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Abstract

Individualized inference (or prediction) is an approach to data analysis that is

increasingly relevant thanks to the availability of large datasets. In this paper, we

present an algorithm that starts by detecting the relevant observations for a given

query. Further refinement of that subsample is obtained by selecting the ones with

the largest Shapley values. The probability distribution over this selection allows to

generate synthetic controls, which in turn can be used to generate a robust inference

(or prediction). Data collected from repeating this procedure for different queries

provides a deeper understanding of the general process that generates the data.

Keywords: Individualized inference, Relevance selection, and classification, Syn-

thetic controls.
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1 Introduction

Sometimes, a statistical analysis requires only focusing on an observation or individual

from which an unknown variable of interest can be inferred based just on its characteris-

tics. In such cases, a critical issue faced by the analyst is whether all the available data

(the actual sample) is equally relevant to the question at hand. Or to put it another

way, there may exist a more efficient way to exploit the dataset to obtain a result that is

both robust and relevant to that question. This idea led Liu and Meng (2016) to propose

what they call transitional inference, striking a balance between finding a specific answer

(ensuring relevance) satisfying desirable statistical properties (robustness).

This type of problem, in which it is required to infer or predict answers to individual

queries, is an instance of what Vovk et al. (2022) deem as (one-off) online learning. Del-

bianco et al. (2021) and Delbianco and Tohme (2023) presented some initial approaches

to address the question of obtaining robust and relevant individualized inferences using an

algorithmic approach. The latter contribution incorporated the idea of using conformal

intervals (Xie and Singh (2013)) to determine the reliability of individualized inferences.

The literature presents different ways of exploiting the idea of individualization by

focusing on local data. Cai et al. (2021) and Alaa and Van Der Schaar (2017) exhibit

different approaches to that problem. The former, closer to the traditional methods of

Statistics, mixes the information drawn from instances similar to that of a given query;

the latter contribution, in turn, presents a Machine Learning solution.

Different aspects of the problem of individualization are analyzed in the literature.

So, for instance, Msaouel et al. (2022) proposes a framework for individualized medicine;

Gelman and Hennig (2017) discusses, in a Bayesian setting, the question of subjective

and objective aspects in the analysis of the trade-off between relevance and robustness in

statistical inference; Duan et al. (2022) presents a radical approach of running completely
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individual inferences (N -of-1 trials). Lu et al. (2018) suggest using random forests to ob-

tain answers from individualized treatments while Gong and Meng (2021) contextualizes

the problem as a way of solving Simpson’s paradox. While these and other contributions

address the same question they attack it from a diversity of angles.

Our idea here is that a query splits the space of observations in two, namely those rel-

evant to it and those that can be disregarded since they carry little information to answer

it. This classification can be understood as being associated with a relevance metric for

each individual, indicating how relevant is an observation in the online learning frame-

work. This means that an observation has several weights, one referring to its general

relevance and the others to its relevance for particular queries.

We present this approach by exploiting the concept of Shapley value, adapted from

Cooperative Game Theory (Buckmann et al. (2021)) as well as the properties of distance

functions (Deza and Deza (2013)). We generate then a notion of relevance for a sample

which further allows us to obtain a classification and standardization of the data.

The rest of the work is structured as follows. Section 2 describes the motivation and

the main ideas behind our proposal. Section 3 presents the methodology while in Section

4 we describe the actual algorithm. Section 5 assesses the classification task derived from

the solution to the individualization problem. Section 6 analyzes possible extensions and

upgrades to the algorithm. Section 7 concludes.

2 Motivation

While our long-term project is motivated by the original proposal of Liu and Meng, we

focus here on the detection of relevant observations as a first step to the generation of

synthetic data. The latter would incorporate the main properties of the relevant obser-
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vations as to allow the specification of scenarios in which robust predictions can be made

while preserving the relevance of the data used to generate them.

