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Abstract

By endowing the class of tops-only and efficient social choice rules with a dual or-
der structure that exploits the trade-off between different degrees of manipulability
and dictatorial power rules allow agents to have, we provide a proof of the Gibbard–
Satterthwaite Theorem.
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1 Introduction

The Gibbard–Satterthwaite Theorem states that, when more than two alternatives and
all possible preferences over alternatives are considered, a social choice rule is unanimous
and strategy-proof if and only if it is dictatorial (Gibbard, 1973; Satterthwaite, 1975). There
are several interesting proofs of the Gibbard–Satterthwaite Theorem (see Section 3.3 in
Barberà, 2011, and references therein). In this paper, we provide a new proof of this the-
orem. To do this, we exploit the trade-off between the different degrees of manipulability
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and the different degrees of dictatorial power that rules allow agents to have within the
class of tops-only and efficient rules.

The idea behind our proof is the following. First, we show that each unanimous and
strategy-proof rule is both tops-only and efficient. Since dictatorial rules are tops-only
and efficient as well, it is safe to restrain our analysis to this class of rules in order to prove
Gibbard–Satterthwaite’s result.

The novelty of our approach consists of defining two orders within the class of tops-
only and efficient rules. One order compares rules according to their manipulability. A
rule is at least as manipulable as another rule if the former has as many manipulable (pref-
erence) profiles as the latter.1 Therefore, since strategy-proof rules have no manipulable
profiles, any rule is at least as manipulable as a strategy-proof rule. The other order com-
pares rules according to the dictatorial power of the agents. A rule is at least as dictatorial
as another rule if the former has as many dictatorial profiles as the latter, where a dictato-
rial profile is such that agents not obtaining their top alternative cannot unilaterally affect
the social outcome by changing their preference. Therefore, since dictatorial rules have all
of their profiles dictatorial, any dictatorial rule is at least as dictatorial as any other rule.

The crucial fact is that, given a tops-only and efficient rule, each preference profile
is either manipulable or dictatorial for that rule, which is equivalent to saying that both
orders are dual. Gibbard–Satterthwaite’s result follows easily from this. Clearly, every
dictatorial rule is strategy-proof. To see the converse, consider a strategy-proof rule. As
we already pointed out, any other rule is at least as manipulable as this strategy-proof rule.
Then, by the duality between the orders, this strategy-proof rule is at least as dictatorial
as any other rule. Thus, this strategy-proof rule is dictatorial.

The paper is organized as follows. After the preliminaries are presented in Section 2,
the class of tops-only and efficient rules is introduced in Section 3, where it is also shown
that every unanimous and strategy-proof rule belongs to the class. Finally, in Section 4,
the dual order structure of tops-only and efficient rules together with the proof of the
Gibbard–Satterthwaite Theorem are presented.

2 Preliminaries

A set of agents N = {1, . . . , n}, with |N| ≥ 2, has to choose an alternative from a finite
set X, with |X| ≥ 3. Each agent i ∈ N has a strict preference Pi over X. Denote by t(Pi) to
the best alternative according to Pi, called the top of Pi. Sometimes we write Pi : x, y, z, . . .,
meaning that x is the top of Pi, y is the second-best alternative of Pi, z the third-best,

1Maus et al. (2007) compare rules according to this criterion as well. Other similar criteria are studied,
for example, in Arribillaga and Massó (2016) and Pathak and Sönmez (2013).
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etc. Given i ∈ N and x ∈ X, a generic preference for i with a top equal to x is denoted
by Px

i . We denote by Ri the weak preference over X associated to Pi. Let P be the set
of all strict preferences over X. A (preference) profile is an ordered list of n preferences,
P = (P1, . . . , Pn) ∈ Pn, one for each agent. Given a profile P and a set of agents S, P−S

denotes the subprofile in Pn−|S| obtained by deleting each Pi for i ∈ S from P.
A (social choice) rule is a function f : Pn −→ X that selects an alternative in X for each

preference profile in Pn. We assume throughout that rules are unanimous, i.e., for each
P ∈ Pn such that t(Pi) = x for each i ∈ N, f (P) = x. Given a rule f : Pn −→ X, a
profile P ∈ Pn and a preference P′

i ∈ P , we say that agent i manipulates f at P via P′
i if

f (P′
i , P−i)Pi f (P). If no agent ever manipulates f , then f is strategy-proof. The set of all

strategy-proof and unanimous rules is denoted by S . A rule f : Pn −→ X is dictatorial if
there is i ∈ N (the dictator) such that, for each P ∈ Pn, f (P) = t(Pi). The set of all dictatorial
rules is denoted by D. The Gibbard–Satterthwaite Theorem states that S = D.

