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Abstract

In a many-to-one matching model, with or without contracts, where doctors’ pref-

erences are private information and hospitals’ preferences are substitutable and public

information, any stable matching rule could be manipulated for doctors. Since manip-

ulations can not be completely avoided, we consider the concept of obvious manipula-

tions and look for stable matching rules that prevent at least such manipulations (for

doctors). For the model with contracts, we prove that: (i) the doctor-optimal matching

rule is non-obviously manipulable and (ii) the hospital-optimal matching rule is obvi-

ously manipulable, even in the one-to-one model. In contrast to (ii), for a many-to-one

model without contracts, we prove that the hospital-optimal matching rule is not ob-

viously manipulable.Furthermore, if we focus on quantile stable rules, then we prove

that the doctor-optimal matching rule is the only non-obviously manipulable quantile

stable rule.

JEL classification: D71, D72.

Keywords: obvious manipulations, matching, contracts

*We acknowledge financial support from UNSL through grants 032016, 030120, from Consejo Nacional

de Investigaciones Científicas y Técnicas (CONICET) through grant PIP 112-200801-00655, and from Agen-

cia Nacional de Promoción Científica y Tecnológica through grant PICT 2017-2355.
†Instituto de Matemática Aplicada San Luis(CONICET-UNSL) and Departamento de Matemática, Uni-

versidad Nacional de San Luis, San Luis, Argentina, and RedNIE. Emails: rarribi@unsl.edu.ar and

ebpepa@unsl.edu.ar@unsl.edu.ar

1

mailto:rarribi@unsl.edu.ar
mailto:ebpepa@unsl.edu.ar@unsl.edu.ar


1 Introduction

In the two-sided many-to-one matching model with contracts, there is a bilateral market

whose disjoint sides are typically referred to as doctors and hospitals. Each contract refers

to a doctor-hospital pair, although there may exist two or more contracts involving the

same agents under different contractual conditions. The classical matching models (with-

out contracts) can be addressed as special cases where there exists at most one contract

involving each pair of agents. The problem consists of assigning agents from one side of

the market to agents on the opposite side, through some contracts. In the many-to-one

model, each doctor is allowed to sign one contract at most, whereas hospitals can sign

multiple contracts. A set of contracts that contains at most one contract involving a doc-

tor is called allocation and is a possible outcome of the matching problem. All the agents

have preferences defined over the set of contracts involving them in some allocation. A

matching rule is a function that, for each preference profile declared by the agents, selects

an allocation. Since two agents wishing to sign an existing contract are free to do it, and

also the agents can unilaterally terminate previous contracts if they find it convenient,

there are outcomes that are unstable. We will consider stable allocations, i.e., outcomes

that are sustainable over time, supposing the market remains unchanged. Hatfield and

Milgrom (2005) proved that if all hospitals have substitutable preferences,1 then the set

of stable allocations is a nonempty lattice whose maximum and minimum elements can

be obtained through a generalization of the deferred acceptance algorithm introduced

by Gale and Shapley (1962). As in models without contracts, these extreme points corre-

spond to the unanimously most preferred stable allocation for the doctors (doctor-optimal

stable allocation), and the unanimously most preferred stable allocation for the hospitals

(hospital-optimal stable allocation)

In addition to stability, the non-manipulability of a matching rule also plays a cen-

tral role in two-sided matching literature. An agent manipulates a matching rule if there

exists a situation in which it obtains a better result for itself by declaring an alternative

preference to his true one. In this paper, we assume that hospitals’ preferences are public

and only focus on the manipulations that can be performed by doctors, whose preferences

are private information. It is well known that the doctor-optimal matching rule, i.e., the

1Substitutability is a basic condition, widely used in matching literature, and means that the hospitals do

not consider the contracts as complementary among themselves.
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matching rule that for each preference profile for doctors, returns the doctor-optimal sta-

ble allocation, is the only candidate to be stable and non-manipulable. Roth (1982) shows

that, in the classical one-to-one matching model without contracts, the only strategy-proof

and stable matching rule is the doctor-optimal one. In many-to-one matching models,

such kind of result depends on the characteristics of the (fixed and public) hospitals’ pref-

erences. In the context without contracts, if hospitals’ preferences are q-responsive (this

model is known as college admission problem) the doctor-optimal matching rule is also the

only strategy-proof and stable matching rule (see Roth, 1985). However, if hospitals’ pref-

erences are substitutable, the doctor-optimal matching rule could fail to be strategy-proof

and it might not exist a strategy-proof stable rule. This is shown by Hatfield and Mil-

grom (2005) and Martínez et al. (2004) for the matching models with and without con-

tracts, respectively. Those papers add different conditions to substitutability to recover

the strategy-proofness of the doctor-optimal matching rule in each context.2

Therefore, in the many-to-one matching model (with and without contracts) with sub-

stitutable preferences, any stable matching could be susceptible to manipulations. Given

that manipulations can not be completely avoided in this context, we look for stable

matching rules that at least prevent obvious manipulations (for doctors), as defined by