We assume, as in Delbianco et al. (2021), a statistical model of a data generation

process, which can be described as {O,P}, where O is the set of observations while

P = {Pθ : θ ∈ Θ} is a family of probability distributions over O and Θ is the space of

parameters of the model. The goal is again to estimate the parameters in response to any

query q, where q is a specific request for information under a given inference method I

applied on the database.

The query defines several dimensions. First, O consists of entries {oi = ⟨xi, yi⟩}i=1,...,n,

where xi is a vector of p variables, the tail of oi, while yi is the head, a vector whose com-

ponents may become potential answers to different queries. The query q consists of a

tail, x0, with no head, and with x0 ̸= xi, for i = 1, . . . , n. We assume that there exists a

class of latent variables S such that given a query q there exists a corresponding sq ∈ S

yielding a class of relevant observations Oq ⊆ O 1.

The relevant set of observations is given by Oq = fS(sq), where fS : S → 2O char-

acterizes a selection procedure. A further step of refinement may yield a set Oq ⊆ Oq,

representing strongly representative observations. We then can generate a class of con-

trols Ōq verifying that Oq ⊆ Ōq. Based on Ōq the application of an inference procedure

I yields θq such that Ōq can be understood as a set of draws from a distribution P̄θq ∈ P 2.

As an example consider the case of n different economies, each one described by a

vector of a few macroeconomic variables oi = ⟨xi, yi⟩, where yi is the GDP of country i.

We can ask, for any given economy o′ /∈ O what is its expected GDP, knowing only x0. If

we assume that a latent variable is the productivity of the leading sectors of an economy,

1The use of controls from a subset of observations can be justified on the grounds of the Law of Large
Populations. As pointed out in Meng (2018) it is relevant to have a large quantity of high quality data.

2Also known as Transitional Inference, as in Li and Meng (2021).
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we can group all the countries in O of productivity similar to that of o′ to generate a class

of controls to answer the question.

For another example, can consider a dataset of programs of study, students, and their

grades. Given a new student, a relevant issue is how long will take for her to finish her

chosen academic program. Another question could be to assess the probability of her

dropping her studies. Of course, a different query may require different controls. So the

sq latent variable will yield the portion of observations that is relevant given q, and will

let us obtain Oq to simulate new controls and make a robust and relevant inference to

answer q.

For each q we need to specify latent variables relevant for the query. Then, we have

to distinguish its scope using some proxy or measurement on the available O. This will

yield the class of relevant observations Oq. In the particular example of the student, let

us assume that there are two types of students, associated with a latent variable (which

can capture, for instance, socioeconomic or cognitive advantages). Then, a query q about

a particular student will be associated with her corresponding type and according to fS ,

mapped to the class of observations of students of that type.

But once obtained the relevant observations, a robust inference requires generating

new controls, not present in Oq. This is achieved by creating pairs ⟨x, y⟩ similar to those

in Oq but without assuming that they share with the latter a common value of the latent

variable. This means that only the observable features of the entries o ∈ Oq must be used

to create fictitious controls in Ōq, for instance as in the examples of Section 5 of Delbianco

et al. (2021).

This problem can be depicted as in Figures 1 y 2 (drawn from Delbianco and Tohme

(2023)). Figure 1 represents the existence of a set of observations relevant to a query q

without specifying a particular answer y. In low-dimensional cases, the determination of
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Oq seems rather trivial, since it can be obtained by clustering the observations that are at

a rather short distance according to, say, classical metrics like the cosine distance. With

a larger number of variables, non-classical notions of distance may be more appropriate.

Then, as shown in Figure 2, the set of relevant observations can be enlarged by simulating

new ones according to the empirical distribution of Oq.

Figure 1: Latent relevant area Sq

y

xq

A particular value of a tail q, is associated with a latent variable sq that yields the relevant
space of tails x ∈ Xq and as a consequence allows to infer the corresponding class of heads
y ∈ Yq. Then, this bi-dimensional figure can be extended to a three-dimensional one, with
the sequence of different queries as a third axis. This represents how the relevant set varies
according to q, learning the associated θq.