3 Tops-only and efficient rules

A rule f : Pn −→ X is tops-only if for each P, P′ ∈ Pn such that t(Pi) = t(P′
i ) for each i ∈ N,

f (P) = f (P′). A (seemingly) weaker property is the following. A rule f : Pn −→ X is
own-top-only if for each P ∈ Pn and each P′

i ∈ P such that t(P′
i ) = t(Pi), f (P′

i , P−i) = f (P).
It is easy to see that both properties are equivalent.

A rule f : Pn −→ X is efficient if, for each P ∈ Pn, there is no x ∈ X such that xPi f (P)
for each i ∈ N. Let T denote the set of all tops-only and efficient rules. It is clear that
dictatorial rules are efficient and tops-only, i.e., D ⊆ T . Next, we prove that unanimous and
strategy-proof rules are efficient and tops-only as well.

Lemma 1 If f ∈ S , then f is efficient.

Proof. Let f ∈ S . Assume that it is not efficient. Then, there are x ∈ X and P ∈ Pn such
that xPi f (P) for each i ∈ N. Let P⋆ ∈ Pn be such that, for each i ∈ N, P⋆

i : x, f (P), . . .
By strategy-proofness, f (P⋆

1 , P−1) ̸= x (otherwise agent 1 manipulates f at P via P⋆
1 ). Fur-

thermore, again by strategy-proofness, f (P⋆
i , P−i) = f (P) (otherwise, since f (P⋆

i , P−i) ̸= x,
agent 1 manipulates f at (P⋆

i , P−i) via Pi). Using the same argument, changing the prefer-
ence of one agent at a time, it follows that f (P⋆

−n, Pn) = f (P). By unanimity, f (P⋆) = x.
Therefore, f (P⋆)Pn f (P⋆

−n, Pn), contradicting strategy-proofness. Thus, f is efficient. □

To see that any rule in S is tops-only, we first present two auxiliary results.

Lemma 2 Let f ∈ S , P ∈ Pn, and i ∈ N be such that t(Pi) ̸= f (P) and let x ∈ X \
{t(Pi), f (P)}. If P′

i ∈ P is such that P′
i : t(Pi), x, f (P), . . ., then f (P′

i , P−i) ∈ {x, f (P)}.
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Proof. Let f ∈ S , P ∈ Pn, and i ∈ N be as stated. Let x ∈ X \ {t(Pi), f (P)} and P′
i ∈ P

be such that P′
i : t(Pi), x, f (P), . . . Then, f (P′

i , P−i) ∈ {t(Pi), x, f (P)} (otherwise agent i
manipulates f at (P′

i , P−i) via Pi). Moreover, f (P′
i , P−i) ̸= t(Pi) (otherwise agent i manip-

ulates f at P via P′
i ). Therefore, f (P′

i , P−i) ∈ {x, f (P)}. □

The following lemma says that rules in S always select one of the top alternatives in
each profile of preferences.2 Given r ∈ X and P ∈ Pn, let Nr(P) ≡ {i ∈ N : t(Pi)} = r}.

Lemma 3 Let f ∈ S , P ∈ Pn and x ∈ X be such that f (P) = x. Then, Nx(P) ̸= ∅.

Proof. Let f ∈ S , P ∈ Pn and x ∈ X be such that f (P) = x. Assume Nx(P) = ∅. Let
z = t(P1) and let k = min{i ∈ N \ {1} : t(Pi) ̸= z}. Such k exists by unanimity since
f (P) ̸= z. Let w = t(Pk). Let P1 ∈ P be such that P1 : z, w, x, . . . , and let Pk ∈ P be such
that Pk : w, z, x, . . . By Lemma 2, f (Pk, P−k) ∈ {x, z} and f (P1, P−1) ∈ {x, w}. There are
two cases to consider:

