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Abstract: We de�ne and study obvious strategy-proofness with respect to a partition

of the set of agents. It has as special cases strategy-proofness, when the partition

is the coarsest one, and obvious strategy-proofness, when the partition is the �nest

one. For any partition, it lies between these two extreme implementation notions.

We give two general properties of the new implementation notion and apply it to the

simple voting problem with two alternatives and strict references. We also propose the

notion of strong obvious strategy-proofness and show that it coincides with obvious

strategy-proofness.
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1 Introduction

We propose and study a new implementation concept to which we refer to as obvious strategy-

proofness with respect to a partition. For any given partition of the set of agents, it is

stronger than strategy-proofness and weaker than obvious strategy-proofness (as de�ned in
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Li (2017)). It coincides with strategy-proofness for the coarsest partition and with obvious

strategy-proofness for the �nest partition.

A social choice function is strategy-proof if the direct revelation mechanism induces

the social choice function and truth-telling is a dominant strategy.1 Li (2017) argues that

strategy-proofness requires that agents are able to perform complex contingent reasoning:

For each of the potentially declared preference pro�les of the other agents (the contingencies

that any of the agents face when deciding what preference to declare), the agent is able to

identify that truth-telling is one of the optimal choices.

To relieve the burden of agents� reasoning, Li (2017) suggests that the hypothetical

contingencies of the direct revelation mechanism may be replaced in a sequential mechanism

(i.e., an extensive game form) with reliable facts that can be observed by the agent at any

moment in which it has to make a choice along the extensive game form. In addition, to

evaluate the consequence of truth-telling compared to the consequence of making any other

choice, a behavioral hypothesis is used about the future behavior of all other agents playing

thereafter: It is pessimistic in evaluating truth-telling (the worst of all possible future results

will occur) and it is optimistic in evaluating any of the deviations (the best of all possible

future results will occur). If the worst result attached to truth-telling is at least as good

as the best result attached to deviating, then truth-telling appears as being an obviously

optimal choice (that is, obviously dominant). There are already many papers that study

obvious strategy-proofness. For a general setting, see for instance, Bade and Gonczarowski

(2017), Mackenzie (2020), Mackenzie and Zhou (2022), and Pycia and Troyan (2023). For

particular settings studying speci�c obviously strategy-proof social choice functions, see for

instance Arribillaga, MassÃ3 and Neme (2020 and 2023), Ashlagi and Gonczarowski (2018)

and Troyan (2019).

For a given partition of the set of agents, our notion is a hybrid of the two extreme

notions, maintaining the sequential interpretation of the direct revelation mechanism. Given

a partition of the set of agents, each agent, at any moment in which it has to make a choice,

considers that the strategy of the other agents that belong to the same subset of the partition

as itself is �xed and taken as given (i.e., it is one of the possible hypothetical contingencies)

while, on the other hand, it uses the two most extreme behavioral hypothesis to evaluate

future choices of agents that do not belong to the same subset of the partition and who
1The direct revelation mechanism is a normal form game that can also be described as an extensive form

game with imperfect information where agents only play once with no information about the other agents�

choices.
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have to play from then on. To perform contingent reasoning about the choices of agents

that belong to the same subset of the partition can be considered easier than the reasoning

about the choices of agents that belong to the other subset of the partition. For instance,

agents in the same subset may carry out pre-play communication and make a joint and

common hypothesis about the choices that the members of the subset will make throughout

the game; hence, it is reasonable to consider, when evaluating one�s choice, the contingency

of the behavior of agents in the same subset of the partition as hypothetical but at the

same time as given. In contrast, information about agents that do not belong to the same

subset may be scarce and/or pre-play communication may not be possible; therefore, when

comparing truth-telling with deviating at the moment of making the choice, the agent may

not be able to elucidate what agents outside the own subset will do thereafter and so it may

leave their choices as not �xed and use instead extreme guesses about their consequences.

Our two general results are the following. First, for any partition of the set of agents, we

identify in Theorem 1 a large and simple class of extensive game forms with the property

that if a social choice function is implementable in dominant strategies by a game in the

class, then the social choice function is implementable in obviously dominant strategies

with respect to the partition by the same game. Second, in Proposition 1 we show that if

a social choice function is implementable in obviously dominant strategies with respect to

a partition, then the social choice function is obviously implementable with respect to any

coarser partition as well.

The paper proceeds with an application of the new implementation concept of obvious

strategy-proofness with respect to a partition to the simplest social choice problem in which

there are only two alternatives, x and y, and agents�preferences are strict. This simple set-

ting admits a large family of strategy-proof social choice functions, called extended majority

voting rules. Each member of the class can be described as a committee: A monotonic

family of winning coalitions, those subsets of agents that can enforce x by voting for x,

regardless of the other agents�votes. We identify the key necessary and su¢ cient condition

that a committee must satisfy for the obviously dominant implementability with respect

to a partition of the corresponding extended majority voting rule (Theorem 2). We refer

to this condition as the IUP, for Iterated Union Property. We �nish the paper with the

characterization of two nested families of extended majority voting rules that are obviously

strategy-proof with respect to a partition, each family corresponding to one of the two

anonymous subclasses related to two di¤erent notions of anonymity. Anonymity relative to
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a partition, where the allowed permutations of agents are only those that map each subset

of the partition into itself (and so, the partition is not altered by the permutation), and

Strong anonymity, where agents can be permuted in any way (and so, a partitioned set of

agents can be mapped into potentially di¤erent partitions).

We �nish the paper with two �nal remarks. In the �rst one, we relate our results with a

class of extensive game forms that play a crucial role in the literature on obvious strategy-

proofness: round table mechanisms. In the second one, we propose a natural de�nition of

group obvious strategy-proofness and show that this apparently stronger notion coincides

with obvious strategy-proofness.

The paper is organized as follows. Section 2 presents the basic notation and de�nitions.

and the description of extensive game forms, required to de�ne obvious strategy-proofness

with respect to a partition which is presented in Section 3. Section 4 applies this new

notion to the case of two alternatives and strict preferences. Section 5 �nishes with two

�nal remarks.

2 Preliminaries

2.1 Basic notation and de�nitions

We consider collective decision problems where a set of agents N = f1; : : : ; ng has to choose
an alternative from a given set A. Each agent i 2 N has a (weak) preference Ri over A,

which is a complete and transitive binary relation on A. Given Ri, we denote by Pi its

induced strict preference and by t(Ri) the most-preferred alternative according to Ri, if it

exists; that is, for any distinct pair x; y 2 A, xPi y if and only if xRi y and not y Ri x, and
t(Ri)Pi y for all y 2 Anft(Ri)g. Let R and P be respectively the sets of all weak and strict
preferences over A. A (preference) pro�le is a n-tuple R = (R1; : : : ; Rn) 2 RN , an ordered

list of n preferences, one for each agent. Given a pro�le R, an agent i, and a subset of agents

S, R�i and R�S denote the sub-pro�les in RNnfig and RNnS obtained by deleting Ri and

RS := (Rj)j2S from R, respectively; hence, R can be written as (Ri; R�i) or as (RS; R�S).

A social choice function f : D ! A on a Cartesian product domain of preference pro�les

D := D1 � � � � � Dn � RN selects, for each pro�le R 2 D, an alternative f(R) 2 A.
Let f : D ! A be a social choice function. Construct its associated normal game

form (N;D; f), where N is the set of players, D is the Cartesian product set of strategy

pro�les and f is the outcome function mapping strategy pro�les into alternatives. Then, f
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is implementable in dominant strategies (or f is SP-implementable) if the normal game form

(N;D; f) has the property that, for all R 2 D and i 2 N , Ri is a weakly dominant strategy
for i in the game in normal form (N;D; f; R), where each i 2 N uses Ri to evaluate the

consequences of strategy pro�les: Namely, a social choice function f : D ! A is strategy-

proof (SP) if, for all R 2 D, i 2 N , and R0i 2 Di,

f(Ri; R�i)Ri f(R
0
i; R�i):

The literature refers to (N;D; f) as the direct revelation mechanism that SP-implements f .
Strategy-proofness requires that agents are able to perform contingent reasoning that

might be complex, even for simple social choice functions. To deal with agents that may

have limited this ability, Li (2017) proposes the stronger incentive notion of obvious strategy-

proofness (OSP) for general settings where agents�types (that coincide with agents�prefer-

ences in our setting) are private information. A social choice function f : D ! A is obviously

strategy-proof (OSP) if two conditions hold. First, there exist an extensive game form �,

played by the agents in N and whose outcomes are the alternatives in A, and a type-strategy

pro�le (�Rii )Ri2Di ; i2N , a behavioral strategy in � for each agent and for each of its types

(to be de�ned formally in Subsection 2.2), that induce the rule; namely, for every pro�le

of types R = (R1; : : : ; Rn) 2 D, when each agent i plays the strategy �Rii that corresponds

to its type Ri, the outcome of the game x is the alternative that the social choice function

would have chosen at this pro�le (i.e., f(R) = x). Second, for each agent i and for each of

its types Ri 2 Di, the strategy �Rii that corresponds to its type Ri is obviously dominant;

namely, whenever i has to make a choice in � it evaluates the consequence of playing accord-

ing to �Rii in a pessimistic way (thinking that the worst possible outcome will follow) and

the consequence of deviating to any other strategy �0i in an optimistic way (thinking that

the best possible outcome will follow) and, moreover, the pessimistic outcome associated to

�Rii is at least as good as the optimistic outcome associated to the deviation �0i, according

to Ri. Hence, whenever an agent has to play, the choice prescribed by the strategy that

corresponds to its type appears as unmistakably optimal; i.e., obviously dominant. In this

case, we say that the extensive game form � and the type-strategy pro�le (�Rii )Ri2Di ; i2N

OSP-implement f .

The di¢ culty of establishing whether a social choice function f is obviously strategy-

proof lies in the fact that its implementation in obviously dominant strategies must be

through an extensive game form. But now the extensive game form is not given by a

general revelation principle as it is for strategy-proofness in the form of the direct revelation
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mechanism. The main di¢ culty lies then in identifying, for each social choice function, the

extensive game form � used to OSP-implement f .

To propose intermediate OSP-implementability notions that require di¤erent levels of

contingent reasoning we have to deal with extensive game forms, which are presented in the

next section.

2.2 Extensive game forms

Table 1 provides basic notation for extensive game forms.

