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Abstract

We study information aggregation through voting in dynamic environments. We show that

the voting rule under which an informative vote is a Nash equilibrium entails a time-varying

quota, which suggests that efficient information aggregation requires the use of time-varying

voting rules. We also show that a time-invariant simple majority quota rule is asymptotically
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tions to the monitoring and managing of natural resources and the environment.
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1 Introduction

Importance of Condorcet’s jury theorem (information aggregation: the wisdom of crowds) and its

variants and extension in numerous directions (correlation of signals, different degrees of expertise,

such as Ben-Yashar & Nitzan (1997). Importance in the design (architecture) of organisations).

Relevant applications: juries, expert committees (medicine, monetary policy, regulation, project

evaluation, FDA committees). A relevant criticism is that of Austen-Smith & Banks (1996) who

show that informative (sincere) voting by all individuals is not a Nash Equilibrium even when the

committee members have common preferences. Therefore, particularly important contributions

are those that consider strategic voting (Wit 1998, McLennan 1998, Duggan & Martinelli 2001).

In general, it is possible to define a quota aggregation rule for which there is a Nash equilibrium

in which each member of the committee votes according to their information. If the conditions are

met for the informative vote to be a better aggregator than the dictator’s vote, then Condorcet’s jury

theorem holds: as the size of the committee increases, the probability of making a mistake tends to

zero because it is possible to design an aggregation rule that encourages the informative vote.

2 The model

In this section, we provide themodel which extends jury decision-making to dynamic environments,

and we derive the optimal voting rule.

2.1 Setup

I consider a decision maker (DM) whose task is to make decisions regarding the execution of

projects, the returns of which depend on a changing environment. Each period a committee of 𝑁

experts makes a report about the state of the world. N denotes the set of experts. In each period,
there may be two possible states of the world: 𝑥𝑡 = 𝑔, 𝑏, and two possible decisions: 𝐷𝑡 = 𝐺, 𝐵.

The ex-post payoffs in each period is𝑈 (𝑥𝑡 , 𝐷𝑡) when state is 𝑥𝑡 and decision 𝐷𝑡 is made:

𝑈 (𝑔, 𝐺) 𝑈 (𝑔, 𝐵) 𝑈 (𝑏, 𝐺) 𝑈 (𝑏, 𝐵)

Assumption 1 𝑈 (𝑔, 𝐺) > 𝑈 (𝑏, 𝐺)
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Assumption 2 𝑈 (𝑏, 𝐵) > 𝑈 (𝑔, 𝐵)

Assumption 3 𝑈 (𝑔, 𝐺) > 𝑈 (𝑔, 𝐵) → Δ𝑔 > 0

Assumption 4 𝑈 (𝑏, 𝐵) > 𝑈 (𝑏, 𝐺) → Δ𝑏 > 0

The state of the world follows a Markov chain with transition probabilities

_𝑔 = Pr (𝑥𝑡+1 = 𝑔 |𝑥𝑡 = 𝑔)

_𝑏 = Pr (𝑥𝑡+1 = 𝑔 |𝑥𝑡 = 𝑏) ,

(We assume that it is not affected by the decisions of the DM or of the committee). Let 𝛼 ≡
Pr (𝑥0 = 𝑔) denote the prior probability that the state is a good one.

2.2 The optimal voting rule

We proceed as follows: first, we derive the optimal information aggregation rule for centralised

decision-making, that is, decision-making is made by a single agent who aggregates the pri-

vate signals reported truthfully by committee members. Then we show that with decentralised

decision-making, if the voting rule replicates the optimal aggregation rule, there exists a Markovian

equilibrium in which each juror votes informatively, that is, according to her signal. Suppose

that the decision rests on a single decision maker who receives the opinion of 𝑁 jurors, each of

whom reports truthfully his private signal 𝑠𝑖𝑡 . A profile of 𝑁 signals is denoted 𝑠𝑡 ≡
(
𝑠𝑖𝑡
)
𝑖∈N . Let

𝑝𝑡 ≡ Pr (𝑥𝑡 = 𝑔 |𝐼𝑡) denote the probability that the state be 𝑥𝑡 = 𝑔 conditional on the information

available at 𝑡, 𝐼𝑡 . After the decision is made, the true state of nature is known (because it can be

inferred from the perceived utility). Information available for DM at 𝑡 is 𝐼𝑡 = {𝑠𝑡 , 𝑥𝑡−1, 𝐼𝑡−1} , 𝑡 ≥ 1,
(𝐼0 = ∅), but it suffices to consider 𝑠𝑡 , 𝑥𝑡−1 (previous history 𝐼𝑡−1 does not add information).

Provided that 𝑠𝑡 and 𝑥𝑡−1 are known, the posterior of the event 𝑥𝑡 = 𝑔 is

𝑝𝑡 =
Pr (𝑠𝑡 |𝑥𝑡 = 𝑔) Pr (𝑥𝑡 = 𝑔 |𝑥𝑡−1)

Pr (𝑠𝑡 |𝑥𝑡 = 𝑔) Pr (𝑥𝑡 = 𝑔 |𝑥𝑡−1) + Pr (𝑠𝑡 |𝑥𝑡 = 𝑏) Pr (𝑥𝑡 = 𝑏 |𝑥𝑡−1)
We denote the right hand side withΦ (𝑥𝑡−1, 𝑠𝑡). Expected value of choosing 𝐺 given prior 𝑝𝑡 is

𝑉𝐺 = 𝑝𝑡𝑈 (𝑔, 𝐺) + (1 − 𝑝𝑡)𝑈 (𝑏, 𝐺) + 𝛽E𝑥𝑡 ,𝑠𝑡+1𝑉 (Φ (𝑥𝑡 , 𝑠𝑡+1))
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and expected value of choosing 𝐵 given prior 𝑝 is