Figure 2: Simulated controls ∈ Ōq

O
Oq

Ōq

P̄θq

Pθq

The relevant set Oq, detected by means of fS , is extended to an enlarged set, Ōq. The
difference in the inferences made with and without the new controls is ∆θq = E(P̄θq) −
E(Pθq).
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3 Methodology

Our methodology ensues from the following result Delbianco et al. (2021):

Theorem 1 There exists Φ : Θ → O such that for any query q with parameter θq it

returns Oq ⊆ O and a function νq : O → {0, 1}} yielding the minimal expected value

∆θq = E(P̄θq)− E(Pθq) according to νq.

To implement Φ we go through different stages. The first one is the definition of a

metric that will allow us to define a distance between x0 and the tails of the observations

in O. The selected observations yield a particular model y = fq(x). The contribution of

each observation to this model is captured by its Shapley value. We can then regress a

restricted loss function against the Shapley values of the observations in Oq, to keep only

the significant observations. This ensures that only those that have a weight that matters

for accurate predictions. The following subsections present in detail these stages.

3.1 Relevant distance

We want to find, given a query q (identified with a tail x0) a subset Oq ⊆ O. Since the def-

inition of Oq might not be exact, we need to define a distance µq such that µq(x0, xi) > 0

for each xi corresponding to an observation oi = ⟨xi, yi⟩ ∈ Oq. A possibility is to identify

µq with a fuzzy T-metric µ, such that µq(x0, xi) = µ(x0, xi, α) for a given positive α ∈ R.

A fuzzy T-metric in our case would be a function

µ : X ×X × R+ → [0, 1]

where X is a space of p dimensions in which the tails of the observations (and the queries)

live. µ satisfies the following axioms for all x, y, z ∈ X, α, β > 0:

• µ(x, y, α) ∈ (0, 1],
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• µ(x, y, α) = 1 iff x = y,

• µ(x, y, α) = µ(y, x, α),

• T (µ(x, y, α), µ(y, z, β)) ≤ µ(x, z, α+ β),

• µ : R++ → [0, 1] is a continuous function.

Here T : [0, 1]2 → [0, 1] is a continuous triangular norm satisfying that for all a, b, c, d ∈

[0, 1]:

• T (a, 1) = a (1 is the identity),

• If a ≤ b and c ≤ d, then T (a, c) ≤ T (b, d) (monotonicity),

• T (a, b) = T (b, a) (commutativity),

• T (a, T (b, c)) = T (T (a, b), c) (associativity).

An example of norm T is the Gödel norm: T (a, b) = min {a, b}. Under this norm a

rather natural characterization of a possible distance µq obtains by, fixing α, as follows

Romaguera (2022):

µq(x0, xi) = µ(x0, xi, α) =


1, if d(x0, xi) ≤ α

0, otherwise

where d(·, ·) is a standard metric on X. Then, Oq = {oi = ⟨xi, yi⟩ ∈ O : µq(x0, xi) = 1}.

3.2 Shapley Value

Consider a predictive model y = f(x) computed on Oq. A way of assessing the contri-

bution of an individual ok = ⟨xk, yk⟩ to the prediction f(x0) for the query q. This can

be obtained by using this version of the Shapley value for Machine Learning Buckmann
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et al. (2021):

ϕk(f, x0) =
∑

S ⊆ Oq\{ok}

|S|!(|Oq| − |S| − 1)!

|Oq|!
(f(x0|S ∪ {xk})− f(x0|S))

where S is a subset of Oq without ok. Then, two new models are computed, f(·|S ∪ {ok})

and f(·|S), using only the observations in S plus ok and those in S, respectively. The

computed Shapley values {ϕk(f, x0)}ok∈Oq must satisfy a normalization condition:

ϕ0(f, ∅) +
n∑

k=1

ϕk(f, x0) = f(x0)

3.3 Selecting observations in Oq

Now let us consider a restricted loss function over Oq, namely L(ok) = 1 if |(yk−f(xk))| ≤

γ, for a given γ ≥ 0 and L(ok) = 0, otherwise.