Table 1: Notation for Extensive Game Forms

Name Notation Generic element

Players (or agents) N i

Outcomes (or alternatives) A x

Histories H h

Initial history h0

Nodes Z z

Partial order on Z �
Initial node z0

Terminal nodes ZT

Non-terminal nodes ZNT

Nodes where i plays Zi zi

Information sets of player i Ii Ii

Choices at zi 2 ZNT Ch(zi)

Outcome at z 2 ZT g(z)

An extensive game form with set of players N and outcomes in A (or simply, a game)

is a seven-tuple � = (N;A; (Z;�);Z; I; Ch; g), where (Z;�) is a rooted tree. Namely, a
graph with the properties that any two nodes in Z are connected through a unique path

and with a distinguished node (called a root) z0 2 ZNT such that z0 � z for all z 2 Z n fzg.
Or equivalently, every z 2 Znfz0g has a unique node z0 with the property that z0 � z and
there is no z00 2 ZNT for which z0 � z00 � z; this node z0 is named the immediate predecessor
of z and it is denoted by IP (z). In addition to the notation of Table 1, Z = fZ1; : : : ; Zng
represents the partition of ZNT , where z 2 Zi means that i plays at z, I = fI1; : : : ; Ing
represents the partition of information sets, where z; z0 2 Ii 2 Ii means that i has to play
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at Ii (i.e., Ii � Zi) and i does not know whether the game has reached node z or z0, and

Ch =
S
z2ZNT Ch(z) is the collection of all available choices. Of course, for each z 2 ZNT ,

there should be a one-to-one identi�cation between Ch(z) and the set of immediate followers

of z, de�ned as IF (z) = fz0 2 Z j IP (z0) = zg. For this reason we often identify the choice
made by agent i at node z 2 Zi with the node that follows z. Moreover, for each Ii 2 Ii
and any pair z; z0 2 Ii, Ch(z) = Ch(z0) holds; namely, player i at Ii can not distinguish

between z and z0 by observing the set of their respective available actions. We write I 0i � Ii
if for each z0 2 I 0i there is z 2 Ii for which z0 � z. A history h (of length t) is a sequence
z0; z1; : : : ; zt of t+ 1 nodes, starting at z0 and �nishing at zt, such that for all m = 1; : : : ; t,

zm�1 = IP (zm). Each history h = z0; : : : ; zt can be uniquely identi�ed with the node zt

and each node z can be uniquely identi�ed with the history h = z0; : : : ; z. Note that � is

not yet a game in extensive form because agents�preferences over alternatives (associated

to terminal nodes) are not speci�ed. But given a game � and a pro�le of preferences R 2 D
over A, the pair (�; R) de�nes a game in extensive form where each agent i uses Ri to

evaluate pairs of alternatives, associated to pairs of terminal nodes. Since N and A will

be �xed throughout the paper, let G be the class of all games with set of players N and

outcomes in A. From now on we shall refer to N as the set of agents and to A as the set of

alternatives.

Fix a game � 2 G and an agent i 2 N . A (behavioral and pure) strategy of i in � is a
function �i : Zi ! Ch such that, for each z 2 Zi, �i(z) 2 Ch(z); namely, �i selects at each
node where i has to play one of i�s available choices. Moreover, �i is Ii-measurable: For
any Ii 2 Ii and any pair z; z0 2 Ii, �i(z) = �i(z0). Hence, we often write �i(Ii) to denote
the action taken by �i at all nodes in Ii. Let �i be the set of i�s strategies in �. A strategy

pro�le � = (�1; : : : ; �n) 2 � := �1 � � � � � �n is an ordered list of strategies, one for each
agent. Let z�(z; �) be the terminal node that results in � when agents start playing at

z 2 ZNT according to � 2 �. Given � 2 � and S � N , denote by �S = (�i)i2S the strategy
pro�le of agents in S.

Let a game � and a domain D be given. A type-strategy pro�le (�Rii )Ri2Di ; i2N speci�es,
for each agent i 2 N and preference Ri 2 Di, a behavioral strategy �Rii 2 �i of i in �. We
denote by �R the strategy pro�le (�R11 ; : : : ; �

Rn
n ) 2 �.

We say that the extensive game form � and the type-strategy pro�le (�Rii )Ri2Di ; i2N SP-

implement the social choice function f : D ! A if, for all R 2 D, (i) f(R) = g(z�(z0; �R))
and (ii) for all i 2 N , �Rii is a weakly dominant strategy in �; namely, for all ��i 2 ��i and
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�0i 2 �i,
g(z�(z0; (�

Ri
i ; ��i)))Ri g(z

�(z0; (�
0
i; ��i))):

We often omit the explicit reference to the type-strategy pro�le and simply say that �

SP-implements f .

3 Obvious strategy-proofness with respect to a parti-

tion

3.1 De�nition and example

We present several notions required to de�ne obvious strategy-proofness with respect to a

partition of agents S = fS1; : : : ; SKg, where 1 � K � n.
Fix a game � 2 G, a strategy pro�le � 2 �, and a subset of agents S � N .
We say that a history h = z0; : : : ; zt (or node zt) is compatible with �S if, for all zt0 2 Zi

such that 0 � t0 < t, �i(zt0) = zt0+1 holds; namely, a history h = z0; : : : ; zt is compatible

with �S if, whenever an agent i has to play at a node zt0 on the path from z0 to zt, i�s choice

prescribed by �i induces the node zt0+1. Note that the compatibility of h = z0; : : : ; zt with

�S does not exclude the possibility that an agent not in S plays along the history towards

zt; namely, zt0 2 Zi for some 0 � t0 < t and i =2 S. Given �S, i 2 S and �0i 2 �i n f�ig,
an earliest point of departure for �S and �0i is the set of all nodes compatible with �S in an

information set Ii, with the properties that �i and �0i prescribe di¤erent actions at each of

them but identical ones at all its previous information sets that come across to each of their

paths.

De�nition 1 Let �S, i 2 S, �0i 2 �i n f�ig and Ii 2 Ii be given. We say that the set
formed by of all nodes z 2 Ii that are compatible with �S, denoted by Ii(�S; �0i), is an
earliest point of departure for �S and �0i if

(i) �i(Ii) 6= �0i(Ii),
(ii) �i(I 0i) = �

0
i(I

0
i) for all I

0
i 2 Ii such that I 0i � Ii.

Observe two things. First, an earliest point of departure is a subset of an information

set of an agent. Second, it is relative to a join strategy �S of agents in S, a subset to

which i belongs to, and to an alternative strategy �0i di¤erent from the strategy �i speci�ed

in �S. To illustrate the notion, consider the game � depicted in Figure 1 below, which

will be fully described later on. Let S = f1; 2g, (�1; �2) and �02 be such that �1(z0) = y,

8



�2(I2) = y and �02(I2) = x. Then, the earliest point of departure for (�1; �2) and �02 is

I2((�1; �2); �
0
2) = fz1g ( I2. Again, earliest points of departure may be strict subsets of

information sets because the strategies of all agents in S except i have been �xed, excluding

therefore nodes of the same information set.2

Given �S and �0i, denote the set of earliest points of departures for �S and �
0
i by �(�S; �

0
i).

Given the partition S of N and agent i 2 N , denote by Si 2 S the element in S with
the property that i 2 Si. Given �Si and �0i, let o(�Si ; �0i) and o0(�Si ; �0i) be the two sets of
options left respectively by �i and �0i at the earliest point of departure Ii(�Si ; �

0
i); namely,

3

o(�iS; �
0
i) = fx 2 A j 9��Si 2 ��Si and z 2 Ii(�Si ; �0i) s.t. x = g(z�(z; (�i; �Sinfig; ��Si)))g

and

o0(�iS; �
0
i) = fy 2 A j 9��Si 2 ��Si and z 2 Ii(�Si ; �0i) s.t. y = g(z�(z; (�0i; �Sinfig; ��Si)))g:

We are now ready to de�ne the notion of obviously dominant strategy with respect to a

partition of agents S, given a game � and a domain of preferences D.

De�nition 2 We say that �i is obviously dominant with respect to S in � for i with Ri 2 Di
if for all �Sinfig 2 �Sinfig, all �0i 6= �i and all Ii(�Si ; �0i) 2 �(�Si ; �0i),

xRi y

holds, for all x 2 o(�Si ; �0i) and all y 2 o0(�Si ; �0i).4

De�nition 3 A social choice function f : D ! A is obviously strategy-proof (OSP)

with respect to S if there exist an extensive game form � 2 G and a type-strategy pro�le
(�Rii )Ri2Di ; i2N for � such that, for each R 2 D, (i) f(R) = g(z�(z0; �

R)) and (ii) for all

i 2 N , �Rii is obviously dominant with respect to S in � for i with Ri.

When (i) holds we say that � and (�Rii )Ri2Di ; i2N induce f . When (i) and (ii) hold we

say that � OSP-implements f with respect to S.
2Observe that if we consider S = f2g; I2(�2; �02) = I2
3Observe that o(�iS ; �

0
i) and o

0(�iS ; �
0
i) depend on the choice of Ii(�Si ; �

0
i) although this fact is not

re�ected in the notation. This will not cause any confusion as the earliest point of departure in question

will be clear from the context.
4Namely, given �Si , the worst alternative that can be reached by i playing �i is at least as preferred

according to Ri as the best alternative that can be reach by i playing �0i; in this sense, �i is undoubtedly

better.
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Remark 1 Let f : D ! A be a social choice function. Then,

� f is OSP with respect to S = ff1g; : : : ; fngg if and only if f is OSP and

� f is OSP with respect to S = fNg if and only if f is SP.

Example 1 illustrates the notion of obvious strategy-proofness with respect to a partition.

Example 1 Let N = f1; 2; 3; 4; 5g be the set of agents, let S� = ff1; 2g; f3g; f4; 5gg be
the partition, and let A = fx; yg be the set of alternatives. For each i 2 N , let Di = P =
fP xi ; P

y
i g be the domain of the two strict preferences over A, where xP xi y and y P

y
i x (i.e.,

x = t(P xi ) and y = t(P yi )). When it does not lead to any confusion, we will refer to P
x
i

and P yi only by their preferred alternatives x and y, respectively. De�ne the social choice

function f : PN ! fx; yg as follows: For each P 2 PN , f(P ) = x if (i) t(P1) = t(P2) = x,
or (ii) t(P1) = t(P3) = x or (iii) t(P2) = t(P4) = t(P5) = x hold; otherwise, f(P ) = y.5

Consider the extensive game form � depicted in Figure 1, where agents play only once,

information sets of agents 1, 3 and 4 contain a unique node (z0, z3 and z4, respectively),

and agents 2 and 5 have an information set with two nodes (I2 = fz1; z2g and I5 = fz5; z6g,
respectively) and, at each z 2 ZNT , Ch(z) = fx; yg.

s
s s

s s s s
s s s s

s s s s

z0

z1 z2
I2

z4 z3

z5 z6
I5
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4 3

5 5

y x

y x y x

y x y x

y x y x

y

y y y x

y x

x

Figure 1: An extensive game form � that illustrates De�nition 3

5This is a particular instance of an extended majority voting rule that we shall de�ne later through a

family of minimal winning coalitions for x, Cxm. The family contains those subsets of agents that can impose
x whenever all their members declare x as their top alternative; in this case, Cxm = ff1; 2g; f1; 3g; f2; 4; 5gg.
By Arribillaga, MassÃ3 and Neme (2020), this voting rule is not obviously strategy-proof.

10



For agent i 2 N with preference Pi 2 P, de�ne the truth-telling strategy �Pii by setting,

for z 2 Zi, �Pii (z) = t(Pi).
It is easy to check that this particular social choice function f is induced by � and

(�Pii )Pi2P; i2N . To complete the veri�cation that f is OSP with respect to S�, we check
that, for each i 2 N and each Pi 2 P, �Pii is obviously dominant with respect to S� =
ff1; 2g; f3g; f4; 5gg in � for i with Pi.
Consider coalition S�1 = f1; 2g and agent 1.
Assume xP1 y (i.e., P1 = P x1 ). Then, agent 1�s truth-telling strategy is �

P1
1 (z0) = x and

let �01(z0) = y be agent 1�s deviating strategy. For any �2 2 �2, write �S�1 = (�
P1
1 ; �2). Fix

�2(I2) = x. Hence, �(��S1 ; �
0
1) = fI1(�S�1 ; �

0
1)g and I1(�S�1 ; �

0
1) = fz0g, and so o(�S�1 ; �

0
1) =

fxg and o0(�S�1 ; �
0
1) = fx; yg. Then, x is the worst (and unique) alternative of playing

according to the truth-telling strategy �P11 (z0) = x, which is weakly preferred to x, the best

possible alternative of playing according to the deviating strategy �01(z0) = y. Fix �2(I2) =

y. Hence, �(��S1 ; �
0
1) = fI1(�S�1 ; �

0
1)g and I1(�S�1 ; �

0
1) = fz0g and so o(�S�1 ; �

0
1) = fx; yg and

o0(�S�1 ; �
0
1) = fyg. Then, y is the worst possible alternative of playing according to the

truth-telling strategy �P11 (z0) = x, which is weakly preferred to y, the best (and unique)

alternative of playing according to the deviating strategy �01(z0) = y.