Troyan and Morrill (2020). A manipulation is "obvious" if it is much easier for agents to

recognize and execute successfully than others in a specific and formal sense. To formalize

the word "obvious", it is necessary to specify how much information each agent has about

other agents’ preferences. Troyan and Morrill (2020) assume that each agent has complete

ignorance in this respect and, therefore, each agent focuses on the set of all outcomes that

can be chosen by the rule given its own report. Now, a manipulation is obvious if the best

possible outcome under the manipulation is strictly better than the best possible outcome

under truth-telling or the worst possible outcome under the manipulation is strictly better

than the worst possible outcome under truth-telling. Complementary, the term "obvious"

reflects that an agent could deduce that a mechanism is manipulable even if it does not

fully know how the mechanism is defined (see Theorem 1 in Troyan and Morrill, 2020, for

this interpretation). In the context of college admission, Troyan and Morrill (2020) prove

that any stable matching rule is no-obviously manipulable. Our results show that such

a statement can be partially extended to the context of matching with contracts and sub-

stitutable preferences, arising some significant differences between the models with and

2Martínez et al. (2004) add q-separability and Hatfield and Milgrom (2005) add the law of aggregate demand.
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without contracts.

First, we prove that the doctor-optimal matching rule is non-obviously manipulable in

the general context of a many-to-one matching model with contracts and substitutable

preferences for hospitals. Hence, although there are no matching rules that are non-

manipulable, at least there is a matching rule that is non-obviously manipulable in such

context. This result can be seen as an extension to the model with contracts of the one ob-

tained by Troyan and Morrill (2020) but its proof requires completely different arguments

and techniques. Surprisingly, we show that the opposite result holds for the hospital-

optimal matching rule which turns out to be obviously manipulable (for doctors) even in

the particular context of a one-to-one matching model with contracts. This result is re-

markable because it reveals a substantial difference between the models with and without

contracts from the point of view of the strategic behavior of agents. In the context of the

many-to-one classical matching model without contracts and with substitutable hospitals’

preferences we prove that the hospital-optimal matching rule is non-obviously manipula-

ble.

Finally, we focus on the class of quantile-stable matching rules (or mechanisms) de-

fined in Chen et al. (2016) and studied in Chen et al. (2021) and Fernandez (2020), among

others. It is a new and relevant class of matching rules that generate stable matchings that

can be seen as a compromise between the two sides of the market. Two of the (extremal)

quantile-stable rules are the optimal matching rules that assign the best stable outcome

for one side and the worst for the other. Assume that given a profile, we have a market

with k stable matching, Chen et al. (2016) show that if the hospitals’ preferences are sub-

stitutes and satisfy the law of aggregate demand3, then the set of contracts that assigns

each doctor the i-th (1 ≤ i ≤ k) best stable matching outcome is a stable matching. Now

given q ∈ [0, 1], the q−quantile-stable matching rule is a rule that for each profile selects

the ⌈kq⌉-th best stable allocation for each doctor in such profile.4 When q = 0, the q−
quantile-stable matching rule is the doctor-optimal matching rule. Fernandez (2020) pro-

poses the notion of regret-free truth-telling as a weakness of strategy-proofness. This is a

notion which assumes that the agents obtain limited information about the preferences of

the other agents by observing the outcome of the rule. That paper shows that, when both

3Law of aggregate demand estates that the number of contracts chosen by the agent either rises or stays

the same if the set of available contracts increases.
4⌈x⌉ denotes the lowest positive integer equal to or larger than x.
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doctors and hospitals are strategic, the doctor-optimal and hospital-optimal are the only

regret-free truth-telling matching rules in the class of the quantile-stable. In line with that

result, our last theorem states that the doctor-optimal is the only quantile-stable matching

rule which is non-obvious manipulable when doctors are strategic.

Troyan et al. (2020) apply the notion of obvious manipulation in the context of one-

sided matching markets. They present the notion of essential stable matching and show

that no essentially stable mechanism is obviously manipulable. Other recent papers that

study the notion of obvious manipulation, in contexts other than two-side matching mar-

kets are Aziz and Lam (2021) and Arribillaga and Bonifacio (2022) in the context of voting;

Ortega and Segal-Halevi (2022) in cake-cutting and Psomas and Verma (2022) in allocation

problems.

The rest of the paper is organized as follows. The model and the concepts of stability

and obvious manipulations are introduced in Section 2. Section 3 presents the main re-

sults of our paper in three subsections. Subsection 3.1 contains the formal definition of the

doctor-optimal matching rule and the proof that such matching rule is non-obvious ma-

nipulable in the general context with contracts and substitutable preferences. Subsection

3.2 contains the formal definition of the hospital-optimal matching rule and the proof that

such matching rule is: (i) obvious manipulable in the context with contracts, even in the

one-to-one model and (ii) non-obvious manipulable in the context without contracts and

substitutable preferences. In Subsection 3.3 the quantile stable rules are introduced and

it is shown that the doctor-optimal matching rule is the only non-obvious manipulable

quantile stable rule. To conclude, some final remarks are gathered in Section 4.