𝑉𝐵 = 𝑝𝑡𝑈 (𝑔, 𝐵) + (1 − 𝑝𝑡)𝑈 (𝑏, 𝐵) + 𝛽E𝑥𝑡 ,𝑠𝑡+1𝑉 (Φ (𝑥𝑡 , 𝑠𝑡+1))

where 0 < 𝛽 < 1 is the discount factor. Then, the Bellman equation for DM’s problem can be

stated as follows:

𝑉 ≡ max {𝑉𝐺 , 𝑉𝐵} . (1)

The optimal policy is 𝐺 if

𝑉𝐺 ≥ 𝑉𝐵 ⇔ 𝑝𝑡𝑈 (𝑔, 𝐺) + (1 − 𝑝𝑡)𝑈 (𝑏, 𝐺) ≥ 𝑝𝑡𝑈 (𝑔, 𝐵) + (1 − 𝑝𝑡)𝑈 (𝑏, 𝐵)

⇔ 𝑝𝑡 [𝑈 (𝑔, 𝐺) −𝑈 (𝑔, 𝐵)] ≥ (1 − 𝑝𝑡) [𝑈 (𝑏, 𝐵) −𝑈 (𝑏, 𝐺)]

⇔ 𝑝𝑡Δ𝑔 ≥ (1 − 𝑝𝑡) Δ𝑏

⇔ 𝑝𝑡 ≥
Δ𝑏

Δ𝑔 + Δ𝑏

.

Proposition 1 The optimal policy is

𝑑 (𝑝𝑡) =


𝐺 if 𝑝𝑡 ≥ Δ𝑏/
(
Δ𝑔 + Δ𝑏

)
𝐵 if 𝑝𝑡 ≤ Δ𝑏/

(
Δ𝑔 + Δ𝑏

) (2)

A stationary policy function 𝑑 (𝑝𝑡) associated to the functional equation (1) is a mapping from
the set [0, 1] where 𝑝𝑡 belongs, to an optimal action in A. As information unfolds over time (i.e.
signal profiles are learned), a sequence of optimal decisions is generated as follows: (i) 𝑠𝑡 is learned;

(ii) 𝑝𝑡 = Φ (𝑥𝑡−1, 𝑠𝑡) is calculated; (iii) optimal decision 𝑑 (𝑝𝑡) is chosen. Thus, an information
aggregation rule 𝑓 ∗𝑡 at period 𝑡, which is a mapping from the space of signal profiles to A, is
optimal, if it satisfies 𝑓 ∗𝑡 (𝑠𝑡) = 𝑑 (Φ (𝑥𝑡 , 𝑠𝑡+1)). Note that 𝑓 ∗𝑡 is (in general) time-varying because
the information state 𝑝𝑡 is also time-varying, even when in the infinite horizon case, 𝑑 (𝑝𝑡) is
stationary.1 An optimal information aggregation rule is a sequence 𝑓 ∗ =

{
𝑓 ∗𝑡

}∞
𝑡=1 of optimal period

information aggregation rules. We say that the rule 𝑓 ∗ =
{
𝑓 ∗𝑡

}∞
𝑡=1 aggregates information optimally

in the centralized problem if for each 𝑡, 𝑓 ∗𝑡 (𝑠𝑡) = 𝑑 (Φ (𝑥𝑡 , 𝑠𝑡+1)), where 𝑑 is the policy function

1In general, an information aggregation rule should map every available information to the set of actions A;
because of the sufficient statistic result, we can restrict wlg to the class of rules mapping signal profiles to actions and
ignoring past information 𝐼𝑡−1.
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associated to (1). An information aggregation rule is associated with a voting aggregation rule in the

dynamic voting game with informative voting. An informative profile of voting strategies is a Nash

equilibrium of the dynamic voting game of common interest Γ ( 𝑓 ) if 𝑓 aggregates information

optimally. If 𝑓 aggregates information optimally, and the strategies of players other than 𝑖 are

informative, then it is the best response for 𝑖 to vote informatively because the game is of common

interest. An informative profile of voting strategies is a Nash equilibrium of the dynamic voting

game of common interest Γ ( 𝑓 ) only if 𝑓 aggregates information optimally within the class of

qualified aggregation rules. If voting is informative, (2) leads to the following optimal aggregation

rule (Appendix): choose 𝐺 if

#A (v𝑡) ≥ d𝑞 (𝑥𝑡−1)e

and choose 𝐵 otherwise, where d𝑞e is the minimum integer 𝑞 such that 𝑞 ≥ 𝑞, for 0 ≤ 𝑞 ≤ 𝑁 ,

#A (v𝑡) is the number of voters voting for 𝑑𝑡 = 𝐺 in the profile v𝑡 and

𝑞 (𝑥𝑡−1) ≡
𝑁

2
+ 𝜑 (𝑥𝑡−1)

2[
+ b

2[
(3)

where b ≡ ln 𝜐
^
, 𝜑 (𝑥𝑡−1) ≡ ln

_ (0, 𝑥𝑡−1)
_ (1, 𝑥𝑡−1)

and [ ≡ ln \

1 − \
. We denote

d𝑞 (1)e ≡ 𝑞1, d𝑞 (0)e ≡ 𝑞0

To develop some intuition from the optimal voting rule, suppose b = 0. Note that \ >

1/2 ⇒ [ > 0. If in the last period, the mode was 𝑥𝑡−1 = 1 but persistence in this mode is low