Assume y P1 x (i.e., P1 = P
y
1 ). Then, agent 1�s truth-telling strategy is �

P1
1 (z0) = y and

let �01(z0) = x be agent 1�s deviating strategy. For any �2 2 �2, write �S�1 = (�
P1
1 ; �2). Fix

�2(I2) = x. Hence, �(��S1 ; �
0
1) = fI1(�S�1 ; �

0
1)g and I1(�S�1 ; �

0
1) = fz0g, and so o(�S�1 ; �

0
1) =

fx; yg and o0(�S�1 ; �
0
1) = fxg. Then, x is the worst possible alternative of playing according to

the truth-telling strategy �P11 (z0) = y, which is weakly preferred to x, the best (and unique)

alternative of playing according to the deviating strategy �01(z0) = x. Fix �2(I2) = y.

Hence, �(��S1 ; �
0
1) = fI1(�S�1 ; �

0
1)g and I1(�S�1 ; �

0
1) = fz0g and so o(�S�1 ; �

0
1) = fyg and

o0(�S�1 ; �
0
1) = fx; yg. Then, y is the worst (and unique) alternative of playing according

to the truth-telling strategy �P11 (z0) = y, which is weakly preferred to y, the best possible

alternative of playing according to the deviating strategy �01(z0) = x.

Consider now agent 2.

Assume xP2 y (i.e., P2 = P x2 ). Then, agent 2�s truth-telling strategy is �
P2
2 (I2) = x and

let �02(I2) = y be agent 2�s deviating strategy. For any �1 2 �1, write �S�1 = (�1; �
P2
2 ). Fix

�1(z0) = x. Hence, �(��S1 ; �
0
2) = fI2(�S�1 ; �

0
2)g and I2(�S�1 ; �

0
2) = fz2g, and so o(�S�1 ; �

0
2) =

fxg and o0(�S�1 ; �
0
2) = fx; yg. Then, x is the worse (and unique) alternative of playing

according to the truth-telling strategy �P22 (I2) = x, which is weakly preferred to x, the best
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possible alternative of playing according to the deviating strategy �02(I2) = y. Fix �1(z0) =

y. Hence, �(��S1 ; �
0
2) = fI2(�S�1 ; �

0
2)g and I2(�S�1 ; �

0
2) = fz1g, and so o(�S�1 ; �

0
2) = fx; yg

and o0(�S�1 ; �
0
2) = fyg. Then, y is the worse possible alternative of playing according the

truth-telling strategy �P22 (I2) = x, which is weakly preferred to y, the best (and unique)

alternative of playing according to the deviating strategy �02(I2) = y.

Assume y P2 x (i.e., P2 = P
y
2 ). Then, agent 2�s truth-telling strategy is �

P2
2 (I2) = y and

let �02(I2) = x be agent 2�s deviating strategy. For any �1 2 �1, write �S�1 = (�1; �
P2
2 ). Fix

�1(z0) = x. Hence, �(��S1 ; �
0
2) = fI2(�S�1 ; �

0
2)g and I2(�S�1 ; �

0
2) = fz2g, and so o(�S�1 ; �

0
2) =

fx; yg and o0(�S�1 ; �
0
2) = fxg. Then, x is the worse possible alternative of playing according to

the truth-telling strategy �P22 (I2) = y, which is weakly preferred to x, the best (and unique)

alternative of playing according to the deviating strategy �02(I2) = x. Fix �1(z0) = y.

Hence, �(��S1 ; �
0
2) = fI2(�S�1 ; �

0
2)g and I2(�S�1 ; �

0
2) = fz1g, and so o(�S�1 ; �

0
2) = fyg and

o0(�S�1 ; �
0
2) = fx; yg. Then, y is the worse (and unique) possible alternative of playing

according to the truth-telling strategy �P22 (I2) = y, which is weakly preferred to y, the best

possible alternative of playing according to the deviating strategy �02(I2) = x.

Therefore, truth-telling is obviously dominant with respect to S� in � for agents 1 and
2 with each of the two preferences.

Consider coalition S�2 = f3g. For any P3 2 P and deviating strategy �03, �(�
P3
3 ; �

0
3) =

fI3(�P33 ; �03)g and I3(�P33 ; �03) = fz3g hold, and so o(�S�3 ; �
0
3) = t(P3), and o

0(�S�3 ; �
0
3) 6= t(P3)

hold. Then, t(P3) is the worse (and unique) possible alternative of playing according to

the truth-telling strategy, which is strictly preferred to �03(I3) 6= t(P3), the best possible

alternative of playing according to the deviating strategy.

Therefore, truth-telling is obviously dominant with respect to S� in � for agent 3 with
each of the two preferences.

Consider coalition S�3 = f4; 5g and agent 4.
Assume xP4 y (i.e., P4 = P x4 ). Then, agent 4�s truth-telling strategy is �

P4
4 (z4) = x and

let �04(z4) = y be agent 4�s deviating strategy. For any �5 2 �5, write �S�3 = (�
P4
4 ; �5). Fix

�5(I5) = x. Hence, �(��S3 ; �
0
4) = fI4(�S�3 ; �

0
4)g and I4(�S�3 ; �

0
4) = fz4g, and so o(�S�3 ; �

0
4) =

fxg and o0(�S�3 ; �
0
4) = fyg. Then, x is the worst (and unique) alternative of playing according

to the truth-telling strategy �P44 (z4) = x, which is strictly preferred to y, the best (and

unique) alternative of playing according to the deviating strategy �04(z4) = y. Fix �5(I2) = y.

Hence, �(��S3 ; �
0
4) = fI4(�S�3 ; �

0
4)g and I4(�S�3 ; �

0
4) = fz4g and so o(�S�3 ; �

0
4) = fyg and

o0(�S�3 ; �
0
4) = fyg. Then, y is the worst (and unique) alternative of playing according to the
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truth-telling strategy �P44 (z4) = y, which is weakly preferred to y, the best (and unique)

alternative of playing according to the deviating strategy �04(z4) = x.

Assume y P4 x (i.e., P4 = P
y
4 ). Then, agent 4�s truth-telling strategy is �

P4
4 (z4) = y and

let �04(z4) = x be agent 4�s deviating strategy. For any �5 2 �5, write �S�3 = (�
P4
4 ; �5). Fix

�5(I5) = x. Hence, �(��S3 ; �
0
4) = fI4(�S�3 ; �

0
4)g and I4(�S�3 ; �

0
4) = fz4g, and so o(�S�3 ; �

0
4) =

fyg and o0(�S�3 ; �
0
4) = fxg. Then, y is the worst (and unique) alternative of playing according

to the truth-telling strategy �P44 (z4) = y, which is strictly preferred to y, the best (and

unique) alternative of playing according to the deviating strategy �04(z4) = x. Fix �5(I2) = y.

Hence, �(��S3 ; �
0
4) = fI4(�S�3 ; �

0
4)g and I4(�S�3 ; �

0
4) = fz4g and so o(�S�3 ; �

0
4) = fyg and

o0(�S�3 ; �
0
4) = fyg. Then, y is the worst (and unique) alternative of playing according to the

truth-telling strategy �P44 (z4) = y, which is weakly preferred to y, the best (and unique)

alternative of playing according to the deviating strategy �04(z4) = x.

Consider now agent 5.

Assume xP5 y (i.e., P5 = P x5 ). Then, agent 5�s truth-telling strategy is �
P5
5 (I5) = x and

let �05(I5) = y be agent 5�s deviating strategy. For any �4 2 �4, write �S�3 = (�4; �
P5
5 ). Fix

�4(x4) = x. Hence, �(��S3 ; �
0
5) = fI5(�S�3 ; �

0
5)g and I5(�S�3 ; �

0
5) = fz6g, and so o(�S�3 ; �

0
5) =

fxg and o0(�S�3 ; �
0
5) = fyg. Then, x is the worst (and unique) alternative of playing according

to the truth-telling strategy �P55 (I5) = x, which is strictly preferred to y, the best (and

unique) alternative of playing according to the deviating strategy �05(I5) = y. Fix �4(z4) = y.

Hence, �(��S3 ; �
0
5) = fI5(�S�3 ; �

0
5)g and I5(�S�3 ; �

0
5) = fz5g and so o(�S�3 ; �

0
5) = fyg and

o0(�S�3 ; �
0
5) = fyg. Then, y is the worst (and unique) alternative of playing according to the

truth-telling strategy �P55 (I5) = y, which is weakly preferred to y, the best (and unique)

alternative of playing according to the deviating strategy �05(I5) = y.

Assume y P5 x (i.e., P5 = P
y
5 ). Then, agent 5�s truth-telling strategy is �

P5
5 (I5) = y and

let �05(I5) = x be agent 5�s deviating strategy. For any �4 2 �4, write �S�3 = (�4; �
P5
5 ). Fix

�4(x4) = x. Fix �4(z4) = x. Hence, �(��S3 ; �
0
5) = fI5(�S�3 ; �

0
5)g and I5(�S�3 ; �

0
5) = fz6g, and

so o(�S�3 ; �
0
5) = fyg and o0(�S�3 ; �

0
5) = fxg. Then, y is the worst (and unique) alternative

of playing according to the truth-telling strategy �P55 (I5) = y, which is strictly preferred to

x, the best (and unique) alternative of playing according to the deviating strategy �05(I5) =

x. Fix �4(z4) = y. Hence, �(��S3 ; �
0
5) = fI5(�S�3 ; �

0
5)g and I5(�S�3 ; �

0
5) = fz5g and so

o(�S�3 ; �
0
5) = fyg and o0(�S�3 ; �

0
5) = fyg. Then, y is the worst (and unique) alternative of

playing according to the truth-telling strategy �P55 (I5) = y, which is weakly preferred to y,

the best (and unique) alternative of playing according to the deviating strategy �05(I5) = y.
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Therefore, truth-telling is obviously dominant with respect to S� in � for agents 4 and 5
with each of the two preferences. Thus, � and (�Pii )Pi2P; i2N OSP-implement f with respect

to S�. �

3.2 Two general results

Proposition 1 establishes that for any social choice function f the property of being OSP

with respect to a given partition is inherited by all of its coarser partitions. Thus, in

Example 1 above, f is also OSP with respect to the coarser partition S = ff1; 2; 3g; f4; 5gg
of S� = ff1; 2g; f3g; f4; 5gg. We now state and prove Proposition 1.

Proposition 1 Let S be a coarser partition of S� and let f : D ! A be OSP with respect

to S�. Then, f : D ! A is OSP with respect to S.