2 Preliminaries

2.1 Matching model with contracts and strategic doctors

We consider a many-to-one matching model with contracts where particular markets have

two disjoint sides: a set of doctors D and a set of hospitals H, both finite. The problem

consists of assigning agents from one side of the market to agents on the opposite side

but, unlike in the classical matching model without contracts, the contractual conditions

(salary, schedules, work tasks, etc.) characterizing the relationship between two agents

are not fixed beforehand. In every particular market, there is a finite universal set of
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contracts X. Each contract x ∈ X is bilateral, involving exactly one doctor xD ∈ D and one

hospital xH ∈ H. The set X could contain two or more contracts relating the same pair of

agents (d, h) ∈ D × H, under different conditions. The classical matching model without

contracts can be considered as a special case of this setting, where X contains one and only

one contract involving each pair (d, h) ∈ D × H.

In the many-to-one matching model that we study here, each hospital can sign many

contracts and each doctor can sign one contract at most. An allocation is a subset of con-

tracts meeting such requirements.

Definition 1 A set of contracts Z ⊆ X is an allocation if x ̸= y implies xD ̸= yD for all

x, y ∈ Z.

Given a set of contracts Y ⊆ X and i ∈ D ∪ H, we will denote by A(Y) the set of all

allocations which are subsets of Y; and by Yi the set of all contracts in Y involving i. Note

that the empty set (referring to a situation where no contract is signed) is an allocation and

∅ ∈ A(Y) for all Y ⊆ X.

Given a set of contracts X, a particular market is determined by a preference relation,

over the set of allocations A(Xi),5 for each agent i ∈ D ∪ H. Such preferences are anti-

symmetric, transitive, and complete. Observe that |Z| ≤ 1 for all Z ∈ A(Xd) and d ∈ D.

Therefore, we might visualize a doctor’s preference relation as an order on the contracts

involving itself and the empty set. In our analysis, as is usual in the literature, we will as-

sume that only one side of the market is strategic: the doctors; while hospitals’ preferences

are fixed and common knowledge.

An arbitrary preference for doctor d is denoted by Pd. The weak preference relation

over A(Xi) associated to Pi will be denoted by Ri.6 By Pd we will denote the set of all

feasible preference relations that a doctor d has in a given market. A preference profile

P = (Pd)d∈D will identify a preference relation for each doctor. By P = ∏
i∈D

Pi we will

denote the set of all profiles of preferences that could take place in the given market.

Finally, for each profile P and doctor d ∈ D, we will denote by P−d the subprofile in

P−d = ∏
i∈D\{d}

Pi obtained by deleting Pd from P.

Definition 2 A (matching) rule is a function ϕ : P→A(X) that returns an allocation in A(X)

for each profile of preferences P ∈ P .
5Observe that every allocation in A(Xi) contains only contracts involving i.
6This is, for all x, y ∈ A(Xi), xRdy if and only if either x = y or xPdy.
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Given d ∈ D, we will denote by ϕd(P) the (only) contract in ϕ(P) involving d.

2.2 Stability

An essential property to be considered in matching models is the stability of allocations.

In order to introduce the notion of stability, it is necessary to consider the preferences of

the hospitals over the subsets of contracts. As we mentioned before, each hospital h ∈ H

has an antisymmetric, transitive and complete preference relation over A(Xh) that we will

denote by ≻h . A preference profile for hospitals is denoted by ≻:= (≻h)h∈H. Along the

paper ≻ is assumed to be arbitrary but fixed and known by doctors.

The choice set of h ∈ H given a preference ≻h and Y ⊆ X, is the subset of Yh that h

likes best according to ≻h

Ch(≻h, Y) = max
≻h

A(Yh)

Similarly, the choice set of d ∈ D given a preference Pd ∈ Pd and Y ⊆ X, is the subset

of Yd that d likes best according to Pd
7

Cd(Pd, Y) = max
Pd

A(Yd)

Remark 1 To keep the notation simpler, we will omit describing the preferences used to obtain the

choice sets unless this information were relevant and not obvious from the context. We will write

Ch(Y) and Cd(Y) instead of Ch(Y,≻h) and Cd(Y, Pd), respectively.

In addition, given Y ⊆ X we define CH(Y) = ∪h∈HCh(Y) and CD(Y) = ∪d∈DCd(Y).

Now, we are ready to introduce the concept of individually rational and stable allo-

cation. Given P ∈ P , an allocation Y ∈ A(X) is individually rational at P if it does not

contain unwanted contracts, i.e.,

CD(Y) = CH(Y) = Y.

Whenever two agents wish to sign a contract, they are free to do it, and they are also

free to terminate previous contracts. Consequently, an allocation can be blocked by a

7Observe that for each d ∈ D, the choice set Cd(Y, Pd) contains only the best element in Yd according

to Pd. However, we introduce this definition here to have a symmetric notation for hospitals and doctors

which makes the exposition simpler.
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contract that it does not include. Given P ∈ P and Y ∈ A(X) , the contract x ∈ X \ Y is a

blocking contract at P for Y if

x ∈ CxD(Y ∪ {x}) ∩ CxH(Y ∪ {x}).

Definition 3 Let P ∈ P . A set Y ∈ A(X) is a stable allocation at P if

(i) Y is individually rational at P;

(ii) There are no blocking contracts for Y at P.