(_ (1, 1) < 1/2), then a supermajority is required for the choice 𝑑𝑡 = 1, and if last period, the mode
was 𝑥𝑡−1 = 0, and persistence in the bad state is high (_ (0, 0) > 1/2), then a supermajority is
required for the choice 𝑑𝑡 = 1. Similarly, if last period mode was 𝑥𝑡−1 = 1 and persistence in this

mode is high, less than a simple majority is required in period 𝑡 for the choice 𝑑𝑡 = 1. Similarly, if

the last period mode was 𝑥𝑡−1 = 0, but persistence in a bad state is low, less than a simple majority is

required in period 𝑡 for the choice 𝑑𝑡 = 1. Note that the gap betweenmin {𝑞0, 𝑞1} andmax {𝑞0, 𝑞1}
does not depend on 𝑁 . Thus, the difference in quotas relative to the committee’s size goes to zero

as 𝑁 tends to infinity. Thus, in dynamic environments, a constant quota rule with 𝑞 = (𝑁 + 1) /2
(simple majority) is nearly efficient if the committee is very large.
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3 Asymptotic efficiency of constant quota rules

A constant aggregation rule is characterised by the quota 𝑞 ∈ {2, ..., 𝑁 − 1} such that ∀𝑡, 𝑑𝑡 = 𝑖1

if and only if #A (𝑣𝑡) ≥ 𝑞. A stationary Markov voting strategy for voter 𝑖 is a function 𝑣𝑖 :

𝑆 × 𝑋 → [0, 1] where 𝑆 = {𝑠0, 𝑠1} is the space of signals and 𝑋 is the space of states. That

is, a Markov strategy maps each private signal 𝑠𝑖𝑡 and each state 𝑥𝑡−1 to [0, 1] where 𝑣𝑖 (𝑠, 𝑥) ≡
Pr

(
𝑣𝑖𝑡 = 𝑖1 |𝑠𝑖𝑡 = 𝑠, 𝑥𝑡−1 = 𝑥

)
is the probability of voting 𝑣𝑖𝑡 = 𝑖1 when the voter privately observes

signal 𝑠𝑖𝑡 = 𝑠 and last period’s statewas 𝑥𝑡−1 = 𝑥. We focus on symmetric equilibria -agents receiving

the same signal use the same strategy. Define 𝑣𝑖 (𝑠1, 𝑥) = 𝑣1𝑥 and 𝑣0𝑥 = 1 − 𝑣𝑖 (𝑠0, 𝑥), so 𝑣1𝑥 is the
probability of voting 𝑣𝑖𝑡 = 𝑖1 when the signal is 𝑠1, and 𝑣0𝑥 is the probability of voting 𝑣𝑖𝑡 = 𝑖0 when

the signal 𝑠0. By lemma 2 of Austen-Smith & Banks (1996), informative voting 𝑣1𝑥 = 1, 𝑣0𝑥 = 1,∀𝑥
is a Bayesian equilibrium if and only if the aggregation rule aggregates information optimally.

Thus, it has to be 𝑞 = 𝑞1 = 𝑞0, but this occurs if and only if _ (1, 1) + _ (0, 0) = 1; thus, in general,
Bayesian equilibria in stationary Markov strategies are not informative under constant aggregation

rules. It also follows (e.g. proposition 2 of Ben-Yashar & Milchtaich (2007)) that constant rules

give lower expected utility than the rule that aggregates information optimally, which, as it has been

shown above, is, in general, time-varying. This raises the issue of which is the (second) best voting

rule (which we denote 𝑞) within the class of constant quota voting rules.

Lemma 1 (i) min {𝑞0, 𝑞1} ≤ 𝑞 ≤ max {𝑞0, 𝑞1}. (ii)If _ (1, 1) + _ (0, 0) = 1, then 𝑞 = 𝑞1 = 𝑞0.

(iii) _ (1, 1) = _ (0, 0) = 1/2⇒ 𝑞∗ = (𝑁 + 1)/2.

3.1 Characterization of equilibrium under constant voting rules

It can be shown (Appendix) that if under the constant quota 1 < 𝑞 < 𝑁 , a voter mixes when

observing 𝑠0 and past state is 𝑥𝑡−1 = 𝑥 (that is 0 < 𝑣
𝑠0
𝑥 < 1) then she does not mix when she observes

𝑠1, and in particular, 𝑣𝑠1𝑥 = 1. Similarly, if the voter mixes when observing 𝑠1, then 𝑣𝑠0𝑥 = 1 2 Given

𝑥𝑡−1 = 𝑥 and constant quota 1 < 𝑞 < 𝑁 , the following proposition characterises mixed strategies.

Proposition 2 (i) if 𝑣𝑠1𝑥 = 1 and 0 < 𝑣
𝑠0
𝑥 < 1, then

𝑣
𝑠0
𝑥 =

1 −𝜛0 (𝑥, 𝑞)
\ − (1 − \)𝜛0 (𝑥, 𝑞)

2Wit (1998) considers the simple majority case. Here, we extend Wit’s result to the case of an arbitrary quota
1 < 𝑞 < 𝑁 .
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where

𝜛0 (𝑥, 𝑞) ≡
[
^_ (1, 𝑥)
𝜐_ (0, 𝑥)

(
1 − \

\

)𝑁+1−𝑞] 1
𝑞 − 1

.

(ii) if 𝑣𝑠0𝑥 = 1 and 0 < 𝑣
𝑠1
𝑥 < 1, then

𝑣𝑠1𝑥 =
1 −𝜛1 (𝑥, 𝑞)

(1 − \) − \𝜛1 (𝑥, 𝑞)

where

𝜛1 (𝑥, 𝑞) ≡
[
^_ (1, 𝑥)
𝜐_ (0, 𝑥)

(
\

1 − \

)𝑞] 1
𝑁 − 𝑞

.

Let 𝑣𝑠𝑥 (𝑞) be the optimal mixed strategy when the constant quota rule is 𝑞, past state is 𝑥 and signal
is 𝑠.

Lemma 2 For each 𝑥, 𝑣𝑠1𝑥 (𝑞) (𝑣𝑠0𝑥 (𝑞)) is nondecreasing (non increasing) in 𝑞.