Proof. Let � and (�Rii )Ri2Di ; i2N be the game in extensive form and the type-strategy

pro�le that OSP-implement f with respect to S�. Hence, they induce f . Thus, it only
remains to be shown that (�Rii )Ri2Di ; i2N is obviously dominant with respect to S in �.
Fix i 2 N and Ri 2 Di. To lighten the notation is this proof, we will write �i instead of

�Rii . Let S 2 S and S� 2 S� be such that i 2 S� � S. Fix a strategy �j for all j 2 S n fig
and let �0i 6= �i.

Claim Let Ii 2 Ii be such that �i(Ii) 6= �0i(Ii) and �i(I 0i) = �0i(I 0i) for all I 0i � Ii. Then,
(i) if Ii(�S; �0i) 2 �(�S; �0i), then Ii(�S; �0i) � Ii(�S� ; �0i), and
(ii) if ��S 2 ��S, then (��S; �SnS�) 2 ��S�.

Proof of the Claim. To prove (i), let Ii(�S; �0i) 2 �(�S; �0i) and zt 2 Ii(�S; �0i) be arbitrary.
Then, the history h = z0; : : : ; zt is compatible with �S. Hence, if zt0 2 Zj; with t0 < t and
j 2 S, then �j(zt0) = zt0+1. Therefore, as S� � S, if zt0 2 Zj, with t0 < t and j 2 S�, then
�j(zt0) = zt0+1. Therefore, h = z0; : : : ; zt is compatible with �S�. Hence zt 2 Ii(�S� ; �0i).
The proof of (ii) follows immediately from the observation that S� � S. �

To proceed with the proof of Proposition 1, let Ii(�S; �0i) 2 �(�S; �0i) be given. By the
claim above,

min
Ri
fx 2 X j 9��S 2 ��S and z 2 Ii(�S; �0i) such that x = g(z�(z; (�i; �Snfig; ��S)))g

Rimin
Ri
fx 2 X j 9��S� 2 ��S� and z 2 Ii(�S� ; �0i) such that x = g(z�(z; (�i; �S�nfig; ��S�)))g;
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because the �rst set of options, where the minimum is taken, is a subset of the second one,

and

max
Ri
fx 2 X j 9��S� 2 ���S and z 2 Ii(�S� ; �0i) such that x = g(z�(z; (�0i; �S�nfig; ��S�)))g

Rimax
Ri
fx 2 X j 9��S 2 ��S and z 2 Ii(�S; �0i) such that x = g(z�(z; (�0i; �Snfig; ��S)))g

because the �rst set of options, where the maximum is taken, contains the second one.

Therefore, as f is OSP with respect to S�,

min
Ri
fx 2 X j 9��S� 2 ��S� and z 2 Ii(�S� ; �0i) such that x = g(z�(z; (�i; �S�nfig; ��S�)))g

Rimax
Ri
fx 2 X j 9b��S� 2 ��S� and z 2 Ii(�S� ; �0i) such that x = g(z�(z; (�0i; �S�nfig; b��S�)))g:

Applying the transitivity of Ri, we obtain that

min
Ri
fx 2 X j 9��S 2 ��S and z 2 Ii(�S; �0i) such that x = g(z�(z; (�i; �Snfig; ��S)))g

Rimax
Pi
fx 2 X j 9b��S 2 ��S and z 2 Ii(�S; �0i) such that x = g(z�(z; (�0i; �Snfig; b��S)))g:

Thus, for all x 2 o(�S; �0i) and y 2 o0(�S; �0i),

xRi y:

Then, �Rii is obviously dominant with respect to S in � for i with Ri. Therefore, f is OSP
with respect to S. �

Given a partition S of the set of agents and a domain D = D1 � � � � � Dn � RN of

preferences, de�ne the class of �nite extensive game forms GS through the following �nite
sequence of steps, Namely, � 2 GS if the following conditions hold.

� Step 1: There exists S1 2 S such that agents in S1 play only once and simultaneously,
and the set of available choices of each i 2 S1 is a partition of Di.

� Step 2: For each non-terminal and commonly known history h1 of Step 1, there exists
S2 2 S such that agents in S2 play only once and simultaneously, and the set of

available choices for each agent i 2 S2 is a partition of Di, if i has not played yet
along h1, or a partition of the subset of preferences chosen by i in Step 1, otherwise.

Moreover, if agent i 2 S2 had only one available action in Step 1 (which would imply
that S1 = S2), then i has the same singleton set of available actions in this Step 2.

� . . .

Given S1; : : : ; Sk�1 identi�ed in steps from 1 to k � 1.
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� Step k: For each non-terminal and commonly known history hk�1 of Step k� 1, there
exists Sk 2 S such that agents in Sk play only once and simultaneously, and the set of
available choices for each i 2 Sk is a partition of Di, if i has not played yet along hk�1,
or a partition of the subset of preferences chosen by i last step i has played along hk�1,

otherwise. Moreover, if agent i 2 Sk had only one available action last step k0 < k

where i has played (which would imply that S 0k = Sk), then i has the same singleton

set of available actions in this Step k.

Observe that Sk and Sk0 may coincide for some pair of steps k 6= k0. However, to be in
GS the game � has to �nish after a �nite number of steps.
The game � depicted in Figure 1 belongs to GS� for S� = ff1; 2g; f3g; f4; 5gg.
We say that (�Rii )Ri2Di is the truth-telling type-strategy of i in � 2 GS if, for each Ri 2 Di

and each information set Ii 2 Ii, such that there exits ai 2 Ch(Ii) with Ri 2 ai, �Rii (Ii) = ai;
namely, i always chooses the set in the available partition of preferences that contains Ri,

if any.6

Theorem 1 Let f : D ! A be a social choice function and let S be a partition of N .

Assume that � 2 GS and the truth-telling type-strategy pro�le (�Rii )Ri2Di ; i2N SP-implement
f . Then, � and (�Rii )Ri2Di ; i2N OSP-implement f with respect to S.

Proof. Let � 2 GS and (�Rii )Ri2Di ; i2N be the game and the truth-telling type-strategy

pro�le that SP-implement f . Hence, for each R 2 D, (i) f(R) = g(z�(z0; �R)) and (ii) for
all i 2 N , �Rii is weakly dominant in � for i with Ri. Let �0i 2 �i n f�Rii g be any deviating
strategy of agent i. Fix an strategy, �Sinfig, for agents in Si nfig and let �Si = (�Sinfig; �Rii ).
Let Ii(�Si ; �0i) 2 �(�Si ; �0i)
Select any ��Si ; �

0
�Si 2 ��Si, z; z0 2 Ii(�Si ; �0i) and y; y0 2 A for which

xRi y = g(z
�(z; (�iS; ��Si)));

for all x 2 o(�Si ; �0i) and

y0 = g(z�(z00i ; �Sinfig; �
0
�Si)))Ri x

0;

for all x0 2 o0(�Si ; �0i).
6Observe that this de�nition does not specify the choice of the strategy in an information set Ii such

that there is no ai 2 Ch(Ii) with Ri 2 ai. In such information sets the strategy can chose any available
choice.
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Namely, given �Si and �0i, ��Si and �
0
�Si are two pro�les of strategies of the agents not in

Si that induce respectively alternatives y and y0, who are one of the least or most preferred

alternatives respectively in the sets of options left by �Si together with �0i at the earliest

point of departure Ii(�Si ; �0i). Without lost of generality, by de�nition of information sets

in the game, we can modify ��Si and �
0
�Si and obtain that z and z

0 are compatible with

��Si and �
0
�Si, respectively. Then we can assume that

y = g(z�(z0; (�
i
S; ��Si)));

and

y0 = g(z�(z0; (�
0
i; �Sinfig; �

0
�Si)));

De�ne, for each j =2 Si, the behavioral strategy b�j such that, for each z 2 Zj,
b�j(z) =

8<: �j if agents in Si play in the history towards z according to (�Rii ; �
RSinfig
Sinfig )

�0j if agents in Si play in the history towards z according to (�0i; �
RSinfig
Sinfig ).

Then, for all x 2 o(�RSS ; �0i) and x0 2 o0(�
RS
S ; �

0
i),

xRi y = g(z
�(z0; (�Si ; ��Si))) by de�nitions of ��Si and y

= g(z�(z0; (�Si ; b��Si))) by de�nition of b��Si
Ri

g(z�(z0; (�
0
i; �Sinfig; b��Si))) because �Rii is a dominant strategy in �

= g(z�(z0; (�
0
i; �Sinfig; �

0
�Si))) by de�nition of b��Si

= y0Ri x
0 by de�nitions of �0�Si and y

0.

Therefore, �Rii is obviously dominant with respect to S in � for i with Ri and � OSP-
implements f with respect to S. �

4 An application to extended majority voting

In this section, we apply the notion of OSP with respect to a partition to the simplest social

choice problem where there are only two alternatives and agents�preferences are strict.

In the �rst subsection we identify the class of all obviously strategy-proof social choice

functions with respect to any partition. In the second one we identify, among them, two

anonymous subclasses.
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4.1 The general case

Let A = fx; yg be the set of alternatives and P be the set of the two strict preferences on

A; namely, P = fP x; P yg, where xP x y and y P y x.
Since obvious strategy-proofness with respect to a partition is stronger than strategy-

proofness, the �rst class in this simple case will be contained in the set of all strategy-proof

social choice functions f : PN ! fx; yg, which we now describe using the notion of a

committee.

Let 2N denote the family of all subsets of N (we call them coalitions). A family C � 2N

of coalitions is a committee if it is (coalition) monotonic in the sense that, for each pair

T; T 0 � N such that T 2 C and T ( T 0, we have T 0 2 C. Coalitions in C are called winning.
Given C, denote by Cm the family of minimal winning coalitions of C; namely,

Cm = fT 2 C j there is no T 0 2 C such that T 0 ( Tg:

Observe that by the monotonicity property of a committee, specifying Cm is enough to

completely determine C.

De�nition 3 A social choice function f : PN ! fx; yg is an extended majority voting
rule (EMVR) if there exists a committee Cx with the property that, for all P 2 PN ,

f(P ) = x if and only if fi 2 N j Pi = P xg 2 Cx: (1)

Before proceeding, two remarks about the de�nition of an EMVR are in order.

First, the above de�nition is relative to a committee for x (this is re�ected in the use

of the notation Cx). It is possible to de�ne the symmetric condition of (1) relative to a
committee for y, denoted by Cy, by replacing x by y everywhere in (1). Then, it is easy to
show that Cx and Cy de�ne the same f if and only if

T 2 Cy if and only if T \ T 0 6= ; for all T 0 2 Cx: (2)

We say that agent i is dummy in C if there does not exist M 2 Cm such that i 2 M ;

otherwise, i is non-dummy.

Second, if the EMVR is onto then its associated committee C is not trivial (i.e., ; =2
C 6= f;g). However, if the EMVR is not onto, and so it is constant, then ; 2 C if it is the
constant EMVR that always elects x and C = ; if it is the constant EMVR that always
selects y. Since constant social choice functions are obviously strategy-proof with respect
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to any partition, from now on we will assume that all committees under consideration are

not trivial and, accordingly, their associated EMVRs are onto.

We denote the extended majority voting rule whose associated committee is C by fC.
We state as a remark the characterization of the class of all EMVR in this simple context

(it follows from a more general result in Barberá , Sonnenschein and Zhou (1991)).

Remark 2 A social choice function f : PN ! fx; yg is strategy-proof if and only if f is an
EMVR; namely, there exists a committee Cx such that f = fCx.