Definition 4 A rule ϕ : P→A(X) is stable if for all P∈ P , the allocation ϕ(P) is stable at P.

Hatfield and Milgrom (2005) show that if all hospitals have substitutable preferences,

then the set of stable allocations is nonempty. Substitutability is a basic condition, widely

used in the matching literature, and means that the hospitals do not consider the contracts

as complementary among themselves. In other words, no contract ceases being chosen by

a hospital because another contract becomes unavailable for it.

Definition 5 A preference ≻h of an agent h ∈ H satisfy substitutability if x ∈ Ch(W,≻h)

implies x ∈ Ch(Y,≻h) whenever x ∈ Yh ⊆ Wh ⊆ X.

From now on ≻h will always satisfy substitutability for each h ∈ H.

Hatfield and Milgrom (2005) also show that if all hospitals have substitutable prefer-

ences, the set of stable allocations has a lattice structure whose extreme points are charac-

terized as the doctor-optimal stable allocation and the hospital-optimal stable allocation. They

are the allocation that assigns every doctor the best contract it could obtain through any

stable allocation and the allocation which assigns every hospital the best set of contracts

it could obtain through any stable allocation, respectively. Formal algorithms to compute

the mentioned optimal stable allocations are included in Section 3. In the rest of the pa-

per, we will focus particularly on the doctor-optimal rule and hospital-optimal rule which

return the doctor-optimal and the hospital-optimal stable allocations at each P ∈ P , re-

spectively.
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2.3 Manipulations and obvious manipulations

The concept of non-manipulability (or strategy-proofness) has played a central role in

studying the strategic behavior of agents. A doctor manipulates a matching rule if there

exists a situation in which this agent obtains a better result for him by declaring an alter-

native preference to his true one.

Definition 6 Given a rule ϕ : P→A(X), an agent d ∈ D and a preference Pd ∈ Pd, the prefer-

ence P′
d ∈ Pd is a manipulation of ϕ at Pd if there is a (sub)profile P−d ∈ P−dsuch that

ϕd(P′
d, P−d) Pd ϕd(Pd, P−d). (1)

A rule is strategy-proof if it has no manipulation.

In the context of substitutable preferences in many-to-one matching models (with and

without contracts), any stable matching is susceptible to manipulation (see Martínez et al.,

2004; Hatfield and Milgrom, 2005). So, a weaker notion than strategy-proofness could be

considered to study the strategic behavior of agents. Given that manipulations can not be

completely avoided, this paper considers the concept of obvious manipulations introduced

by Troyan and Morrill (2020) and looks for stable rules that at least avoid obvious manip-

ulations which are, in some sense, more easily identifiable by agents. To describe such

manipulations, it is important to specify how much information each agent has about

other agents’ preferences. Troyan and Morrill (2020) assume that each agent has complete

ignorance in this respect and, therefore, agents focus on the set of outcomes that can be

chosen by the rule given their own reports. Now, a manipulation is obvious if the best

possible outcome under the manipulation is strictly better than the best possible outcome

under truth-telling or the worst possible outcome under the manipulation is strictly better

than the worst possible outcome under truth-telling. In the context of college admission,

Troyan and Morrill (2020) prove that any stable rule is not obviously manipulable. We

will prove that such a result could be partially extended to our context of matching with

contracts and substitutable preferences.

Given a rule ϕ : P→A(X), a doctor d ∈ D and a preference Pd ∈ Pd, we define the

option set left open by Pd at ϕ as

Oϕ(Pd) = {ϕd(Pd, P−d) : P−d ∈ P−d}.

Given Y ⊆ X, denote by Wd(Pd, Y) to the worst alternative in Yd according to prefer-

ence Pd.
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Definition 7 Let ϕ : P→A(X) a rule, i ∈ D let Pd ∈ Pd, and let P′
d ∈ Pd be a manipulation of

ϕ at Pd. Manipulation P′
d is obvious if

Wd(Pd, Oϕ(P′
d)) Pd Wd(Pd, Oϕ(Pd)). (2)

or

Cd(Pd, Oϕ(P′
d)) Pd Cd(Pd, Oϕ(Pd)). (3)

Rule f is not obviously manipulable (NOM) if it does not admit any obvious manipulation. In

other case, f is obviously manipulable (OM)

3 Main results

In this section, we present the results of the paper. In all of them, we assume that hospitals’

preferences are substitutable. For a clear presentation, we omit to mention this general

hypothesis in each statement.

3.1 Doctor-optimal rule

Given a profile P ∈ P , the doctor-optimal stable allocation can be defined by the Doctor-

proposing Deferred Acceptance algorithm (D-DA). At this algorithm doctors make offers: a

doctor proposes its best contract (if any) among the set of contracts that have not been

rejected during the previous steps, while a hospital accepts its choice set given the set

of received offers. The algorithm stops when all offers are accepted. The output of the

algorithm is the set of contracts (allocation) accepted by the hospitals in the final iteration.

Formally:

The doctor-proposing deferred acceptance algorithm (D-DA)

Input:

A market (X, P).

Begin:

Set X1 = X and t := 1.