1. f (Pk, P−k) = z. Then, f (P1,k, P−1,k) = z (otherwise agent 1 manipulates f at (P1,k, P−1,k)

via P1). This, in turn, implies f (P1, P−1) ̸= w (otherwise agent k manipulates f
at (P1,k, P−1,k) via Pk), so f (P1, P−1) = x. Next, starting from f (P1, P−1) = x, by
strategy-proofness change the preferences of agents 2 to k − 1 one at a time to obtain
f (P1, . . . , P1, P−1,2,...,k−1) = x. Then, by strategy-proofness, f (Pk, P1, . . . , P1, P−1,2,...,k−1) ∈
{x, w, z} (otherwise agent 1 manipulates f at (Pk, P1, . . . , P1, P−1,2,...,k−1) via P1). Again
by strategy-proofness, f (Pk, P1, . . . , P1, P−1,2,...,k−1) /∈ {w, z} (otherwise agent 1 ma-
nipulates f at (P1, P1, . . . , P1, P−1,2,...,k−1) via Pk), so f (Pk, P1, . . . , P1, P−1,2,...,k−1) = x.
Changing the preferences of agents 2 to k− 1 one at the time, using strategy-proofness,
we get

f (Pk, Pk, . . . , Pk, P−1,2,...,k−1) = x. (1)

2. f (Pk, P−k) = x. Then, by strategy-proofness, f (P1, . . . , Pk−1, P1, Pk+1, . . . , Pn) ∈ {x, w, z}
(otherwise agent k manipulates f at (P1, . . . , Pk−1, P1, Pk+1, . . . , Pn) via Pk). Also by
strategy-proofness, f (P1, . . . , Pk−1, P1, Pk+1, . . . , Pn) /∈ {w, z} (otherwise agent k ma-
nipulates f at (Pk, P−k) via P1). Thus,

f (P1, . . . , Pk−1, P1, Pk+1, . . . , Pn) = x. (2)

Notice that, starting from profile P in which the first k − 1 tops are the same (equal to
z) and different from x = f (P), we construct in each case a new profile (see (1) and (2),
respectively) in which the first k tops are the same and different from x. Repeating this
argument n − k times we violate unanimity. Therefore, Nx(P) ̸= ∅. □

2Our proof of this result is similar to the proof of Theorem 2 (a) in Ninjbat (2012).
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Lemma 4 If f ∈ S , then f is tops-only.

Proof. It suffices to show that f is own-top-only. Assume it is not. Then, w.l.o.g. there are
P′

1, P⋆
1 ∈ P and P−1 ∈ Pn−1 such that t(P′

1) = t(P⋆
1 ) and f (P′

1, P−1) ̸= f (P⋆
1 , P−1). Let

x ≡ f (P′
1, P−1), y ≡ f (P⋆

1 , P−1), and z ≡ t(P′
1). (3)

Notice that all x, y, z are different. There are two cases to consider:
Case 1: n = 2. By Lemma 3, t(P2) = x. Consider P̂1 ∈ P such that P̂1 : z, y, x, . . . Then, by
Lemma 2, f (P̂1, P2) ∈ {x, y}. Moreover, f (P̂1, P2) ̸= x (otherwise agent 1 manipulates f
at (P̂1, P2) via P⋆

1 ). Therefore,
f (P̂1, P2) = y. (4)

Now, consider P̃2 ∈ P such that P̃2 : x, z, y, . . . Then, f (P′
1, P̃2) = x (otherwise agent

2 manipulates f at (P̂1, P̃2) via P2). Moreover, by Lemma 2, f (P̂1, P̃2) ∈ {y, z}. Also,
f (P̂1, P̃2) ̸= z (otherwise agent 1 manipulates f at (P′

1, P̃2) via P̂1). Therefore,

f (P̂1, P̃2) = y. (5)

To finish, consider any Pz
2 ∈ P . By unanimity and (5), f (P̂1, Pz

2 ) = zP̃2y = f (P̂1, P̃2),
contradicting strategy-proofness. This implies that f : P2 −→ X is own-top-only.
Case 2: n ≥ 3. By Lemma 3, Nx(P′

1, P−1) ̸= ∅. Assume, w.l.o.g., that Nx(P′
1, P−1) =

{2, 3, . . . , k}. Consider Px
2 , Px

3 , . . . , Px
k ∈ P . By (3) and strategy-proofness,

x = f (P′
1, P−1) = f (P′

1, Px
2 , P−1,2) = . . . = f (P′

1, Px
2 , . . . , Px

k , P−1,2,...,k). (6)

Define a two-agent rule g : P2 −→ X as follows. For each (P1, P2) ∈ P2,

g(P1, P2) ≡ f (P1, P2, . . . , P2︸ ︷︷ ︸
k−1 times

, P−1,2,...,k).