We now de�ne recursively a critical property of a committee that will play an important

role in our results. Fix a partition S = fS1; : : : ; SKg, with K subsets of N , and a committee

Cx.
For k = 1, and given S1 2 S, de�ne the following three families of sets.

Cx;1m = Cxm,

ND1 = fi 2 S1 j there exists M1 2 Cx;1m with i 2M1g and

X 1 = fX = S1 \M1 jM1 2 Cx;1m and X =2 Cx;1m g.

For 1 < k � K, given X1; : : : ; Xk�1, where for each t = 1; : : : ; k� 1, Xt 2 X t, and given

Sk =2 fS1; : : : ; Sk�1g, de�ne the following three families of sets.

Cx;km = fM n [k�1t=1St jM 2 Cxm and Xt = St \M for each t = 1; : : : ; k � 1g,

NDk = fi 2 Sk j there exits Mk 2 Cx;km with i 2Mkg and

X k = fX = Sk \Mk jMk 2 Cx;km and X =2 Cx;km g.

Iterated Union Property (IUP) A committee Cx satis�es the Iterated Union Property
with respect to the partition S if, for each 1 � k � K � 1 and each X1; : : : ; Xk�1, where

Xt 2 X t for all t = 1; : : : ; k � 1, there exists Sk 2 S n fS1; : : : ; Sk�1g such that, for each
X 2 X k and i 2 NDk nX,

X [ fig 2 Cx;km : (3)

Remark 3 Condition (3) implies that

(Sk nX) [ fjg 2 Cy;km (4)

holds for all j 2 X.

To see that Remark 3 holds, assume otherwise. Then, by (2), there exist M 0 2 Cx;km and

j 2 X 2 X k such that [(Sk nX) [ fjg] \M 0 = ;. This implies

(Sk nX) \M 0 = ; and j =2M 0: (5)
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DenoteX 0 = (Sk \M 0) 2 X k. By (5) ; X 0 ( X. Because Cx satis�es the IUP,X 0[fjg 2 Cx;k,
and X 0 [ fjg � X. This implies that X 2 Cx;k, contradicting that X 2 X k.

It is immediate to check that, by just applying the de�nitions of OSP-implementability

and of the IUP with respect to the �ner partition, the following remark holds.

Remark 4 A social choice function f : PN ! fx; yg is obviously strategy-proof if and only
if f is an extended majority voting rule whose associated committee Cx satis�es the IUP
with respect to the partition S = ff1g; : : : ; fngg.

Example 2 illustrates the IUP with respect to a partition S.

Example 2 Let N = f1; 2; 3; 4; 5; 6g be the set of agents, S = ff1; 2g; f3; 4g; f5; 6gg be
the partition of N and Cxm = ff1; 2g; f1; 3; 5; 6g; f1; 4; 5; 6g; f2; 3; 4; 6gg be the committee.
We argue that S1 = f1; 2g is the subset whose existence is required by the IUP with respect
to S; we later shall show that (3) would not be satis�ed by neither of the other two subsets.
Then, Cx;1m = Cxm, ND1 = f1; 2g and X 1 = ff1g; f2gg.

1. For X = f1g 2 X 1 and 2 2 ND1 nX = f2g, f1; 2g 2 Cx;1. Hence, (3) holds.

1.1. We argue that, given X = f1g, S2 = f5; 6g is the subset whose existence is
required by the IUP with respect to S; we later shall show that (3) would not be
satis�ed by the subset f3; 4g. Then,

Cx;2m = ff3; 5; 6g; f4; 5; 6gg, ND2 = f5; 6g and X 2 = ff5; 6gg.

Since for X = f5; 6g, ND2 nX = ;, (3) does not impose any restriction

2. For X = f2g 2 X 1 and 1 2 ND1 nX = f1g, f1; 2g 2 Cx;1. Hence, (3) holds.

2.1. Assume S2 = f3; 4g. Then,

Cx;2 = ff3; 4; 6gg, ND2 = f3; 4g and X 2 = ff3; 4gg.

Since X = f3; 4g and ND2 nX = f;g, (3) does not impose any restriction.

2.2. Assume S2 = f5; 6g. Then,

Cx;2 = ff3; 4; 6gg, ND2 = f6g and X 2 = ff6gg.

Since for X = f6g, ND2 nX = ;, (3) does not impose any restriction.

Therefore, the committee Cx satis�es the IUP with respect to the partition S.
Now we see that (3) does not hold at k = 1, given X = f1g, for neither S1 = f3; 4g nor

S1 = f5; 6g. Suppose S1 = f3; 4g. Then for M1 = f1; 2g 2 Cx, we have that X = f3; 4g \
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f1; 2g = ; 2 X 1 and, since ND1 = f3; 4g, it follows that for any i 2 ND1 n X = f3; 4g,
fig =2 Cx;1, which implies that (3) does not hold. Similarly, if S1 = f5; 6g. Hence, for the
IUP with respect to S to be satis�ed at k = 1, it must occur that S1 = f1; 2g:
Now, we see that (3) does not hold at k = 2, given X = f1g, for S2 = f3; 4g. Assume

otherwise. Then, Cx;2m = ff3; 5; 6g; f4; 5; 6gg, ND2 = f3; 4g and X 2 = ff3g; f4gg. For
X = f3g 2 X 2 and 4 2 ND2 n X = f4g, f3; 4g =2 Cx;2m . Hence, (3) does not hold. Thus,
S2 6= f3; 4g is not the subset whose existence is required by the IUP at k = 2, after

S1 = f1; 2g at X = f1g and k = 1. �

Example 3 illustrates, given an arbitrary partition S, di¤erent ways of constructing
committees that satisfy the IUP with respect to S. It shows that, although the IUP with
respect to S is restrictive, there are many committees satisfying it with respect to any

arbitrary partition. For brevity, we shall omit some details required to check that the

committees in Example 3 satisfy the IUP with respect to S.

Example 3 Let S = fS1; : : : ; SKg be given. De�ne the following three committees that
satisfy the IUP with respect to S.

1. From each subset Sk 2 S, select an arbitrary agent ik 2 Sk. Then, de�ne the commit-
tee as follows.

Cxm = fS1; (S1 n fi1g) [ S2; (S1 n fi1g) [ (S2 n fi2g) [ S3; : : : ;[K�1k=1 (Sk n fikg) [ SKg.

To check that Cx satis�es the IUP with respect to S, observe that for k = 1, ND1 = S1,
X 1 = fS1nfi1gg, and fi1g = ND1nfS1nfi1gg; accordingly, sinceX[fi1g = S1 2 Cx;1m ,
(3) is satis�ed. For k = 2, and given X = S1 n fi1g, observe that
Cx;2m = fS2; (S2 n fi2g) [ S3; : : : ;[K�1k=2 (Sk n fikg) [ SKg. Then, ND2 = fS2g and
X 2 = fS2nfi2gg and fi2g = ND2nfS2nfi2gg; accordingly, since X[fi2g = S2 2 Cx;2m ,
(3) is satis�ed. For any k > 2, the veri�cation proceeds similarly.

2. Select two arbitrary agents i1; i01 2 S1 and, for each k = 2; : : : ; K, select and arbitrary
agent ik 2 Sk. Then, de�ne the committee as follows.

Cxm = fS1; (S1 n fi1g) [ S2) ; (S1 n fi01g) [ S3; (S1 n fi1g) [ (S2 n fi2g) [ S4;

(S1 n fi01g) [ (S3 n fi3g) [ S5; : : : ; g

To check that Cx satis�es the IUP with respect to S, observe that for k = 1, ND1 = S1,
X 1 = fS1 n fi1g; S1 n fi01gg, fi1g = ND1 n fS1 n fi1gg and fi01g = ND1 n fS1 n fi01gg;

21



accordingly, since (S1 n fi1g) [ fi1g = S1 2 Cx;1 and (S1 n fi01g) [ fi01g = S1 2 Cx;1, (3)
is satis�ed. First, �x X1 = S1 n fi1g 2 X 1. For k = 2, observe that

Cx;2m = fS2; (S2 n fi2g) [ S4; : : : g Then, ND2 = S2, X 2 = fS2 n fi2gg and fi2g =
S2n(S2nfi2g); accordingly, since (S2 n fi2g)[fi2g = S2 2 Cx;2, (3) is satis�ed. Now, �x
X1 = S1nfi1g 2 X 1 andX2 = S2nfi2g 2 X 2, and proceed similarly for k � 3. Second,
�x X 0

1 = S1 n fi01g 2 X 1. For k = 2, observe that C 0x;2m = fS3; (S3 n fi3g) [ S5; : : : g.
Then, ND02 = S3, X 02 = fS3 n fi3gg and fi3g = S3 n (S3 n fi3g); accordingly, since
(S3 n fi3g) [ fi3g = S3 2 C 0x;2; (3) is satis�ed. Now, �x X 0

1 = S1 n fi01g 2 X 1 and

X2 = S2 n fi2g 2 X 2, and proceed similarly for k � 3.

3. Select an arbitrary subset of agents N� = fj�1 ; : : : ; j�rg � N , with 1 � r < n. For

each k = 1; : : : ; K de�ne bSk = Sk n N�, and let jk; j0k 2 bSk be arbitrary. De�ne the
committee as follows.

Cxm = ffj�1g; : : : ; fj�rg; bS1;�bS1 n fj1g� [ bS2;�bS1 n fj01g� [ bS2;�bS1 n fj1g� [ �bS2 n fj2g� [ bS3;�bS1 n fj01g� [ �bS2 n fj02g� [ bS3; : : : ;
[K�1k=1

�bSk n fjkg� [ bSK ;[K�1k=1

�bSk n fj0kg� [ bSKg: �

Theorem 2 below shows that the IUP is the key property to characterize obviously

strategy-proof social choice functions with respect to a partition in this setting. First, for

a committee Cx to satisfy IUP with respect to a partition S, it is a su¢ cient condition
guaranteeing that fC� is OSP with respect to S. Second, if the extensive game form � that

OSP-implements fCx with respect to S belongs to the family of games GS , then Cx satis�es
the IUP with respect to S. Example 4 below will make clear that the condition that � 2 GS

can not be dispensed with for the su¢ ciency of the IUP for OSP-implementation.

Theorem 2 Let fCx be the EMVR associated to a committee Cx and let S be a partition of
N . Then, Cx satis�es the IUP with respect to S if and only if there exists a game � 2 GS

such that (�; (�Pii )Pi2P ; i2N)) OSP-implements fCx : PN ! A with respect to S.

Before moving directly to the proof of Theorem 2 we present Example 4 to show why

the IUP of a committee Cx with respect to a partition S is too strong to guarantee that
fCx is OSP with respect to S; in particular, the example contains a committee Cx and a
partition S for which (i) fCx is OSP with respect to S, (ii) the IUP is not satis�ed with
respect to S, and (iii) the game used to OSP-implement fC� does not belong to the class
GS . However, there exists a �ner partition S� of S such that fCx satis�es the IUP with
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respect the �ner partition S� and, as Theorem 2 establishes, there exists � 2 GS� such that
� OSP-implements fC� with respect to S�. Hence, by Proposition 1, fCx is also OSP with
respect to S. Indeed, the game � of Figure 1 is the one that OSP-implements fCx with
respect S� and � 2 GS� n GS .