Repeat:

Step 1: Determine the set of contracts that doctors offer in the iteration t, this is Ot :=

CD(Xt).

Step 2: Determine the set of contracts that are (provisionally) accepted by hospitals in the
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iteration t : CH(Ot).

If CH(Ot) = Ot, the algorithm stops with output CH(Ot).

If CH(Ot) ⊊ Ot, define Xt+1 = Xt − (Ot − CH(Ot)), set t := t + 1 and repeat steps 1 and 2

End

Let ϕ : P→A(X) denote the doctor-optimal rule, i.e., the rule that returns the doctor-

optimal stable allocation for each preference profile for doctors, P∈ P . Trivially, ϕ is a

stable rule.

Now, we can state and prove the first result of this section.

Theorem 1 The doctor-optimal rule ϕ : P→A(X) is NOM.

The following two lemmas are necessary in order to prove Theorem 1. The first pro-

vides elementary properties of the choice sets when the hospitals’ preferences are sub-

stitutable. The second states that, at the end of each iteration of D-DA, each hospital is

assigned to its choice set from the set of all offers received up to that time.

Lemma 1 For all X, Y ⊆ X and i ∈ D ∪ H:

(i) Ci(Y) ⊆ X ⊆ Y implies Ci(X) = Ci(Y).

(ii) Ci(Ci(Y)) = Ci(Y).

(iii) If i’s preferences satisfy substitutability, then Ci(X ∪ Y) = Ci(Ci(X) ∪ Y).

Proof. (i) and (ii) are direct consequences of the definition of choice set.

(iii) Let i ∈ D ∪ H. By substitutability, X ∩ Ci(X ∪ Y) ⊆ Ci(X). Therefore, Ci(X ∪ Y) ⊆
Ci(X) ∪ Y ⊆ X ∪ Y. This implies Ci(X ∪ Y) = Ci(Ci(X) ∪ Y) according to (i). □

Lemma 2 Given P ∈ P , let Ot be as in D-DA definition and let define Ot
A := ∪t

k=1Ok. Then,

Ch(Ot) = Ch(Ot
A) for all t = 1, ...T (4)

and

ϕh(P) = Ch(OT
A) (5)

for all h ∈ H, where T is the number of iterations of the D-DA at P.

11



Proof. First, we prove (4). Given P ∈ P , let t be a stage of the D-DA at P, such that

1 ≤ t ≤ T . The proof is by induction on t. If t = 1 the proof is trivial. Now we assume

that (4) holds for all k < t and prove that it also holds for t. Let x ∈ Ch(Ot−1), then

by definition of D-DA, x ∈ Ot−1 = CD(Xt−1) and x ∈ Xt. Therefore, as Xt ⊆ Xt−1,

x ∈ CD(Xt) = Ot. Hence, Ch(Ot−1) ⊆ Ot. This implies Ch(Ot) = Ch(Ch(Ot−1) ∪ Ot).

Then, by induction hypothesis, Ch(Ot) = Ch(Ch(Ot−1
A ) ∪ Ot) and, consequently, we have

Ch(Ot) = Ch(Ot−1
A ∪ Ot) according to (iii) in Lemma 1. Therefore, by definition of Ot

A,

Ch(Ot) = Ch(Ot
A)

The proof of (5) follows from (4) when t = T and the definition of ϕh. □

Proof of Theorem 1 First, we prove that ϕ does not admit any obvious manipulation in the

sense of (2).

Given d ∈ D and Pd ∈ Pd, let y = Wd(Pd, Oϕ(Pd)). As ϕ is individually rational,

{y}Rd∅. As X is finite, there exists P̂−d ∈ P−d such that {y} = ϕd(Pd, P̂−d). We denote

X̂ = ϕ(Pd, P̂−d), so X̂d = {y}.

Let Ot be the set of offers made in the Stage t of the D-DA at (Pd, P̂−d) and let Ot
A =

∪t
k=1Ok for all t = 1, . . . , T, where T the number of iterations of the D-DA at (Pd, P̂−d).

Claim 1: Let x = min
Pd

{w ∈ Xd : {w}Pd{y}}, then {x} Pd Wd(Pd, Oϕ(P′
d)) for all P′

d ∈

Pd \ {Pd}.8

As {x}Pd{y} = ϕd(Pd, P̂−d), there exists k′ ∈ {1, ..., T} in which x ∈ Ok′ and x /∈
CxH(O

k′). As d makes at most one offer in each stage of the algorithm,

[CH(Ok′)]d = ∅. (6)

Let P̃−d ∈ P−d be such that for each i ∈ D\{d}, P̃i = [CH(Ok)]i,∅. We proved that

{x}Pdϕd(P′
d, P̃−d) for all P′

d ∈ Pd \ {Pd}.

Assume that there exists P′
d ∈ Pd \ {Pd} such that ϕd(P′

d, P̃−d) = {z} and {z}Rd{x}.