We claim that g ∈ S . First, let us see that g is strategy-proof. Notice that agent 1 cannot
manipulate g (because then he manipulates f as well). Assume that agent 2 manipulates
g at (P1, P2) via P′

2. Then, g(P1, P′
2)P2g(P1, P2) which implies

f (P1, P′
2, . . . , P′

2, P−1,2,...,k)P2 f (P1, P2, . . . , P2, P−1,2,...,k). (7)

By the strategy-proofness of f ,

f (P1, P2, . . . , P2, P−1,2,...,k)R2 f (P1, P′
2, P2, . . . , P2, P−1,2,...,k)R2 . . . R2 f (P1, P′

2, . . . , P′
2, P−1,2,...,k).

By transitivity, f (P1, P2, . . . , P2, P−1,2,...,k)R2 f (P1, P′
2, . . . , P′

2, P−1,2,...,k), contradicting (7). Thus,
g is strategy-proof.
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To see that g is unanimous, notice first that if P̆x
1 , P̆x

2 ∈ P , then g(P̆x
1 , P̆x

2 ) = x by (6) and
strategy-proofness. Next, consider any w ∈ X \ {x}. Let P⋆

i ∈ P be such that P⋆
i : w, x, . . .

for each i ∈ {2, . . . , k}. Then, by strategy-proofness, f (P′
1, P⋆

2 , P−1,2) ∈ {x, w} (otherwise
agent 2 manipulates f at (P′

1, P⋆
2 , P−1,2) via P2). Again by strategy-proofness, changing the

preferences of agents 3 to k one at a time, we get f (P′
1, P⋆

2 , . . . , P⋆
k , P−1,2,...,k) ∈ {x, w}. Since

Nx(P′
1, P⋆

2 , . . . , P⋆
k , P−1,2,...,k) = ∅, by Lemma 3, f (P′

1, P⋆
2 , . . . , P⋆

k , P−1,2,...,k) = w. Further-
more, let P̃1 ∈ P with P̃1 : w, x, . . . By strategy-proofness, f (P̃1, P⋆

2 , . . . , P⋆
k , P−1,2,...,k) ∈ {x, w}

(otherwise agent 1 manipulates f at (P̃1, P⋆
2 , . . . , P⋆

k , P−1,2,...,k) via P′
1). Again by Lemma 3,

since Nx(P̃1, P⋆
2 , . . . , P⋆

k , P−1,2,...,k) = ∅, we have

f (P̃1, P⋆
2 , . . . , P⋆

k , P−1,2,...,k) = w. (8)

Let Pw
1 , Pw

2 ∈ P . Then g(Pw
1 , Pw

2 ) = w by strategy-proofness and (8). Thus, g ∈ S and, as we
already proved for the n = 2 case, g is own-top-only.

To finish the proof, consider any Px
2 ∈ P . By strategy-proofness and (6), g(P′

1, Px
2 ) = x.

Since g is own-top-only, g(P⋆
1 , Px

2 ) = x. By the definition of g, f (P⋆
1 , Px

2 , . . . , Px
2 , P−1,2,...,k) =

x. Now, by strategy-proofness, we can change one at a time the preferences of agents 2 to
k to obtain f (P⋆

1 , P−1) = x. This contradicts (3). Therefore, f is own-top-only and, hence,
tops-only. □

The proof of Lemma 4 follows closely the ideas in the proof of Theorem 2 (b) in Ninjbat
(2012). Note, however, that Ninjbat (2012) does not analyze tops-only rules. By Lemmata 1
and 4 the next result follows.

Corollary 1 S ⊆ T .

4 Dual order structure of T and the proof

Before presenting the comparability criteria, we state a result analogous to Lemma 3 but
now for rules in T .

Lemma 5 Let f ∈ T , P ∈ Pn and x ∈ X be such that f (P) = x. Then, Nx(P) ̸= ∅.