Then, we consider the model

L(ok) = β0 +
∑
oj∈Oq

βjϕj(f, x0) + βxxk + ϵk

Now we consider the null hypothesis of the non-positive weights of the Shapley values:

H0 : {βj ≤ 0 for oj ∈ Oq}

The ojs that are significant are the only ones we keep in a restricted Oq ⊆ Oq.

3.4 Estimation of the distribution over Oq

To generate the distribution that might approximate Pθq we start by applying the EDAs

(Estimation of Distribution Algorithms) approach. This involves applying stochastic op-

timization methods to build and sample explicit probabilistic models of promising can-
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didates to be the actual model for a given sample. A series of incremental updates of a

probabilistic model obtain by optimization, starting with the model encoding an uninfor-

mative prior over admissible solutions and ending with a model that generates only the

global optima.

The main difference between EDAs and most conventional evolutionary algorithms is

that EDAs use an explicit probability distribution. The quality of candidate solutions is

evaluated using one or more objective functions.

Our EDA proceeds as follows:

t := 0

initialize model M(0) to represent an uniform distribution over Oq

while (termination criteria not met) do

P := generate N > 0 candidate solutions by sampling M(t)

F := evaluate all candidate solutions in P

M(t+ 1) := adjust model(P, F,M(t))

t := t + 1

The evaluation step F is critical. We accept a new observation o′ sampled from a

distribution M(t) if L(o′) = 1. In turn, the termination criterion would be satisfied if the

N candidates in P are accepted under F . The resulting set of observations is Ōq and the

corresponding distribution is P̄θq , which is used to infer the actual head y0 of the query q

with tail x0.

4 Algorithm

We will now describe how the previous procedures are integrated into an algorithm to

compute the answer to a query q. The sequence is as follows:
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1. Query: The first step involves defining the exact specification of the query q. It

is constituted by a tail x0, which can be conceived as a vector with as many di-

mensions as explanatory variables of an (unknown) head y0 that might also be

multi-dimensional. The entire set of observations is used to find a model y = f(x)

and compute f(x0).

2. Neighbourhood: The computational cost of determining a sample of relevant observa-

tions requires the application of a simple procedure to detect appropriate candidates.

The fuzzy metric defined above allows to select the observations that are closer than

a given α, selected according to the precision demanded by the researcher. The more

information is applied in this selection, the more precisely defined is Oq.

3. Shapley value: We compute the class of Shaple values {ϕk(f, x0)}ok∈Oq .

4. Regression: The loss function L(·) is regressed on the Shapley values to find their

corresponding weights. The observations with weights that do not reject the null

hypothesis, are discarded. The remaining observations constitute a set Oq. Then

we can identify {ϕj(f, x0)}oj∈Ok
with the latent variable sq.

5. Estimation: Applying the EDA described above, we generate a distribution over

Oq.

6. Simulation: New observations are drawn from the distribution over Oq, generating

a class of observations Ōq.

7. Inference: A model y = fq(x) is inferred on the basis of the data in Ōq. Then, the

answer to q is f̂(x0).

8. Comparison: We define Gq = |f(x0) − fq(x0)|, the gap between the inference with

all the observations and the inference with the relevant ones. Different choices in

the previous steps may lead to different values of Gq.

9. Iteration: Different queries q1, q2, . . . , qt (t = dim(Y )) based on x0 lead to values Gqj ,

j = 1, . . . , t. Then Ḡ =
∑t

j=1

t
can be used to infer the average difference between

11



the answers over specific queries and all the set of observations.