Let T′ be the number of iterations of the D-DA at (P′
d, P̃−d). W.l.o.g. we can assume that

T = T′, in another case we add some artificial steps where each doctor offers the contract

assigned by the D-DA. Let O′t be the set of offers in the Stage t of the D-DA at (P′
d, P̃−d) and

let O′t
A := ∪t

k=1O′k. As {z}Rd{x}Pd{y}Rd∅, z ̸= ∅ and zH ∈ H is well defined. Therefore,

8If {w ∈ Xd : {w}Pd{y}} = ∅, then ϕ would not admit any obvious manipulation trivially.
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by Lemma 2, ϕzH
(P′

d, P̃−d) = CzH(O
′T
A ) and then,

z ∈ CzH(O
′T
A ) (7)

Hence, as zD = d, by substitutability, z ∈ CzH([O
′T
A ]d). Furthermore, as CzH([O

′T
A ]d) is in

A(([OT
A]d)zH),

∣∣CzH((O
′T
A )d)

∣∣ ≤ 1. Therefore,

CzH([O
′T
A ]d) = {z}. (8)

By definition of P̃−d, [O′T
A ]i = [O′1]i = [CH(Ok′)]i for each i ∈ D\{d}. Then,

CzH(∪i∈D\{d}[O
′T
A ]i) = CzH(∪i∈D\{d}[CH(Ok)]i). (9)

Hence by (6) and (9) ,

CzH(∪i∈D\{d}[O
′T
A ]i) = CzH(CH(Ok′))

Therefore, by (ii) in Lemma 1,

CzH(∪i∈D\{d}[O
′T
A ]i) = CzH(O

k′) (10)

Then, as O′T
A = [O′T

A ]d ∪ (∪i∈D\{d}[O′T
A ]i), by (iii) in Lemma 1,

CzH(O
′T
A ) = CzH(CzH([O

′T
A ]d) ∪ CzH(∪i∈D\{d}[O

′T
A ]i)).

Hence by (8) and (10), CzH(O
′T
A ) = CzH({z} ∪ CzH(O

k′)). Then, by (7),

z ∈ CzH({z} ∪ CzH(O
k′)). (11)

Furthermore, by (6) and Lemma 2,

z /∈ CzH(O
k′
A). (12)

As {z}Rd{x} and x ∈ Ok′ , z ∈ Ok′
A. Then, Ok′

A = {z} ∪ Ok′
A. By (iii) in Lemma 1,

CzH(O
k′
A) = CzH({z} ∪ Ok′

A) = CzH({z} ∪ CzH(O
k′
A)) = CzH({z} ∪ CzH(O

k′))

Therefore, by (12), z /∈ CzH({z} ∪ CzH(O
k′)) which contradicts (11).

Then, {x} Pd ϕd(P′
d, P̃−d) for all P′

d ∈ Pd \ {Pd} and the proof of Claim 1 is completed.

Now, by Claim 1 and definition of x, {y} Rd Wd(Pd, Oϕ(P′
d)) for all P′

d ∈ Pd \ {Pd}.

Hence, ϕ does not admit obvious manipulations in the sense of (2).
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Second, we prove that ϕ does not admit any obvious manipulation in the sense of (3).

Given d ∈ D and Pd ∈ Pd let x ∈ Xd such that x = max
Pd

{x ∈ Xd : {x} ≻xH ∅}. Now let

P̃−d ∈ P−d be such that P̃i = ∅ for all i ∈ D \ {d}. Then, from the definition of D-DA, it

follows that {x} = ϕd(Pd, P̃−d). This implies Cd(Pd, Oϕ(Pd)) Rd {x}.

Furthermore, given P′
d ∈ Pd \ {Pd}, if y ∈ Xd and ∅ ≻yH

{y}, as ϕ is individually

rational and ≻yH is substitutable, we have that y /∈ Oϕ(P′
d).

9 Therefore, for all P′
d ∈ Pd \

{Pd} we have Oϕ(P′
d) ⊆ {x ∈ Xd : {x}PxH

∅} and, consequently, {x} Rd Cd(Pd, Oϕ(P′
d)).

So, for every P′
d ∈ Pd \ {Pd}, we obtain

Cd(Pd, Oϕ(Pd)) Rd {x} Rd Cd(Pd, Oϕ(P′
d))

This completes the proof of Theorem 1. □

3.2 The hospital-optimal rule

Similarly to the previous subsection, given a profile P ∈ P , the hospital-optimal stable

allocation can be defined by the Hospital-proposing Deferred Acceptance Algorithm (H-DA)

where hospitals make offers. It is defined as the D-DA by interchanging the roles of D

and H.

Let ϕ : P→A(X) denote the hospital-optimal rule, i.e., the rule that returns the hospital-

optimal stable allocation for each preference profile for doctors, P∈ P . Trivially, ϕ is a

stable rule. In the context of college admission Troyan and Morrill (2020) show that ϕ is

NOM.10 Surprisingly, such a result can not be extended to the context of matching with

contracts. In fact, the opposite result holds: ϕ is obviously manipulable even in the partic-

ular case of the one-to-one matching model with contracts. This result reveals a substantial

difference between the models with and without contracts from the point of view of the

strategic incentives of agents.