4 Optimal stopping

In each period, a decision maker (DM) may choose to undertake an irreversible project with an

unknown and time-varying payoff (the state of the world) or wait until the following period when

new information arrives. A committee of experts provides the information. In each period, each

expert receives a signal correlated to the state, which follows a Markov chain. The purpose of

this paper is to obtain an optimal rule for aggregating experts’ information for each period. I

build on Ben-Yashar & Nitzan (1997), who consider a committee whose task is to approve or

reject projects. In their model, each expert receives a signal correlated to the project’s profitability.

Ben-Yashar & Nitzan’s (1997) optimal rule is static. Their model can capture situations in which

there is no possibility to postpone the execution of the project, either because the opportunity

disappears or because, in the future new information will not arrive, making the waiting worthless.

Their result is significant to jury decision-making and other political, legal, economic and medical

applications. However, there are many situations in which waiting is possible and has value because

new information may be coming and because the project’s execution is irreversible. For example,

oil drilling can be postponed if a rise in prices is likely to happen. Similarly, an entrepreneur facing

uncertain demand may prefer to wait before introducing a new product or brand to the market.
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Even in medical treatments, a committee of experts may prefer to wait for the appearance of new

symptoms before suggesting a risky treatment. A monetary policy committee may prefer to wait

for the resolution of some uncertainty (the magnitude of supply or demand shock or the resolution

of a wage bargaining round) before changing the policy instrument. In short, these "accept or wait"

situations are also pervasive.

4.1 The model

At each period, a committee of 𝑁 experts reports the state of the world to DM. There are two states

of the world: in the good state, the project is profitable, with a positive net present value (NPV)

𝑣 = 1. In the bad state, the project is worthless, with 𝑣 = 0. The state of the world follows a

Markov chain with transition probabilities _1 = Pr (𝑣𝑡+1 = 1|𝑣𝑡 = 1) , _0 = Pr (𝑣𝑡+1 = 1|𝑣𝑡 = 0) . In
the beginning, a prior probability 𝛼 = Pr (𝑣0 = 1) is known. At each 𝑡, available actions to DM are
“execute” (𝑒) or “wait” (𝑤). Let A = {𝑤, 𝑒}. In the final period, 𝑇 the project is undertaken. The
state of the process is not observable. Instead, each expert 𝑖 receives a private signal 𝑠𝑖,𝑡 related to

the NPV of the project if it is undertaken at 𝑡. Let 𝑠𝑖,𝑡 ∈ {−1, 1}, 𝑖 = 1, · · · , 𝑁 . Denote

\1𝑖 = Pr
(
𝑠𝑖,𝑡 = 1|𝑣𝑡 = 1

)
, \0𝑖 = Pr

(
𝑠𝑖,𝑡 = −1|𝑣𝑡 = 0

)
,

the precision of the signal for expert 𝑖. Expertise is formalized by assuming that \0𝑖, \1𝑖 > 1/2
(signals are informative). We may also interpret 𝑠𝑖,𝑡 as expert 𝑖’s assessment of the state of the

process at 𝑡.

Timing

Let s𝑡 ≡
{
𝑠𝑖,𝑡

}𝑁
𝑖=1 denote a report profile at period 𝑡, let X denote the set of possible report profiles

and let h𝑡 ≡ {s𝜏}𝑡𝜏=1 denote a history of report profiles. The sequence of events after DM selects
𝑎𝑡 = 𝑤 is: (i) the state changes (𝑣𝑡 → 𝑣𝑡+1) following a Markov chain process; (ii) each expert

independently observes signal 𝑠𝑖,𝑡+1 and report it to DM; (iii) DM selects 𝑎𝑡+1; if 𝑎𝑡+1 = 𝑒 is selected,

a reward equal to 𝑣𝑡+1 is received and no more decisions are made. A decision rule 𝑓𝑡 : X𝑡 → A
for DM is a function that maps every report at time 𝑡 to the action set A = {𝑒, 𝑤}. Due to the
Markov chain assumption, it can be shown that the function 𝜙 (h𝑡) = s𝑡 that picks the last report

profile from the history h𝑡 of report profiles is a sufficient statistic for the process (Degroot 2004). If

𝑝𝑡 = Pr (𝑣𝑡 = 1|h𝑡) is the probability of a good state given the history of profiles, bayesian updating
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𝑝𝑡−1 → 𝑝𝑡 = Φ (s𝑡 , 𝑝𝑡−1) requires only the current report profile s𝑡 . This is done using the following

formula:

Φ (s, 𝑝) = 𝑟1 (s) 𝜑 (𝑝)
𝛾 (s, 𝑝)

where s is a report profile,

𝑟 𝑗 (s) = Pr (s|𝑣 = 𝑗)

is the conditional probability of s given that state is 𝑗 ,

𝛾 (s, 𝑝) = 𝑟0 (s) [1 − 𝜑 (𝑝)] + 𝑟1 (s) 𝜑 (𝑝) ,

is the likelihood of s, and

𝜑 (𝑝𝑡−1) = _0 (1 − 𝑝𝑡−1) + _1𝑝𝑡−1

is the prior for 𝑝𝑡 before observing s𝑡 . At period 𝑡, expected value of undertaking the project is 𝑝𝑡 .

The functional equation associated with DM’s problem is

𝑉𝑡 (𝑝) = max

{
𝑝, 𝛽

∑︁
s∈X

𝛾 (s, 𝑝)𝑉𝑡+1 [Φ (s, 𝑝)]
}
, 𝑡 = 1, ..., 𝑇 − 1 (4)

𝑉𝑇 (𝑝) = 𝑝

where 0 < 𝛽 < 1 is DM’s discount factor. A solution to problem (4) maps each possible value

of 𝑝𝑡 , to an action 𝑎 ∈ {𝑒, 𝑤}, for each 𝑡.