Example 4 Let N = f1; 2; 3; 4; 5g be the set of agents, S = ff1; 2; 3g; f4; 5gg be the
partition of N and Cxm = ff1; 2g; f1; 3g; f2; 4; 5gg be the committee. We �rst argue that the
committee Cxm does not satisfy the IUP with respect to S.
Assume �rst that S1 = f1; 2; 3g is the subset for which the IUP is satis�ed at k = 1.

Then, ND1 = f1; 2; 3g and X 1 = ff2gg. For X1 = f2g, 3 2 ND1 nX1 but f2; 3g =2 Cxm. So,
S1 is not equal to f1; 2; 3g. Assume now that S1 = f4; 5g is the subset for which the IUP is
satis�ed at k = 1. Then, ND1 = f4; 5g and X 1 = ff4; 5g; ;g. For X1 = ;, 4 2 ND1 nX1

but X1 [ f4g = f4g =2 Cx. So, (3) is not satis�ed and accordingly, S1 is not equal to f4; 5g.
Hence, Cx does not satisfy IUP with respect to S.
Remember that in Example 1 we already showed that fCx is OSP-implementable with

respect to S� = ff1; 2g; f3g; f4; 5gg and that the extensive game form � depicted in Fig-

ure 1 OSP-implements fCx with respect to S�. Since S� is a �ner partition of S =

ff1; 2; 3g; f4; 5gg, by Proposition 1, fCx is also OSP-implementable with respect to S.
Nonetheless, the extensive game form � that OSP-implements fCx belongs to GS

�
but not

to GS . �

Proof of Theorem 2. Let fCx be an EMVR associated to the committee Cx and let S
be a partition of N .

()) Assume Cx satis�es the IUP with respect to S = fS1; : : : ; SKg.
De�ne recursively the extensive game form � 2 GS through the following steps.

Step 1. Let S1 2 S be the subset whose existence is guaranteed by the IUP with respect
to S. Agents in S1 play only once and simultaneously, each i 2 S1 at its unique information
set of this Step 1, denoted as I1i , by choosing from the following set of choices:

Ch(I1i ) =

8<: ffP xi g; fP
y
i gg if i 2 S1 \ND1

ffP xi ; P
y
i gg if i 2 S1 n ND1.

Namely, the non-dummy agents of S1 by choosing one of the two preferences and the dummy

agents of S1 by selecting necessarily the full set of preferences P. Let h1 denote a generic
history of Step 1 and refer to a1i 2 Ch(I1i ), as the choice made by agent i 2 S1 along h1.
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For each history h1 = (a1i )i2S1 of Step 1, and abusing notation by writing it as a vector of

choices instead of a sequence, de�ne the set

bX1 = fi 2 S1 \ND1 j a1i = fP xi gg:

We refer to bX1 as the outcome of Step 1, and distinguish among three cases.

(1.1) If bX1 2 Cx;1, h1 is a terminal history and the outcome of the game � is x.

(1.2) If S1 n bX1 2 Cy;1, h1 is a terminal history and the outcome of the game � is y.

(1.3) If neither bX1 2 Cx;1 nor S1 n bX1 2 Cy;1 hold, go to Step 2 with bX1.

To proceed with the de�nition of �, assume (1.3) holds. Before moving to Step 2 we

show that bX1 belongs to the family X 1 = fX = S1\M1 jM1 2 Cx;1m and X =2 Cx;1m g, de�ned
just before the statement of the IUP.

Claim A.1 Let bX1 be the outcome of Step 1 and assume that neither bX1 2 Cx;1 nor
S1 n bX1 2 Cy;1 hold. Then, bX1 2 X 1.

Proof of Claim A.1. Since S1 n bX1 =2 Cy;1 holds, by (2), there exists M 2 Cx;1 such that
M \ (S1 n bX1) = ;. Hence, S1 \ M � bX1. We show that bX1 = S1 \ M . To obtain a
contradiction, suppose there exists i 2 bX1 n (S1 \M). By the de�nition of bX1, i 2 ND1.
Hence, i 2 ND1 n (S1 \M). By monotonicity of Cx;1, S1 \M � bX1 and bX1 =2 Cx;1 imply

(S1 \M) =2 Cx;1: (6)

By de�nition of X 1, S1 \M 2 X 1. By the IUP with respect to S, (S1 \M) [ fig 2 Cx;1.
Hence, by the monotonicity of Cx;1, bX1 2 Cx;1 which is a contradiction with one of the
assumptions of Claim A.1. Therefore, bX1 = S1 \M and, by (6), bX1 2 X 1. �

Step k � 2: Given bXk�1, outcome of Step k � 1 that follows bX1; : : : ; bXk�2, if any. Let

Sk 2 S be the subset whose existence is guaranteed by the IUP with respect to S. Agents
in Sk play only once and simultaneously, each i 2 Sk at its unique information set of this
Step k, denoted as Iki , by choosing from the following set of choices:

Ch(Iki ) =

8<: ffP xi g; fP
y
i gg if i 2 Sk \NDk

ffP xi ; P
y
i gg if i 2 Sk n NDk.

Namely, the non-dummy agents of Sk by choosing one of the two preferences and the dummy

agents of the set Sk by selecting necessarily the full set of preferences P. Let aki 2 Ch(Iki )
be the choice made by agent i 2 Sk along the history that follows hk�1 and let hk =
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(hk�1; (aki )i2Sk) be the complete history of choices made in Steps 1 to k. For each history

hk = (hk�1; (aki )i2Sk) of Steps 1 to k, de�ne the set

bXk = fi 2 Sk \NDk j aki = fP xi gg:

We refer to bXk as the outcome of Step k that follows bX1; : : : ; bXk�1, and distinguish among

three cases.

(k.1) If bX1[ � � �[ bXk 2 Cx, hk is a terminal history and the outcome of the game � is x.

(k.2) If (S1 n bX1)[ � � � [ (Sk n bXk) 2 Cy, hk is a terminal history and the outcome of the
game � is y.

(k.3) If neither bX1;[ � � � [ bXk 2 Cx nor (S1 n bX1)[ � � � [ (Sk n bXk) 2 Cy hold, go to Step
k + 1 with bX1 [ � � � [ bXk.

To proceed with the de�nition of �, assume (k.3) holds. Before moving to Step k + 1

we show that bXk belongs to the family X k = fX = Sk \Mk j Mk 2 Cx;km and X =2 Cx;kg,
de�ned just before the statement of the IUP.

Claim A:k Let bXk be the outcome of Step k � 1 that follows bX1; : : : ; bXk�1, and assume

that neither bX1 [ � � � [ bXk 2 Cx nor (S1 n bX1) [ � � � [ (Sk n bXk) 2 Cy hold and bXt 2 X t for

each t = 1; : : : ; k � 1. Then, bXk 2 X k.

Proof of Claim A:k: By hypothesis, we have that

bX1 [ � � � [ bXk =2 Cx (7)

and

(S1 n bX1) [ � � � [ (Sk n bXk) =2 Cy (8)

hold and bXt 2 X t for each t = 1; : : : ; k � 1. By (8) and (2), there exists M 2 Cxm such that
M \ [(S1 n bX1)[ � � � [ (Sk n bXk)] = ;. Hence, St\M � bXt for all t = 1; : : : ; k. We show thatbXt = St \M for all t = 1; : : : ; k. To obtain a contradiction, suppose there is t 2 f1; : : : ; kg
such that St \M ( bXt. Let r be the smallest of these indexes. Then, bXt = St \M for

all 1 � t < r, if any, and there is i 2 bXr n (Sr \M). Let M r = (M n [rt=1St) 2 Cx;rm . By
de�nition of bXr, i 2 NDr. Hence, i 2 NDr n (Sr \M r). By the IUP with respect to S,

(Sr \M r) [ fig 2 Cx;r: (9)

By the de�nition of Cx;r, bX1 [ � � � [ bXr�1 [ ((Sr \M r)[fig) 2 Cx. Then, since (Sr \ (M r)[
fig) � bXr, monotonicity of Cx implies that bX1[� � �[ bXr�1[ bXr 2 Cx, which is a contradiction
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with (7). Then, bXt = St \M for all t = 1; : : : ; k. Then Mk = (M n [k�1t=1St) 2 Cx;k andbXk = Sk \Mk. Furthermore, by (7), bXk =2 Cx;k. Then, bXk 2 X k. �

Observe that if k = K, where K is the number of subsets in the partition S, and Step
K is reached, then either bX1 [ � � � [ bXk 2 Cx or (S1 n bX1)[ � � � [ (Sk n bXk) 2 Cy holds. This
is because all agents have already played in � and either those agents i 2 N choosing P xi is

a winning coalition in Cx, in which case the outcome of � is x, or else those agents i 2 N
choosing P yi is a winning coalition in Cy, in which case the outcome of � is y. Therefore,
the outcome of � is either x or y if hK is the terminal history identi�ed in K.1 or in

K.2, respectively. Thus, this construction has at most K steps and the game � 2 GS is
well-de�ned.

We now proceed with the part ()) of the proof of Theorem 2.

Let � 2 GS be the game de�ned from Cx according to the at most K previous steps.7

The type-strategy (�Pii )Pi2P is truth-telling if, for every zi 2 Zi such that jCh(zi)j = 2,

�Pii (zi) = fP xi g if Pi = P xi and �Pii (zi) = fP
y
i g if Pi = P

y
i .

We �rst observe that � OSP-implements fCx with respect to S. This is because if agents
select their choices according to their truth-telling type-strategies, x is the outcome of � if

a winning coalition in Cx has chosen x along the play of � and y is the outcome of � if a
winning coalition in Cy has chosen y along the play of �.
We now prove that, for each i 2 N and Pi 2 P, the truth-telling strategy �Pii is obviously

dominant with respect to S in � for i and Pi.
Assume agent j has to choose, at information set Ikj of Step k after history h

k�1, one

from the set Ch(Ikj ) = ffP xj Â�g; fP
y
j gg. By de�nition of �, j 2 NDk and hk�1 can be

identi�ed with (i) X1; : : : ; Xk�1, the set of agents i 2 N that have chosen P xi in Steps 1 to

k � 1, which by Claims 1 to k � 1, Xt 2 X t for all 1 � t � k � 1, and (ii) a set of agents
Sk 2 S, those who also play together with j in Step k. We distinguish between two general
cases which, in turn, each is divided into three subcases.

Case A. Assume Pj = P xj . The choice consistent with j�s truth-telling strategy isbaj = fP xj g. Let �i be a �xed strategy for each i 2 Sk n fjg. Denote, for each i 2 Sk n fjg,
�i(I

k
i ) = bai, where Iki is agent i�s information set that goes across the history that starts at

hk�1 and it is played by agents in Sk along Step k. Let bhk = (hk�1; (bai)i2Sk) and bXk = fi 2
NDk j bai = fP xi gg. We distinguish among three subcases.

7Observe that the number of steps of � may be strictly smaller than K. For instance, whenever SK \
ND = ;.
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Case A.1. Suppose X1 [ � � � [Xk�1 [ bXk 2 Cx holds. Then, bhk is a terminal history and
the outcome of the game is x. Therefore, as Pj = P xj , the truth-telling strategy �

Pj
j is an

obvious dominant strategy with respect to S in � for j and P xj .