Theorem 2 The hospital-optimal rule ϕ : P→A(X) is OM, even in the one-to-one matching

model with contracts.11

9By sustitubility, x ∈ CyH (Y) implies that x ∈ CyH ({x}). Hence {x}PyH∅.
10They show that any stable is NOM.
11The one-to-one model can be addressed as a particular case of the many-to-one model where ≻h only

has singleton sets as acceptable, for each h ∈ H.
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Proof. It will be sufficient to show a particular market where a doctor d ∈ D has an obvious

manipulation at ϕ. Let D = {d1, d2}, H = {h1, h2} and X = {x, z, w} be the sets of doctors,

hospitals, and contracts, respectively. Suppose that xD = zD = d1, xH = zH = h1 and

wD = d2, wH = h2. Assume that ≻h1= x, y and ≻h2= w. Let P2 be an arbitrary preference

in Pd2 . Let P1 ∈ Pd1 such that P1 = y, x,∅. Following H-DA, h1 offers its best contract x to

doctor d1 and this contract is accepted by d1. Then, d1 does not receive more offers, and

h1 does not make more offers. Then, the contract x is the only one contract of d1 chosen

by ϕ at profile (P1, P2). Hence, ϕ
d1
(P1, P2) = x. Now, let P′

1 ∈ Pd1 such that P′
1 := y,∅.

Following H-DA, h1 offers its best contract x to doctor d1 and this contract is rejected by

d1. Then, h1 offers its second-best contract y to doctor d1 and this contract is accepted by

d1. Then, d1 does not receive more offers, and h1 does not make more offers. Then, the

contract y is the only contract of d1 chosen by ϕ at profile (P′
1, P2). Hence, ϕ

d1
(P′

1, P2) = y.

Therefore, ϕ
d1
(P′

1, P2) = yP1x = ϕ
d1
(P1, P2), for any P2 ∈ Pd2 . Hence, P′

1 is an obvious

manipulation of ϕ at Pd. □

Finally, in the context without contracts, an equivalent result to Theorem 1 can be ob-

tained for ϕ. This extends the result in Troyan and Morrill (2020) to substitutable prefer-

ences.

Theorem 3 Assume that for each pair (d, h) ∈ D × H there is at most one contract x ∈ X such

that xD = d and xH = d. Then, the hospital-optimal rule ϕ : P→A(X) is NOM.

Proof. First, we prove that ϕ does not admit any obvious manipulation in the sense of

(2). Given d ∈ D and Pd ∈ Pd, let y = W(Pd, Oϕ(Pd)). As ϕ is individually rational,

{y}Rd∅. As X is finite, there exists P̂−d ∈ P−d such that {y} = ϕ
d
(Pd, P̂−d). We denote

X̂ = ϕ(Pd, P̂−d), so X̂d = {y}.

Let P̃−d ∈ P−d be such that for each i ∈ D\{d}, P̃i = X̂i,∅.

Claim: X̂dRdϕ(P′
d, P̃−d) for all P′

d ∈ Pd \ {Pd}.

Assume on contradiction that there exists P′
d ∈ Pd \ {Pd} such that ϕ

d
(P′

d, P̃−d) = {z}
and

{z}Pd{y}. (13)

Let T′ be the number of iterations of the H-DA in (P′
d, P̃−d) and let XT′

has in H-DA’s

definition. As {z}Pd{y}Rd∅, z ̸= ∅ and zH ∈ H is well defined. Furthermore, as zD = d,

by hypothesis, zH ̸= yH. As X̂ is an allocation, y ∈ X̂ and yD = d, it follows that xD ̸= d for
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each x ∈ X̂zH . Hence, by definition of P̃−d, P̃xD := x,∅ for each x ∈ X̂zH . Then, contracts in

X̂zH are never rejected in the H-DA at (P′
d, P̃−d). Then, by definition of H-DA, X̂zH ⊆ XT′

.

As ϕ
d
(P′

d, P̃−d) = {z}, z ∈ CH(XT′
). Then, by substitutability and the definition of choice

set,

z ∈ CzH(z ∪ X̂zH) = CzH(z ∪ X̂) (14)

But (13) and (14) contradict the stability of ϕ(Pd, P̂−d) and the fact that ϕ
d
(P′

d, P̂−dt) ̸= z.

This finishes the proof of the Claim.

By Claim, W(Pd, Oϕ(Pd))PdW(Pd, Oϕ(P′
d)) for all P′

d ∈ Pd \ {Pd}. Therefore, ϕ does not

admit any obvious manipulation in the sense of (2). The proof that ϕ does not admit any

obvious manipulation in the sense of (3) is similar to the one given to ϕ in Theorem 1 and

therefore it is omitted. □

3.3 Quantile stable matchings

In this section, we introduce the class of quantile stable rules (or mechanisms) defined in

Chen et al. (2016) and studied in Chen et al. (2021) and Fernandez (2020), among others.

It is a new and relevant class of rules that generate stable matchings which can be seen

as a compromise between both sides of the market. The extremal quantile-stable rules are

the doctor-optimal and the hospital-optimal ones. They assign the best stable outcome for

one side and the worst for the other.