4.2 Optimal aggregation of information

LetU𝑡 denote the subset of [0, 1] for which the optimal action at 𝑡 is 𝑎∗𝑡 = 𝑒:

U𝑡 = {𝑝 ∈ [0, 1] : 𝑉𝑡 (𝑝) = 𝑝} .

It can be shown that each U𝑡 has the form [𝑝∗𝑡 , 1] where 𝑝∗𝑡 is non-decreasing in 𝑡 (Appendix,

Proposition 3). Then, there exist threshold values
{
𝑝∗𝑡

}𝑇
𝑡=1 such that, for each 𝑡, the following policy

is optimal:

𝑎∗𝑡 =


𝑤 if 𝑝𝑡 < 𝑝∗𝑡

𝑒 if 𝑝𝑡 ≥ 𝑝∗𝑡

8



Theorem 1 Given report profile s ≡ {𝑠𝑖}𝑁𝑖=1, the optimal decision rule 𝑓 ∗𝑡 is:

𝑓 ∗𝑡 (s) = sign
(

𝑁∑︁
𝑖=1

𝜔𝑖𝑥𝑖 (s) + 𝑏𝑡

)
where

sign (𝑎) =


+1 if 𝑎 ≥ 0
−1 if 𝑎 < 0

,

+1 corresponds to 𝑒 and −1 corresponds to 𝑤,

𝜔𝑖 =
1
2

(
ln

\0
𝑖

1 − \0
𝑖

+ ln \1𝑖
1 − \1𝑖

)
is expert 𝑖’s weight,

𝑥𝑖 (s) =

1 if 𝑠𝑖 = 1

−1 if 𝑠𝑖 = −1

is expert 𝑖∗s advice,

𝑏𝑡 (s) = b𝑡 + 𝜙𝑡 + 𝜓,

is a time-varying threshold where

b𝑡 = ln
𝜑 (𝑝𝑡−1)
1 − 𝜑 (𝑝𝑡−1)

𝜙𝑡 = ln
1 − 𝑝∗𝑡
𝑝∗𝑡

,

𝜓 =
1
2

𝑁∑︁
𝑖=1

(
ln

\1
𝑖

\0
𝑖

+ ln
1 − \1

𝑖

1 − \0
𝑖

)
,

and 𝑝∗𝑡 is computed recursively as follows:

𝑝∗𝑇 = 0,

𝑝∗𝑡−1 =
𝑟1 (s𝑡−1) 𝜑

(
𝑝∗
𝑡−2

)
𝑟1 (s𝑡−1) 𝜑

(
𝑝∗
𝑡−2

)
+ 𝑟0 (s𝑡−1)

[
1 − 𝜑

(
𝑝∗
𝑡−2

)] .

9



5 Applications to the monitoring and managing of natural re-

sources

(To be completed)

6 Discussion

We show that in time-varying environments with an unobservable state following a binary first

order Markov process, a decision maker should use a time-varying information aggregation rule.

If decision-making is decentralised to a common interest committee 3 who employs a quota rule

to decide, then the committee will be better off using a time-varying quota. If the rule aggregates

information optimally, then an equilibrium exists in which each member votes informatively, that

is, according to the private signal. (McLennan (1998), Theorem 1). The optimal quota rule can

be expressed as a weighted majority rule with a time-varying bias component. If the number of

decision makers goes to infinity, then the constant simple majority rule is asymptotically efficient.

In the optimal stopping case, a decision maker should use a time-varying information ag-

gregation rule to determine the optimal period to undertake a project. If the timing decision is

decentralised to a common interest committee, the optimal voting rule should have a time-varying

quota, which is a weighted majority rule with a time-varying bias component. The idea is that if the

rule aggregates information optimally, then there exists a Nash equilibrium in which each member

votes according to the private signal (McLennan 1998). Note that the rule is not derived ex-ante.

Rather, period 𝑡 + 1 rule is defined using s𝑡 (given that in 𝑡 the decision was to wait). In this sense,

it is a dynamic aggregation rule. Possible applications are managerial decision-making (exercise

of a license for oil drilling; stop fishing before a regulated deadline; duration of advertising; selling

an item along a finite selling period; replacing a machine before recommended replacement date);

environment (Government Advisory Committees, geoengineering); medicine (data monitoring

committees for clinical trials; drug quality and therapeutics committee); policymaking (monitoring

institutions; monetary policy committees).
3That is, a committee in which every member has the same ex-post payoff.

10



References
Austen-Smith, D. & Banks, J. (1996), ‘Information Aggregation, Rationality, and the Condorcet
Jury Theorem’, American Political Science Review 90(1), 34–45.

Ben-Yashar, R. & Milchtaich, I. (2007), ‘First and second best voting rules in committees’, Social
Choice and Welfare 29(3), 453–486.

Ben-Yashar, R. & Nitzan, S. (1997), ‘The optimal decision rule for fixed-size committees in
dichotomous choice situations: the general result’, International Economic Review 38(1).

Bertsekas, D. (2005), Dynamic Programming and Optimal Control, 3 edn, Athena Scientific.
Degroot, M. (2004), Optimal Statistical Decisions (Wiley Classics Library), Wiley-Interscience.
Duggan, J. & Martinelli, C. (2001), ‘A bayesian model of voting in juries’, Games and Economic

Behavior 37(2), 259–294.
McLennan, A. (1998), ‘Consequences of the condorcet jury theorem for beneficial information
aggregation by rational agents’, The American Political Science Review 92(2), 413–418.

Monahan, G. (1980), ‘Optimal stopping in a partially observable markov process with costly
information’, Operations Research 28(6), 1319–1334.

Smallwood, R. & Sondik, E. (1973), ‘The optimal control of partially observable processes over a
finite horizon’, Operations Research 21, 1071–1088.

Wit, J. (1998), ‘Rational Choice and the Condorcet Jury Theorem’,Games and Economic Behavior
22(2), 364–376.