Case A.2. Suppose (S1 nX1) [ � � � [ (Sk�1 nXk�1) [ (Sk n bXk) 2 Cy holds. Then, bhk is
a terminal history and the outcome of the game is y. Suppose agent j deviates and plays

aj = fP yj g. Let a = (aj; (bai)i2Sknfjg), hk = (hk�1; (ai)i2Sk), and Xk = fi 2 NDk j ai =
fP xi gg. We have that bXk = Xk [fjg. Then, by monotonicity of Cy; (S1 nX1)[ � � � [ (Sk�1 n
Xk�1)[ (Sk nXk) 2 Cy. Therefore, h

k
is a terminal history and the outcome of the game is

y. Thus, as Pj = P xj , agent j�s deviation is not pro�table. Hence, the truth-telling strategy

�
Pj
j is obviously dominant with respect to S in � for j and P xj .

Case A.3. Suppose neither Subcase A.1 nor Subcase A.2 hold. Then, by Claim A.k

above, bXk 2 X k. Suppose agent j deviates and plays aj = P yj . Let a = (aj; (bai)i2Sknfjg),
h
k
= (hk�1; (ai)i2Sk), and Xk = fi 2 NDk j ai = fP xi gg. We have that bXk = Xk [ fjg.

Then, by (4), (Sk n bXk) [ fjg 2 Cy;km . Then, by the monotonicity of Cy, (S1 n X1) [ � � � [
(Sk�1 nXk�1)[ (Sk n bXk) = (S1 nX1)[� � �[ (Sk�1 nXk�1)[ (Sk nXk)[fjg 2 Cym. Therefore,
h
k
is a terminal history and the outcome of the game is y. Thus, as Pj = P xj , agent j�s

deviation is not pro�table. Hence, the truth-telling strategy �Pjj is obviously dominant with

respect to S in � for j and P xj .

Case B. Assume Pj = P
y
j . The choice consistent with j�s truth-telling strategy is baj =

fP yj g. Let �i be a �xed strategy for each i 2 Sk n fjg. Denote, for each i 2 Sk n fjg,
�i(I

k
i ) = bai, where Iki is agent i�s information set that goes across the history that starts at

hk�1 and it is played by agents in Sk along Step k. Let bhk = (hk�1; (bai)i2Sk) and bXk = fi 2
NDk j bai = fP xi gg. We distinguish among three subcases.
Case B.1. Suppose X1 [ � � � [ Xk�1 [ bXk 2 Cx holds. Then, bhk is a terminal history

and the outcome of the game is x. Suppose agent j deviates and plays aj = fP xj g. Let
a = (aj; (bai)i2Sknfjg), bhk = (hk�1; (ai)i2Sk), and Xk = fi 2 NDk j ai = fP xj gg. We have thatbXk = Xk n fjg. Then, by monotonicity of Cx, X1 [ � � � [Xk�1 [Xk 2 Cx. Therefore, h

k
is a

terminal history and the outcome of the game is x. Thus, as Pj = P
y
j , agent j�s deviation

is not pro�table. Hence, the truth-telling strategy �Pjj is obviously dominant with respect

to S in � for j and P yj .

Case B.2. Suppose (S1 nX1)[ � � � [ (Sk�1 nXk�1)[ (Sk n bXk) 2 Cy holds. Then, bhk is a
terminal history and the outcome of the game is y. Therefore, as Pj = P

y
j , the truth-telling

strategy �Pjj is obviously dominant with respect to S in � for j and P yj .
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Case B.3 Suppose neither Subcase B.1 nor Subcase B.2 hold. Then, by Claim k above,bXk 2 X k. Suppose agent j deviates and plays aj = fP xj g. Let a = (aj; (ai)i2Sknfjg),

h
k
= (hk�1; (ai)i2Sk) and Xk = fi 2 NDk j ai = fP xi gg. We have that bXk = Xk [ fjg.

Then, by the IUP with respect to S, bX [ fjg 2 Cx;km and, by the monotonicity of Cx,bX1 [ � � � [ bXk�1 [ Xk = bX1 [ � � � [ [ bXk�1 [ bXk [ fjg 2 Cxm. Therefore, bhk is a terminal
history and the outcome of the game is x. Thus, as Pj = P yj , agent j�s deviation is not

pro�table. Hence, the truth-telling strategy �Pjj is obviously dominant with respect to S in
� for j and P yj .

Thus, the game � 2 GS OSP-implements fCx : PN ! fx; yg with respect to S. This
�nishes the part ()) of the proof of Theorem 2.

(() Let � 2 GS be a game such that (�; (�Pii )Pi2P ; i2N)) OSP-implements fCx with respect
to S. By de�nition of GS and the fact that in this context each agent has only two admissible
preferences we can assume that each agent plays at most once along any history.

We shall prove that the committee Cx satis�es the IUP with respect to S.
Let k = 1 and S1 2 S be the �rst subset of agents that play in � at Step 1. De�ne

ND1 = S1 \ND.
Let k � 2. Given a non-terminal history hk�1, outcome of Step k � 1 (in what follows

we give more details of hk�1), there exists an element of the partition Sk 2 S, whose agents
play in � at Step k � 2 after history hk�1.
The proof is by induction on k, the number of steps of the game �, of the following

statement.

Claim B.k Let P 2 PN be an arbitrary pro�le and let 1 � k � K � 1 be a �xed step of
� 2 GS such that, for each 1 � t � k, each Xt 2 X t and each history ht = (ht�1; (ai)i2St) of

� have the property that ai = fP xi g if and only if i 2 Xt. Then,

(i) the history hk of � is non-terminal and

(ii) for each j 2 NDk nXk, Xk [ fjg 2 Cx;km .

Proof of Claim B.k. Let P 2 PN be a pro�le.
Suppose k = 1. Let S1 be the set of agents that play in � at Step 1. If X 1 = ; the proof

is trivial. Suppose otherwise, and �x X 2 X 1.

Then, there exists M 2 Cxm such that X =M \ S1. Hence, X � ND1. Let h1 = (ai)i2S1
be the history of Step 1, where ai = fP xi g if and only if i 2 X. As X 2 X 1, X =2 Cxm.
Furthermore, (S1 nX)\M = ;. By (2), S1 nX =2 Cym. Therefore, as � OSP-implements fCx
with respect to S, h1 is non-terminal and both outcomes x and y can follow after h1.
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We show that S1 is the set required by the IUP for k = 1. For each i 2 S1, we denote
by Ii the information set that agent i has in Step 1.8 To obtain a contradiction, suppose

there exist X 2 X 1 and j 2 ND1 n X such that X [ fjg =2 Cx. Since j 2 ND1, the set
of available choices of agent j at j�s information set Ij at Step 1 is equal to ffP xi g; fP

y
i gg.

Since j =2 X, the choice consistent with the truth-telling strategy of agent j is fP yj g; namely,
�
Pj
j (Ij) = fP

y
j g. Let �i be a �xed strategy for i 2 S1nfjg, where �i(Ii) = fP xi g for all i 2 X

and �i(Ii) 6= fP xi g for all i 2 S1 n (X [ fjg). Observe that fi 2 S1 j �i(Ii) = fP xi gg = X.
By (1.3) in Step 1 of the de�nition of �, Step 2 follows; accordingly, h

1
= (�i(Ii))i2S1 is

a non-terminal history (i.e., condition (i) in Claim B.1 holds) and the result x can follow

after h
1
; i.e., after agent j truth-tells and (�i)i2S1nfjg is played. Suppose that agent j

deviates and plays �0j(Ij) = fP xj g. Let bh = (�0j(Ij); (�i(Ii))i2S1nfjg). As X [ fjg =2 Cx and
� implements fCx, the outcome y is feasible under the deviation. Therefore, truth-telling

is not an obviously dominant strategy with respect to S. Thus, S1 is the subset whose
existence is required by the IUP for k = 1.

Now suppose that k > 1 and that the statement of Claim B.t holds for t = 1; : : : ; k � 1.
We prove that it holds for k as well. Let X1; : : : ; Xk�1 be such that Xt 2 X t for each

t = 1; : : : ; k�1, let hk�1 be the corresponding non-terminal history at Step k�1, and let Sk
be the set of agents that play in � at Step k, after the history hk�1. Consider the families

of subsets Cx;km and X k, identi�ed in the recursive de�nition of the IUP. If X k = ; the proof
is trivial. Suppose otherwise, and �x X 2 X k.

Then, there exists Mk 2 Cx;k such that X = Mk \ Sk. Hence, X � NDk. Let hk =
(hk�1; (ai)i2Sk) be the history after Step k, where agents in (X1 [ � � � [Xk�1 [X) and only
them choose P x along hk. As X 2 X k, X =2 Cx;km . Therefore, X1 [ � � � [ Xk�1 [ X =2 Cxm.
Denote M = X1 [ � � � [Xk�1 [Mk. By de�nition of M and Cx;km , ((S1 nX1) [ � � � [ (Sk�1 n
Xk�1)[(SknX))\M = ; andM 2 Cx. By (2), (S1nX1)[� � �[(Sk�1nXk�1)[(SknX) =2 Cy.
Since � OSP-implements fCx with respect to S, hk is non-terminal and both results x and
y can follow from hk.

We show that Sk is the set required by the IUP for k. For each i 2 Sk, we denote by
Ii the information set that agent i has in Step k after hk�1.9 To obtain a contradiction,

suppose there exist X 2 X k and j 2 NDk nX such that X[fjg =2 Cx;km . Since j 2 NDk, the
set of available choices of agent j at j�s information set Ij in Step k is equal to ffP xi g; fP

y
i gg.

8By de�nition of �, agents in S1 only have an information set at Step 1.
9By de�nition of �, agents in Sk only have an information set in Step k.
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Since j =2 X, the choice consistent with the truth-telling strategy of agent j is P yi ; namely,
�j(Ij) = fP yi g. Let �i be a �xed strategy for i 2 Sk n fjg, where �i(Ii) = fP xi g for all i 2 X
and �i(Ii) 6= fP xi g for all i 2 Sk n(X[fjg). Observe that fi 2 Sk j �i(Ii) = fP xi gg = X. By
(k.3) in Step k of the de�nition of �, Step k+1 follows; accordingly, h

k
= (hk�1; (�i(Ii))i2Sk

is a non-terminal history (i.e., condition (i) in Claim B.k holds) and x can follow after

h
k
; i.e., after agent j truth-tells and (�i)i2Sknfjg is played. Suppose that agent j deviates

and plays �0j(Ij) = fP xi g. Let bh = (hk�1; (�0j(Ij); (�i(Ii))i2Sknfjg). As X [ fjg =2 Cx;k,
(X1 [ � � � [ Xk�1;[X [ fjg) =2 Cx. Since � OSP-implements fCx with respect to S, the
outcome y is feasible under the deviation. Therefore, truth-telling is not an obviously

dominant strategy with respect to S. Thus, Sk is the subset whose existence is required by
the IUP for k.

This �nishes the proof of Theorem 2: �

4.2 Anonymity

We characterize the committees that satisfy the IUP with respect to a partition and two

alternative notions of anonymity: Theorem 3 for strong anonymity (the chosen alternative

does not change after agents� names are permuted in any way), and Theorems 4 and 5

for anonymity relative to a partition (the chosen alternative does not change after agents�

names are permuted only among the members belonging to the same subset of the parti-

tion). Of course, by Theorem 2, all these results identify anonymous subclasses of social

choice functions in this setting (i.e., EMVRs) that are obviously strategy-proof relative to

a partition.

4.2.1 Strong anonymity

A committee Cx is strongly anonymous if for all bijections � : N ! N and all M 2 Cx,
�(M) 2 Cx. This is the straightforward de�nition of anonymous committee that does not
take into account the partition.

