berger et al., 2019 (RSBC) and Bloom et al., 2018 (RUBC). The HF+LF VAR exploits a combination of high- and low-frequency data
through an IV step. The Counterfactual HF VAR assumes all variables in the models to be available at all frequencies.

Financial VAR - 4 variables Full-information benchmarks

FAVAR 4-variables FAVAR 5-variables

Technology 0.95 [0.91;0.97] 0.90 [0.30;0.97] 0.95 [0.91;0.98]

Labor supply 0.77 [0.71;0.83] 0.62 [0.01;0.94] 0.95 [0.69;0.98]

Capital adjustment 0.96 [0.92;0.98] 0.93 [0.75;0.98] 0.95 [0.92;0.98]

Wage markup 0.62 [0.54;0.67] 0.33 [0.03;0.91] 0.94 [0.20;0.98]

Government expenditures 0.24 [0.15;0.33] 0.91 [0.61;0.98] 0.95 [0.91;0.98]

Table 2: Invertibility of the structural shocks in Kliem and Uhlig (2016)
Invertibility of the shocks in Monte Carlo tests based on the general equilibrium models of Kliem and Uhlig (2016)-Smets and Wouters (2007).
The (median) R2 are obtained from a regression of the actual shocks on the residuals from a VAR estimated on asset prices only (Financial VAR)
or on the residuals from a FAVAR that includes all available information (full-information benchmarks). Squared brackets contain 99% confidence
intervals.
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Figure 1: True and estimated IRFs in the BB model
IRFs to an uncertainty shock computed using simulated data from Basu and Bundick (2017)Model. The green continuous line denotes the

theoretical IRFs from the model. Dashed light-blue line denotes the IRFs computed using the VAR specification of BB. HF+LF HVAR(PSVAR)
denote the IRFs computed using our proposed approach where the aggregated shock is used as in internal (external) instruments for the shock of

interest. 90% confidence intervals are computed using Bootstrap based on the HVAR.
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Figure 2: True and estimated IRFs in the RSBC model
IRFs to an uncertainty shock computed using simulated data from Berger et al., 2019Model. The continuous blue line with dots denotes the

theoretical IRFs from the model. Dashed red line denotes the IRFs computed using the VAR specification of BDG. HF+LF HVAR(PSVAR) denote
the IRFs computed using our proposed approach where the aggregated shock is used as in internal (external) instruments for the shock of interest.
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Figure 3: Daily versus monthly identification in BDG
Impact of uncertainty shocks under the identification strategy of Berger et al., 2019. The shocks are identified as innovations to the option-implied
expected volatility of the stock market ([v1]) that are orthogonal to the realized market volatility (rv). In the Daily+Monthly VAR (left column)
the shock is identified imposing the restrictions on daily data, averaged to the monthly frequency, and then used as an external instrument in the
monthly VAR model. In the Monthly VAR (right column) the restrictions are imposed directly on monthly data as in BDG. The estimation sample
is January 1983-December 2014. The variables included in the VAR are: realized volatility (rv), option implied volatility (v1), Fed Funds rate
(ffr), employment (emp) and industrial production (ip). Each plot reports the point estimates with 68% and 90% confidence bands computed using
1,000 bootstrap replications as in Plagborg-Møller and Wolf (Forthcoming).
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Figure 4: Daily versus monthly identification in CFGZ
Impact of an uncertainty shock under the identification restrictions of Caldara et al. (2016). All IRFs are based on the CFGZ Penalty Function
Approach (PFA). In the Daily+Monthly VAR model (left column) the shock is identified imposing the restrictions on daily data, averaged to the
monthly frequency and introduced as an additional variable in the monthly VAR model. In the Monthly VAR model (right column) the restrictions
are imposed directly on monthly data as in CFGZ. Green and red areas correspond to the responses estimated ordering the ucertainty shock before
and after the financial shock in the penalty function maximization. The variables plotted are: VXO index, the spread between US BAA Corporate
Yield and the 10Y US Treasury yield (BAA10Y), industrial production (IPM), private payroll employment (EMPL), real personal consumption
expenditures (PCE) and PCE deflator (PPCE) .Each plot reports the median response with a 90% Bayesian credible sets.
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Figure 5: Daily versus monthly identification in BBD
Impact of an uncertainty shock under the identification restrictions of Baker et al. (2016). All IRFs are computed using a recursive identification
strategy where EPU is ordered first (red) or third (green, after S&P500 and Fed Funds rate). In the Daily+Monthly VAR model (left column) the
shock is identified imposing the restrictions on daily data, averaged to the monthly frequency, and used as an external instrument in the monthly
VARmodel. In the Monthly VARmodel (right column) the restrictions are imposed directly on monthly data as in BBD. The monthly VAR includes
the following variables: the Economic Policy Uncertainty Index (EPU), the S&P500 index, the Federal Funds rate (FFR), employment (EMP),
and industrial production (IP). Green and red areas correspond to the responses estimated ordering EPU first or third (after S&P500 and FFR) for
the recursive identification. Each plot reports the point estimates with a 90% confidence intervals computed using 1,000 bootstrap replications as in
Plagborg-Møller and Wolf (Forthcoming).
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Figure 6: Cumulative Impact of Uncertainty Shocks across Models and Identification Schemes
1-year ahead cumulative responses of industrial production and employment to an uncertainty shock. For each variable the plots compare the

monthly LF VAR models (BDG, CFGZ EBP-VXO, CFGZ VXO-EBP) to the corresponding HF+LF VAR models in which identification is based
on daily data (denoted by the ‘daily’ suffix). All IRFs are scaled by the implied volatility responses to ensure comparability across models. The

boxplots show bias-corrected central estimates with 68% and 90% bootstrapped confidence intervals (BDG) or credible sets (CFGZ).
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Figure 7: FEV Contribution of Uncertainty Shocks across models and identification schemes
Shares of the 1-year ahead FEVs of industrial production and employment explained by uncertainty shocks. For each variable the plots compare the
monthly LF VAR models (BDG, CFGZ, BBD) to the corresponding HF+LF VAR models in which identification is based on daily data (denoted by
the ‘daily’ suffix). CFGZ and BBD are examined under two identification schemes in which uncertainty (resp. VXO or EPU) is ordered before or
after financial conditions (resp. EBP or stock prices, SP). The boxplots show bias-corrected central estimates with 68% and 90% bootstrapped

confidence intervals (BDG, BBD) or credible sets (CFGZ).
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