11



Appendix 1

Let Pr (𝑥𝑡 = 𝑥∗ |𝐼𝑡−1) = Pr (𝑥𝑡 = 𝑥∗ |𝑥𝑡−1 = 𝑥) = _ (𝑥∗, 𝑥), so 𝑝𝑡 =
1

1 + 𝜗 (𝑠𝑡) Γ (𝑥𝑡−1)
where 𝜗 (𝑠𝑡) ≡

Pr (𝑠𝑡 |𝑥𝑡 = 0)
Pr (𝑠𝑡 |𝑥𝑡 = 1)

and Γ (𝑥𝑡−1) ≡
_ (0, 𝑥𝑡−1)
_ (1, 𝑥𝑡−1)

. Thus, optimal choice is 𝑑𝑡 = 𝐺 iff
1

1 + 𝜗 (𝑠𝑡) Γ (𝑥𝑡−1)
≥

𝜐

^ + 𝜐
⇔ 𝑙𝑟 (𝑠𝑡) ≥ b + 𝜑 (𝑥𝑡−1) where b ≡ ln 𝜐

^
, 𝜑 (𝑥𝑡−1) ≡ ln _ (0, 𝑥𝑡−1)

_ (1, 𝑥𝑡−1)
, 𝑙𝑟 (𝑠) ≡

Pr (𝑠𝑡 = 𝑠 |𝑥𝑡 = 1)
Pr (𝑠𝑡 = 𝑠 |𝑥𝑡 = 0)

. When comparing the differences in expected profits between voting for 𝐺 and
voting for 𝐵, it suffices to consider the function

𝑤 (𝑠1, 𝑥𝑡−1) − 𝑤 (𝑠0, 𝑥𝑡−1) = ^𝑧2𝑡 Pr
(
piv𝑖

(
𝑣∗−𝑖 (𝑥𝑡−1) , 𝑞

)
|1
)
× _ (1, 𝑥𝑡−1) [Pr (𝑠1 |1) − Pr (𝑠0 |1)]

+𝜐𝑧2𝑡 Pr
(
piv𝑖

(
𝑣∗−𝑖 (𝑥𝑡−1) , 𝑞

)
|0
)
× _ (1, 𝑥𝑡−1) [Pr (𝑠0 |0) − Pr (𝑠1 |0)]

Now, note that∀𝑥𝑡−1, 𝑤 (𝑠1, 𝑥𝑡−1)−𝑤 (𝑠0, 𝑥𝑡−1) > 0. So 0 < 𝑣
𝑠0
𝑥 < 1⇒ 𝑤 (𝑠0, 𝑥) = 0⇒ 𝑤 (𝑠1, 𝑥) >

0 ⇒ 𝑣
𝑠1
𝑥 = 1 and 0 < 𝑣

𝑠1
𝑥 < 1 ⇒ 𝑤 (𝑠1, 𝑥) = 0 ⇒ 𝑤 (𝑠0, 𝑥) < 0 ⇒ 𝑣

𝑠0
𝑥 = 1. Fix 𝑥𝑡−1 = 𝑥. Given

that others use the strategy
(
𝑣
𝑠0
𝑥 , 𝑣

𝑠1
𝑥

)
, a voter correctly votes for 𝑖1 in the state 1 with probability

𝑐𝑖1
(
𝑣
𝑠0
𝑥 , 𝑣

𝑠1
𝑥

)
≡ Pr [𝑠1 |1] Pr

[
𝑣𝑖 = 𝑖1 |𝑠1

]
+ Pr [𝑠0 |1] Pr

[
𝑣𝑖 = 𝑖1 |𝑠0

]
= \𝑣𝑠1𝑥 + (1 − \)

(
1 − 𝑣

𝑠0
𝑥

)
and correctly votes for 𝑖0 in state 0 with probability

𝑐𝑖0
(
𝑣
𝑠0
𝑥 , 𝑣

𝑠1
𝑥

)
≡ Pr [𝑠1 |0] Pr

[
𝑣𝑖 = 𝑖0 |𝑠1

]
+ Pr [𝑠0 |0] Pr

[
𝑣𝑖 = 𝑖0 |𝑠0

]
= (1 − \)

(
1 − 𝑣𝑠1𝑥

)
+ \𝑣

𝑠0
𝑥

With these two definitions, we have

Pr
(
piv𝑖 (𝑣−𝑖 (𝑥) , 𝑞) |0

)
= Pr

(
𝑞 − 1 incorrect votes for 𝑖1
and 𝑁 − 𝑞 correct votes for 𝑖0

)
=

(
𝑁 − 1
𝑞 − 1

) (
1 − 𝑐𝑖0

(
𝑣
𝑠0
𝑥 , 𝑣

𝑠1
𝑥

) )𝑞−1 (
𝑐𝑖0

(
𝑣
𝑠0
𝑥 , 𝑣

𝑠1
𝑥

) )𝑁−𝑞
Pr

(
piv𝑖 (𝑣−𝑖 (𝑥) , 𝑞) |1

)
= Pr

(
𝑞 − 1 correct votes for 𝑖1

and 𝑁 − 𝑞 incorrect votes for 𝑖0

)
=

(
𝑁 − 1
𝑞 − 1

) (
𝑐𝑖1

(
𝑣
𝑠0
𝑥 , 𝑣

𝑠1
𝑥

) )𝑞−1 (
1 − 𝑐𝑖1

(
𝑣
𝑠0
𝑥 , 𝑣

𝑠1
𝑥

) )𝑁−𝑞
The equilibrium condition for 𝑣𝑠1𝑥 = 1 and 0 < 𝑣

𝑠0
𝑥 < 1 is 𝑤 (𝑠0, 𝑥) = 0. That is, upon receiving

a signal 𝑠0, the voter is indifferent between voting for 𝐺 or for 𝐵, i.e.