Proof. Let f ∈ T and assume there is P ∈ Pn such that t(Pi) ̸= f (P) for each i ∈ N.
Let P⋆ ∈ Pn be such that, for each i ∈ N, t(P⋆

i ) = t(Pi) and yP⋆
i f (P) for each y ∈

X \ { f (P)}. By tops-only, f (P⋆) = f (P). Let x ∈ X \ { f (P)}. Then, xP⋆
i f (P⋆) for each

i ∈ N, contradicting efficiency. Therefore, Nx(P) ̸= ∅. □

Let f ∈ T and let P ∈ Pn. Profile P is manipulable for f if there are i ∈ N and P⋆
i , P′

i ∈ P
such that t(P⋆

i ) = t(Pi) and i manipulates f at (P⋆
i , P−i) via P′

i . Denote by M f the set of all
manipulable profiles for f . Our comparability criterion with respect to manipulability is
presented next.
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Definition 1 Let f , g ∈ T . We say that f is at least as manipulable as g, and write f ⪰m g,
if |M f | ≥ |Mg|.

It is clear that f ∈ T is strategy-proof if and only if M f = ∅. Thus, the next remark
follows.

Remark 1 Let f ∈ T . Then, f ∈ S if and only if g ⪰m f for each g ∈ T .

Let f ∈ T and let P ∈ Pn. Profile P is dictatorial for f if, for each i ∈ N such that
t(Pi) ̸= f (P), we have f (P′

i , P−i) = f (P) for each P′
i ∈ P . Denote by D f the set of all

dictatorial profiles for f . Our comparability criterion with respect to dictatorial power is
presented next.

Definition 2 Let f , g ∈ T . We say that f is at least as dictatorial as g, and write f ⪰d g, if
|D f | ≥ |Dg|.

The only rules for which all profiles are dictatorial are precisely dictatorial rules.

Lemma 6 Let f ∈ T . Then, f ∈ D if and only if D f = Pn.

Proof. Let f ∈ T . It is clear that if f is dictatorial, then D f = Pn. Let f be such that
D f = Pn. We start with the case n = 2. If f is not dictatorial then for each i ∈ {1, 2} there
is Pi ∈ P2 such that f (Pi) ̸= t(Pi

i ). Thus, by Lemma 5,

f (P1) = t(P1
2 ) and f (P2) = t(P2

1 ). (9)

Consider now profile (P1
1 , P2

2 ). First, assume t(P1
1 ) ̸= t(P2

2 ). By Lemma 5, w.l.o.g., we have
f (P1

1 , P2
2 ) = t(P1

1 ). Since profile (P1
1 , P2

2 ) is dictatorial and f (P1
1 , P2

2 ) ̸= t(P2
2 ), it follows that

f (P1
1 , P1

2 ) = t(P1
1 ), contradicting (9). Next, assume t(P1

1 ) = t(P2
2 ). Let P̃1 ∈ P be such that

t(P̃1) /∈ {t(P1
1 ), t(P1

2 )}. Since profile P1 is dictatorial and f (P1) ̸= t(P1
1 ), it follows that

f (P̃1, P1
2 ) = t(P1

2 ). Then, as t(P̃1) ̸= t(P2
2 ), the argument follows as before and we reach

another contradiction. Hence, f is dictatorial when n = 2. Assume now that n ≥ 3 and
that every n − 1 agent rule f ′ ∈ T such that D f ′ = Pn−1 is dictatorial. Given f : Pn −→ X
define rule g : Pn−1 −→ X as follows.3 For each (P1, P3, . . . , Pn) ∈ Pn−1,

g(P1, P3, . . . , Pn) = f (P1, P1, P3, . . . , Pn).

Clearly, g is efficient, tops-only, and Dg = Pn−1. Therefore, g has a dictator, say i⋆. First, as-
sume i⋆ ∈ {3, . . . , n}. We now show that i⋆ is also the dictator of f . If i⋆ is not the dictator