To guarantee the existence of quantile-stable rules it is necessary to assume that hospi-

tals’ preferences satisfy the law of aggregate demand, in addition to substatibility.12. The law

of aggregate demand establishes that the number of contracts chosen by the agent either

rises or stays the same if the set of available contracts increases.

Definition 8 A preference ≻h of an agent h ∈ H satisfies the law of aggregate demand (LAD)

if

|Ch(Y,≻h)| ≤ |Ch(Z,≻h)|

for all Y ⊆ Z ⊆ X.

LAD is less restrictive than the property of q-responsiveness assumed in the college

admission problem (see Pepa Risma, 2015) and trivially holds in the one-to-one matching

model.
12see Chen et al. (2016).

16



Along this subsection, we assume that ≻h satisfies substitutability and the law of ag-

gregated demand, for each h ∈ H.

Definition 9 For each q ∈ [0, 1], the q-quantile stable rule ϕq : P → A(X) is defined as follows:

given P ∈ P , let k be the number of stable matchings under P (and ≻), then ϕq(P) is the allocation

obtained by joining, for each doctor d ∈ D, d’s ⌈kq⌉-th best stable allocation in P according to order

Pd.13

Observe that ϕ0 = ϕ and ϕ1 = ϕ are the extreme quantile stable rules. Chen et al. (2016)

show, that ϕq is a stable rule when ≻h satisfies substatibility and the law of aggregate

demand for each h ∈ H.

Theorem 4 A q-quantile stable rule ϕq : P → A(X) is NOM if and only if q = 0 i.e.ϕq = ϕ is

the doctor-optimal rule, even in the one-to-one matching model with contracts.

Proof. By Theorem 1, ϕ0 = ϕ is NOM. Now assume that q ∈ (0, 1], we will show that

a particular market exists where a doctor d ∈ D has an obvious manipulation at ϕq. Let

D = {d1, d2}, H = {h1, h2} be the sets of doctors and hospitals, respectively. Let k be a

positive integer such that ⌈kq⌉ = 2 and let X = {x1, x2, . . . , xk, w} be the set of contracts,

where xi
D = d1, xi

H = h1 for each i = 1, . . . , k and wD = d2, wH = h2. Assume that ≻h1=

xk, xk−1, . . . , x1 and ≻h2= w. Let P2 be an arbitrary preference in Pd2 . Let P1 ∈ Pd1 such that

P1 = x1, x2, . . . , xk. Observe that the set of all stable allocations under P is ∪j=1···k{{xj, w}}
if wP2∅ and ∪j=1···k{{xj}} if ∅P2w. As ⌈kq⌉ = 2, ϕ

q
d1
(P) = x2. Now, let P′

1 ∈ Pd1 such

that P′
1 = x1. Then, the set of all stable allocations under (P′

1, P2) is {{x1, w}} if wP2∅, and

{{x1}} if ∅P2w. Hence ϕ
q
d1
(P′

1, P2) = x1. Therefore, ϕ
q
d1
(P′

1, P2) = x1P1x2 = ϕ
q
d1
(P1, P2) for

any P2 ∈ Pd2 . So, P′
1 is an obvious manipulation of ϕq at Pd. □

4 Final Remarks

Table 1 summarizes our main findings. Remember that we assume that hospitals’ prefer-

ences are substitutable. When preferences are responsive14 the results are the same as in

the one-to-one model.
13Here, ⌈x⌉ denotes the lowest positive integer equal to or larger than x.
14Preference ≻h is responsive with quota q, where q is a non negative integer number, if:
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NOM (for doctors)

Without Contracts With Contracts

one-to-one † many-to-one one-to-one many-to-one

Doctor-optimal yes yes yes yes Th.1

Hospital-optimal yes yes no no Th.3 and Th.2

ϕq(q-quantile)

q ∈ (0, 1)
yes ? no no Th.4

†
These results are due to Troyan and Morrill (2020)

Table 1: Summary of results.

Two remarks arise from the table. First, there are some open questions left by the

present paper: (i) Are all (quantile) stable rules NOM in the many-to-one matching model

without contracts and substitutable preferences for hospitals? (ii) Are there other NOM

stable rules besides the doctor-optimal rule in matching models with contracts and, if so,

how might these rules be characterized? Second, as we said before, there is a substantial

difference between the models without and with contracts from the point of view of the

strategic incentives of agents. In fact, the hospital-optimal rule does not admit obvious

manipulations in the context without contracts, but it does in the context with contracts,

even in the simplest one-to-one case.

Finally, an additional open problem arises by interchanging the roles between doctors

and hospitals and considering the manipulability of rules by hospitals. Even in the college

admission model, no stable rule exists that is not manipulable for colleges (see Roth, 1985).

Therefore, in this simple context, the consideration of non-obvious manipulable matching

rules looks like an interesting problem.

(i) For all Z ∈ A(Xh) such that | Z |> q, we have ∅ ≻h Z.
(ii) For every pair of contracts x, y ∈ Xh ∪∅, and every Z ⊆ Xh \ {x, y} with | Z |< q, whenever Z ∪ {x}

and Z ∪ {y} are in A(Xh), we have

Z ∪ {x} ≻h Z ∪ {y} if and only if {x} ≻h {y}.
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