^𝑧2𝑡 Pr
(
piv𝑖 (𝑣−𝑖 (𝑥) , 𝑞) |1

)
Pr (𝑠0 |1) _ (1, 𝑥) = 𝜐𝑧2𝑡 Pr

(
piv𝑖 (𝑣−𝑖 (𝑥) , 𝑞) |0

)
Pr (𝑠0 |0) _ (0, 𝑥)

⇔
𝑣
𝑠0
𝑥 =

1 −𝜛0 (𝑥, 𝑞)
\ − (1 − \)𝜛0 (𝑥, 𝑞)
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where

𝜛0 (𝑥, 𝑞) ≡
[
^_ (1, 𝑥)
𝜐_ (0, 𝑥)

(
1 − \

\

)𝑁+1−𝑞] 1
𝑞 − 1

.

Similarly, the equilibrium condition for 𝑣𝑠0𝑥 = 1 and 0 < 𝑣
𝑠1
𝑥 < 1 is 𝑤 (𝑠1, 𝑥) = 0. That is, upon

receiving a signal 𝑠1, a voter is indifferent between voting for 𝑖1 or for 𝑖0, i.e.

^𝑧2𝑡 Pr
(
piv𝑖 (𝑣−𝑖 (𝑥) , 𝑞) |1

)
Pr (𝑠1 |1) _ (1, 𝑥) = 𝜐𝑧2𝑡 Pr

(
piv𝑖 (𝑣−𝑖 (𝑥) , 𝑞) |0

)
Pr (𝑠1 |0) _ (0, 𝑥)

⇔
𝑣𝑠1𝑥 =

1 −𝜛1 (𝑥, 𝑞)
(1 − \) − \𝜛1 (𝑥, 𝑞)

where

𝜛1 (𝑥, 𝑞) ≡
[
^_ (1, 𝑥)
𝜐_ (0, 𝑥)

(
\

1 − \

)𝑞] 1
𝑁 − 𝑞

.
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Appendix 2
Proposition 3 (Smallwood & Sondik 1973, Monahan 1980, Bertsekas 2005, Degroot 2004)

(i) 1 ∈ U𝑡∀𝑡;
(ii) U𝑡 is convex;
(iii) U1 ⊂ U2 ⊂ · · · ⊂ U𝑡 ⊂ · · · ⊂ U𝑇 = [0, 1].

The proof requires the following lemmata.

Lemma 3
(i) 𝑉𝑡 (𝑝) ≤ 1 for every 𝑡;
(ii) for every 𝑝, 𝑉𝑡 (𝑝) is non increasing in 𝑡.

Proof. (i) By assumption, the NPV of the project is 1 or 0 and is perceived only in the period in
which action 𝑒 is selected. Thus, 𝑉𝑡 (𝑝) ≤ 1. (ii) Note that

𝑉𝑇−1 (𝑝) = max
{
𝑝, 𝛽

∑︁
s∈X

𝛾 (s, 𝑝)Φ (s, 𝑝)
}
= max

{
𝑝, 𝛽

∑︁
s∈X

𝑟1 (s) 𝜑 (𝑝)
}

= max {𝑝, 𝛽𝜑 (𝑝)}

≥ 𝑝 = 𝑉𝑇 (𝑝) ,

where the first equality follows because optimal action at period 𝑇 is to undertake the project
(𝑎∗

𝑇
= 𝑒) and then, 𝑉𝑇 (𝑝) = 𝑝, the second equality follows from the expressions for 𝛾 (s, 𝑝) and

Φ (s, 𝑝) and the third equality follows because∑︁
s∈X

𝑟1 (s) =
∑︁
s∈X
Pr (s|𝑣𝑡 = 1) = 1.

Suppose that 𝑉𝑡 (𝑝) ≥ 𝑉𝑡+1 (𝑝) for some 𝑡 and for all 𝑝 ∈ [0, 1]. To complete the proof, note that

𝑉𝑡−1 (𝑝) = max
{
𝑝, 𝛽

∑︁
s∈X

𝛾 (s, 𝑝)𝑉𝑡 [Φ (s, 𝑝)]
}
≥ max

{
𝑝, 𝛽

∑︁
s∈X

𝛾 (s, 𝑝)𝑉𝑡+1 [Φ (s, 𝑝)]
}
= 𝑉𝑡 (𝑝) ,

where the inequality follows from the induction hypothesis.

Lemma 4 Let
𝑉𝑤
𝑡−1 (𝑝) = 𝛽

∑︁
s∈X

𝛾 (s, 𝑝)𝑉𝑡 [Φ (s, 𝑝)]

and suppose that 𝑉𝑡 (𝑝) is convex. Then 𝑉𝑤
𝑡−1 (𝑝) is also convex.

Proof. Let b and 𝑣 ∈ [0, 1] and let

𝑝 = `b + (1 − `)𝑣, 0 < ` < 1;

we need to show the following:

𝑉𝑤
𝑡−1 (𝑝) ≤ `𝑉𝑤

𝑡−1 (b) + (1 − `)𝑉𝑤
𝑡−1 (a) .
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Note that
𝛾 (s, 𝑝) = 𝛾 (s, `b + (1 − `)𝑣) = `𝛾 (s, b) + (1 − `)𝛾 (s, 𝑣)

and

Φ (s, 𝑝) = 𝑟1 (s) 𝜑 (`b + (1 − `)𝑣)
𝛾 (s, `b + (1 − `) 𝑣) =

`𝛾 (s, b)Φ (s, b)
`𝛾 (s, b) + (1 − `) 𝛾 (s, a) +

(1 − `) 𝛾 (s, a)Φ (s, a)
`𝛾 (s, b) + (1 − `) 𝛾 (s, a) .

It follows from the convexity of 𝑉𝑡 (𝑝) that

𝛾 (s, 𝑝)𝑉𝑡 [Φ (s, 𝑝)] ≤ `𝛾 (s, b)𝑉𝑡 [Φ (s, b)] + (1 − `) 𝛾 (s, a)𝑉𝑡 [Φ (s, a)] .