3The idea of defining a n − 1 agent rule from an n agent rule by “coalescing” two agents is due to Sen
(2001).
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of f , then there is (P1, P2, P3, . . . , Pn) ∈ Pn and k ∈ N \ {i⋆} such that f (P1, P2, P3, . . . , Pn) =

t(Pk) ̸= t(Pi⋆). Since f is tops-only and P is dictatorial, f (Pk, P2, P3, . . . , Pn) = t(Pk).
Again, since f is tops-only and P is dictatorial, f (Pk, Pk, P3, . . . , Pn) = t(Pk). By the defi-
nition of g, g(Pk, P3, . . . , Pn) = t(Pk), contradicting that i⋆ is the dictator of g. Therefore,
i⋆ is the dictator of f as well. Next, assume i⋆ = 1. Notice that f (P1, P2, P3, . . . , Pn) ∈
{t(P1), t(P2)} for each (P1, P2, P3, . . . , Pn) ∈ Pn (otherwise, there is j ∈ {3, . . . , n} such that
f (P1, P2, P3, . . . , Pn) = t(Pj) /∈ {t(P1), t(P2)} and, since (P1, P2, P3, . . . , Pn) is dictatorial,
f (P1, P1, P3, . . . , Pn) = t(Pj), contradicting that 1 is the dictator of g). Let (P3, . . . , Pn) ∈
Pn−2. Define rule h : P2 −→ X as follows. For each (P1, P2) ∈ P2,

h(P1, P2) = f (P1, P2, P3, . . . , Pn).

Clearly, h is efficient, tops-only, and Dh = P2. Therefore, as we already proved for the
case n = 2, h has a dictator. It remains to be shown that this dictator does not depend
on the sub-profile (P3, . . . , Pn) chosen to define h. Assume it does. Then, there is another
sub-profile (P̃3, . . . , P̃n) ∈ Pn−1 such that, w.l.o.g.,

f (P1, P2, P3, . . . , Pn) = t(P1) and f (P1, P2, P̃3, . . . , P̃n) = t(P2), (10)

and also t(P1) ̸= t(P2). Let z ∈ X \ {t(P1), t(P2)} and consider any Pz
3 ∈ P . Then,

f (P1, P2, Pz
3 , P−1,2,3) ∈ {t(P1), z}

(otherwise, since (P1, P2, Pz
3 , P−1,2,3) is dictatorial, f (P1, P2, Pz

3 , P−1,2,3) /∈ {t(P1), z} implies
f (P1, P2, P3, . . . , Pn) /∈ {t(P1), z}, a contradiction). Using the same argument, changing
the preference of one agent at a time, it follows that f (P1, P2, Pz

−1,2) ∈ {t(P1), z}. Simi-
larly, but now starting from f (P1, P2, P̃3, . . . , P̃n), we get f (P1, P2, Pz

−1,2) ∈ {t(P2), z}. Thus,
f (P1, P2, Pz

−1,2) = z and, since profile (P1, P2, Pz
−1,2) is dictatorial, f (P1, P1, Pz

−1,2) = z. Then,
g(P1, Pz

−1,2) = z and agent 1 is not the dictator of g, a contradiction. Therefore, either agent
1 or agent 2 is the dictator of f . □

The next remark follows from Lemma 6.

Remark 2 Let f ∈ T . Then, f ∈ D if and only if f ⪰d g for each g ∈ T .

It turns out that the classification of a preference profile as manipulable or dictatorial,
for a given rule, is exhaustive.

Lemma 7 Let f ∈ T and let P ∈ Pn. Then, P is either dictatorial for f or manipulable for f .

Proof. Let f ∈ T and P ∈ Pn. Assume P is not dictatorial for f . Then, there are i ∈
N such that t(Pi) ̸= f (P) and P′

i ∈ P such that f (P′
i , P−i) ̸= f (P). Consider P⋆

i ∈ P

8



such that t(P⋆
i ) = t(Pi) and f (P′

i , P−i)P⋆
i f (P). By tops-only, f (P′

i , P−i) = f (P). Thus,
f (P′

i , P−i)P⋆
i f (P⋆

i , P−i) and i manipulates f at (P⋆
i , P−i) via P′

i . Therefore, P is manipulable
for f . □

The dual order structure of T is an immediate consequence of Lemma 7.

Corollary 2 Let f , g ∈ T . Then, f ⪰d g if and only if g ⪰m f .

We are now finally in a position to prove the Gibbard–Satterthwaite Theorem.

Theorem 1 S = D.

Proof. It is clear that D ⊆ S . Next, we prove that S ⊆ D. Let f ∈ S . By Corollary 1, f ∈ T .
By Remark 1, g ⪰m f for each g ∈ T . By Corollary 2, f ⪰d g for each g ∈ T . Thus, by
Remark 2, f ∈ D. □
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