Algorithm 1 Individualized Prediction with Relevant Synthetic Controls

Input: O = {⟨x, y⟩, x ∈ X, y ∈ Y }, X0 ⊆ X, Regression methodA, Similarity intensity
α
Output: ŷ0 for each element x0 ∈ X0 of q, Oq, Oq, Ōq

α ∈ [0, 1]
A ▷ Regression method (e.g. OLS)
L ▷ Loss function (e.g. L(ok))
T ▷ Fuzzy T-metric (e.g. Gödel norm)
E ▷ Search algorithm (e.g. EDA)
for each x ∈ X0 do

1 Predict y0 with A and X
2 Use α and T → Oq

3 Use Oq → Shapley values in Oq

4 Regress L on the Shapley values → Xrel that reject the null hypothesis H0

5 Use E on Xrel → P̄θq

6 Fenerate synthetic data based on P̄θq → Ōq

7 Predict y0 with Ōq → ŷ0
8 Compare steps 1 and 7 → relevant gain Gq

end for each x0 ∈ X0

Return: Y0, Ḡ

5 Classification

Repeating the procedure for different queries with a common x0, makes our procedure an

instance of online learning, instead of just a one-off one. The information gained by the

different rounds provides a classification of the corresponding sets of relevant observations.

An interesting question is to consider as many queries as pairs ⟨xi, y
l
i⟩, where i =

1, . . . , n and l = 1, . . . , dim(Y ) to see the proportion of cases in which a given observation

⟨xi, yi⟩ ∈ O is chosen as relevant. This proportion is s̄ini

dim(Y )−1
, where ni is the number of

times the observation is deemed relevant for different queries, weighted by a representative

Shapley value, s̄i. The representative s̄i can be either a simple or weighted average, the

median, or any other way of deriving a value from the Shapley values corresponding to

the different queries.

12



6 Room for improvement

Since our algorithm is modular, each of its components may be replaced by an alternative

procedure. Here we discuss some of them:

• Bayesian updating: The Dirichlet distribution Dir(α) is a family of continuous

multivariate probability distributions parameterized by a vector α. Dir(α) is a

multivariate generalization of the Beta distribution. It is commonly used as a prior

distribution in Bayesian statistics. This is because it is the conjugate prior (i.e.

p(θ|x) belongs to the same family of distributions as p(θ)) to two important proba-

bility distributions: the categorical distribution and the multinomial distribution.

Then, if θ ∼ Dir(α), where α = (α1, . . . , αK) and θ = (θ1, . . . , θK), we have that

Dir(θ|α) = 1

Beta(α)

K∏
i=1

θαi−1
i

Starting with an a priori distribution over relevant observations, a Bayesian sequence

(for the same x0 but different queries) of a posteriori distributions may simplify

the generation of answers to the queries. Using Dirichlet distributions reduces the

burden of determining the a posteriori distributions, each one becoming then the a

priori one for the next query. While the answers will no longer be independent of

each other, this may be helpful in the cases in which the variables in the heads y

are correlated.

• Discriminating variables: Another alternative is to define which variables in the

tails must be taken into account to determine the relevant observations. Since some

of the variables may not contribute to distinguishing whether an observation is close

(for a given query) to x0. A previous step to the selection of the observations in
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Oq could be to run a LASSO regression using the observations in Oq to detect

the variables contributing to the answer to reduce the set X and consequently the

distance µq.

7 Conclusions

An individualized inference algorithm provides a way of learning accurately the differ-

ences among different observations in a dataset. Each step records those that are relevant

according to a metric of similarity. Furthermore, it registers the Shapley values of the

observations that pass a significance test among those that are deemed relevant.

The usefulness of this procedure is straightforward: classifying relevant observations

contributes to detecting the specific elements that may contribute to yielding the right

answers to queries. Further questions like, which query or category of problems is relevant

to a given observation, can be answered by this one-off learning procedure. The different

parameters that are to be chosen can be found optimally. The procedure is transparent,

avoiding the risks associated with black box ones. Then, besides yielding answers to

queries, the procedure learns about specific cases, recording the inferences for future use

on new cases.
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