Then

𝑉𝑤
𝑡−1 (𝑝) = 𝛽

∑︁
s∈X

𝛾 (s, 𝑝)𝑉𝑡 [Φ (s, 𝑝)]

≤ `𝛽
∑︁
s∈X

𝛾 (s, b)𝑉𝑡 [Φ (s, b)] + (1 − `) 𝛽
∑︁
s∈X

𝛾 (s, a)𝑉𝑡 [Φ (s, a)]

= `𝑉𝑤
𝑡−1 (b) + (1 − `)𝑉𝑤

𝑡−1 (a) .

We conclude that 𝑉𝑤
𝑡−1 (𝑝) is convex.

Lemma 5 𝑉𝑡 (𝑝) is convex for 𝑡 = 1, ..., 𝑇 .
Proof. We proceed by induction. Suppose that 𝑉𝑤

𝑡 (𝑝) is convex, 𝑡 ≤ 𝑇 − 1. Then, 𝑉𝑡 (𝑝) ≡
max

{
𝑝,𝑉𝑤

𝑡 (𝑝)
}
is convex since it is the maximum of two convex functions, and 𝑉𝑤

𝑡−1 (𝑝) ≡
𝛽
∑

s∈X 𝑉𝑡 [Φ (𝑝)] is also convex (Lemma 4). This implies that 𝑉𝑡−1 (𝑝) ≡ max
{
𝑝,𝑉𝑤

𝑡−1 (𝑝)
}
is

convex in 𝑝. To complete the proof, note that 𝑉𝑤
𝑇
(𝑝) = 0 and 𝑉 𝑒

𝑇
(𝑝) = 𝑝 are linear functions, so

𝑉𝑇 (𝑝) ≡ max
{
𝑝,𝑉𝑤

𝑇
(𝑝)

}
is convex, and by Lemma 4, 𝑉𝑤

𝑇−1 (𝑝) is also convex.

Proof of Proposition 3. (i) 1 ∈ U𝑇 because 𝑉𝑇 (1) = 1. Then, 𝑉𝑡 (1) = 1 ∀𝑡 < 𝑇 because for
each 𝑝, 𝑉𝑡 (𝑝) is non increasing in 𝑡 (Lemma 3) and for each 𝑡, is bounded above by 1 (Lemma
3). We conclude that 1 ∈ U𝑡∀𝑡. (ii) Suppose 𝑝 and 𝑝′ are in U𝑡 . Let 𝑝′′ = a𝑝 + (1 − a) 𝑝′
for some a ∈ (0, 1). Then, 𝑉𝑡 (𝑝′′) ≤ a𝑉𝑡 (𝑝) + (1 − a)𝑉𝑡 (𝑝′) = a𝑝 + (1 − a)𝑝′ = 𝑝′′ where
the inequality is a result of convexity of value function (Lemma 5) and the first equality results
because 𝑝 and 𝑝′ belong to U𝑡 . But, by definition of the value function, 𝑉𝑡 (𝑝′′) ≥ 𝑝′′ so we
conclude that 𝑉𝑡 (𝑝′′) = 𝑝′′ and thus 𝑝′′ ∈ U𝑡 . (iii) Suppose 𝑝 ∈ U𝑡 . Then 𝑝 = 𝑉𝑡 (𝑝) ≥ 𝑉𝑡+1 (𝑝)
(Lemma 3) and by definition of the value function,𝑉𝑡+1 (𝑝) ≥ 𝑝. Thus 𝑝 = 𝑉𝑡+1 (𝑝), so 𝑝 ∈ U𝑡+1.

Proof of Theorem 1. DM uses the profile s to update the state 𝑝𝑡−1 to 𝑝𝑡 = Φ (s, 𝑝𝑡−1). Then, the
decision is to undertake if Φ (s, 𝑝𝑡−1) ≥ 𝑝∗𝑡 , that is, if

𝑟1 (s) 𝜑 (𝑝𝑡−1)
𝑟0 (s) [1 − 𝜑 (𝑝𝑡−1)] + 𝑟1 (s) 𝜑 (𝑝𝑡−1)

≥ 𝑝∗𝑡 , (5)

which, taking logs and using definitions of 𝜙𝑡 and b𝑡 above, can be expressed as

ln
𝑟1 (s)
𝑟0 (s)

+ 𝜙𝑡 + b𝑡 ≥ 0.
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Denoting by I+ (s) the subset of experts that report s𝑖 = 1, and by I− (s) the subset of experts that
report s𝑖 = −1, when the profile is s, it is straightforward to show that the log likelihood ratio is

ln
𝑟1 (s)
𝑟0 (s)

=
∑︁

𝑖∈I+ (s)
ln

\1𝑖
(1 − \0𝑖)

+
∑︁

𝑖∈I− (s)
ln

(1 − \1𝑖)
\0𝑖

.

Using definitions of 𝜔𝑖, 𝑥𝑖 (s), and 𝜓 above, we get

ln
𝑟1 (s)
𝑟0 (s)

=

𝑁∑︁
𝑖=1

𝜔𝑖𝑥𝑖 (s) + 𝜓,

so condition (5) becomes
𝑁∑︁
𝑖=1

𝜔𝑖𝑥𝑖 (s) + 𝜓 + 𝜙𝑡 + b𝑡 ≥ 0,

or equivalently sign
(∑𝑁

𝑖=1 𝜔𝑖𝑥𝑖 (s) + 𝑏𝑡

)
= 1. By a similar procedure, it is shown that

Φ (s, 𝑝𝑡−1) < 𝑝∗𝑡 ⇔ sign

(
𝑁∑︁
𝑖=1

𝜔𝑖𝑥𝑖 (s) + 𝑏𝑡

)
= −1.
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