Remark 5 Let Cx be an strongly anonymous committee. Then, there exists an integer

q 2 f1; : : : ; ng, called the quota, such that, M 2 Cxm if and only if jM j = q.

Theorem 3 Let S be partition and let Cx be a strongly anonymous committee with quota q.
Then, Cx satis�es the IUP with respect to S if and only if one of the following statements
hold:
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(i) q = 1.

(ii) q = n.

(iii) S = fbS; Sg, where jbSj = n� 1.
Proof. Let S be a partition and let Cx be a strongly anonymous committee with quota q.

(() Assume q = 1. Then, it is easy to check that, for any 1 � k < K and independently of

S, X k = f;g and NDk = Sk. Accordingly, for all i 2 NDk, f;g [ fig 2 Cx;km holds because

q = 1. Hence, the IUP with respect to S is satis�ed.
Assume q = n. Suppose �rst thatK = 1. Then, the IUP does not impose any restriction,

and so it holds trivially. Suppose now that K > 1. Then, for any 1 � k � K�1, X k = fSkg
and NDk = Sk. Accordingly, since NDk nSk = ;, the IUP with respect to S is immediately
satis�ed.

Assume q =2 f1; ng and S = fbS; Sg, where jbSj = n � 1. To show that the IUP with
respect to S holds, consider S1 = bS. If X 1 = ; the proof is trivial. Let X 2 X 1. Then, there

exists M 2 Cxm such that X =M \ bS and X =2 Cxm. Since 1 < jM j = q < n and jbSj = n� 1,
q � 1 � jXj � q. But X =2 Cxm implies jXj = q � 1. Let i 2 ND1 nX. Hence jX [ figj = q,
which implies that X [ fig 2 Cxm, and the IUP with respect to S is satis�ed.

()) To obtain a contradiction, suppose that Cx satis�es the IUP with respect to S and
neither (i), (ii) nor (iii) hold. Let S1 2 S be the subset of the partition identi�ed at the �rst
step of the IUP with respect to S. We proceed by distinguishing between two cases.
Case 1: jS1j < q. Then, there exists M 2 Cxm such that S1 ( M . Since (ii) does

not hold, there exists j =2 M . Consider i 2 S1 and de�ne M = (M n fig) [ fjg. Hence,
M 2 Cxm because jM j = q. Then, M \ S1 = S1 n fig, and since jS1 n figj < q, we have that
S1 n fig 2 X 1. This implies, by (3), that S1 2 Cxm, a contradiction.
Case 2: q � jS1j. Since neither (i), (ii) nor (iii) hold, 1 < jS1j < n � 1. Then, there

exist i; j =2 S1. Consider M 2 Cxm such that M � S1. Since (i) does not hold, there exist

i0; j0 2 M . De�ne M = (M n fi0; j0g) [ fi; jg and let X = M \ S1 = M n fi0; j0g. Then,
jXj = q�2 which means thatX 2 Cxm and soX 2 X 1. Since i0 2 ND1nX andX[fi0g =2 Cxm
hold, (3) is not satis�ed, contradicting the hypothesis that Cx satis�es the IUP with respect
to S.

Theorems 2 and 3 together identify a family of social choice functions in this setting

(i.e., EMVRs) that are OSP with respect to a partition and strongly anonymous.10

10A social choice function f : PN ! fx; yg is strongly anonymous if, for all bijections � : N ! N and all

P = (P1; : : : ; Pn) 2 PN , f(P1; : : : ; Pn) = f(P�(1); : : : ; P�(n)).
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4.2.2 Anonymity relative to a partition

Let S be a partition of N and let �S be the set of all bijections �S : N ! N that only swap

agents within each element of S; namely, �S 2 �S if and only if, for each S 2 S, �S(S) = S.
A committee Cx is anonymous relative to a partition S if (i) it does not have dummy

agents and (ii) for all �S 2 �S and M 2 Cx, �S(M) 2 Cx.11

To characterize all committees that are anonymous relative to a partition and satisfy

the IUP respect to the same partition, we need some additional notation.

Given an ordered partition, denoted by So = fS1; : : : ; SKg, and a vector of quotas
Q = (q1; : : : ; qK) 2 ZK++ such that, for all 1 � k � K, qk � jSkj, de�ne, for each 1 � k � K,
the committee (of minimal winning coalitions) CxQ;k as follows:

CxQ;k =

8<: f
Sk
t=1 Tt [ fikg j Tt � St, jTtj = qt and ik 2 Sk n Tkg if qk < jSkj

; if qk = jSkj.
(10)

Moreover, set

CxQ =
K[
k=1

CxQ;k:

Example 5 illustrates how to obtain the committee CxQ from a given ordered partition So

and vector of quotas Q.

Example 5 LetN = f1; : : : ; 10g be the set of agents, So = ff1; 2; 3g; f4; 5; 6; 7; 8g; f9; 10gg
be the ordered partition of N and Q = (q1; q2; q3) = (2; 3; 2) be the vector of quotas. Then,

CxQ;1 = f1; 2; 3g,
CxQ;2 = ff1; 2; 4; 5; 6; 7g; f1; 3; 4; 5; 6; 7g; f2; 3; 4; 5; 6; 7g;

f1; 2; 4; 5; 6; 8g; f1; 3; 4; 5; 6; 8g; f2; 3; 4; 5; 6; 8g;
f1; 2; 4; 5; 7; 8g; f1; 3; 4; 5; 7; 8g; f2; 3; 4; 5; 7; 8g;
f1; 2; 4; 6; 7; 8g; f1; 3; 4; 6; 7; 8g; f2; 3; 4; 6; 7; 8g;
f1; 2; 5; 6; 7; 8g; f1; 3; 5; 6; 7; 8g; f2; 3; 5; 6; 7; 8gg, and

CxQ;3 = ;.
Hence,

CxQ = CxQ;1 [ CxQ;2. �

11Observe that a committee satisfying only (ii) in this de�nition could have dummy agents (for example,

all agents in S for some S 2 S) and (i) excludes explicitly this possibility. Of course, to attribute to a
committee with dummy and non-dummy agents any property of anonymity would sound weird.
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Theorem 4 Let Cx be an anonymous committee relative to a partition S. Then, Cx sat-
is�es the IUP with respect to S if and only if there exist an order in S, written as So =
fS1; : : : ; SKg, and a vector of quotas Q = (q1; : : : ; qK) such that

Cxm = CxQ:

In the proof of Theorem 4 we will use Lemma 1.

Lemma 1 Let Cx be an anonymous committee relative to a partition S elements that sat-
is�es the IUP with respect to S. Then, for every 1 � k < K, there exists an order of up to
k elements of S, denoted as Sk;o = fS1; : : : ; Skg, such that, for all t 2 f1; : : : ; kg, X t 6= ;
and jX 0

tj = jXtj for all X 0
t; Xt 2 X t.12

Proof of Lemma 1. If K = 1 the statement follows trivially. Assume K > 1. The proof

is by induction on k.

First, set k = 1. Let S1 be the subset of S identi�ed at the �rst step of the IUP with
respect to S. Furthermore, as there are no dummy agents and k = 1 < K, there isM�

1 2 Cxm
such that M�

1 \ S1 6= ; and M�
1 \ S1 =2 Cxm. Hence, X�

1 := M�
1 \ S1 2 X 1. Assume, to

obtain a contradiction, that there exits X 0
1 2 X 1 such that jX 0

1j 6= jX�
1 j. Suppose �rst that

jX 0
1j < jX�

1 j. Let M 0 2 Cx;1m be such that X 0
1 = M

0 \ S1 and consider a bijection �S 2 �S

with the property that �S(X 0
1) ( X�

1 and �
S(j) = j for every j 2 NnS1. By anonymity

relative to S, �S(M 0) 2 Cx;1m . Moreover, X 0
1 2 X 1 implies X 0

1 =2 Cx. By anonymity relative
to S, �S(M 0) \ S1 =2 Cx. Then, by de�nition of X 1; �S(M 0) \ S1 = �S(X 0

1) 2 X 1. Let

i 2 X�
1 n �S(X 0

1). Then, since i 2 ND1, (3) in the de�nition of the IUP implies that,
�S(X 0

1)[ fig 2 Cxm. Then, by the coalition monotonicity of the committee, X�
1 2 Cx;1 which

is a contradiction to the fact that X�
1 2 X 1. Proceed similarly to obtain a contradiction

for the case where jX 0
1j > jX�

1 j holds. Set S1;o = fS1g. Hence, the necessary condition of
Lemma 1 holds for k = 1.

Now, assume that the necessary condition of Lemma 1 holds for 1 � k < K. Then,

by hypothesis, there exists an order Sk;o = fS1; : : : ; Skg such that, for all t 2 f1; : : : ; kg,
X t 6= ; and jX 0

tj = jXtj for all X 0
t; Xt 2 X t. Hence, there exists M� 2 Cxm such that

X�
t := M� \ St 2 X t for all t = 1; : : : ; k. We shall show that the necessary condition of

Lemma 1 holds for k + 1 as well, where k + 1 < K.

12Given SK�1;o = fS1; : : : ; SK�1g, de�ne So = fS1; : : : ; SK�1; SKg.
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Now, set k + 1 � K � 1. Let Sk+1 be the element of S identi�ed at the step k + 1 of
the IUP. Then, exists i 2 N n (S1 [ � � � [ Sk+1). As there is no dummy agents, there is
M 0 2 Cxm such that i 2 M 0 and, for all t � k + 1, X 0

t := M
0 \ St 2 X t. By the Induction

Hypothesis, jX 0
tj = jX�

t j for all t � k. To obtain a contradiction, assume that there exists
Xk+1 2 X k+1 such that jXk+1j 6= jX 0

k+1j. Suppose �rst that jX 0
k+1j < jXk+1j. Then, by (3)

in the de�nition of the IUP, for all i 2 Sk+1 nX 0
k+1,

M 0
k+1 := X

�
1 [ � � � [X�

k [X 0
k+1 [ fig 2 Cxm: (11)

Since Xk+1 2 X k+1, there exists Mk+1 2 Cx;k+1m such that Xk+1 = Sk+1 \Mk+1 =2 Cx;k+1m .

Hence, by the de�nition of Cx;k+1m , there exists M 2 Cxm such that

M \ (
k+1[
t=1

St) = X
�
1 [ � � � [X�

k [Xk+1 =2 Cxm: (12)

Consider a bijection �S 2 �S with the property that �S(M 0
k+1)  M \ (

Sk+1
t=1 St), and

the identity otherwise. By anonymity, (11) implies �S(M 0
k+1) 2 Cxm which, together with

the monotonicity of the committee, it contradicts (12). Proceed similarly to obtain the

contradiction for the case where jX 0
k+1j > jXk+1j holds. �

Proof of Theorem 4. Let Cx be an anonymous committee relative to a partition S.
Suppose K = 1.

()) Since S = fNg, the committee is strongly anonymous. By Remark 5, let q 2 f1; : : : ; ng,
be the quota such that, M 2 Cxm if and only if jM j = q. Let S1 = N and Q = (q1) where

q1 = q � 1 < n. Then,

CxQ = fT [ fig j jT j = q1 and i 2 N n Tg = Cxm;

and so condition (10) holds.

(() Since the IUP is vacuous, it holds trivially.
Suppose K > 1.

()) Assume that Cx satis�es the IUP with respect to S.
Claim There exist M� 2 Cxm and an order S1; : : : ; SK of S such that, for all 1 � t < K,
(i) X�

t :=M
� \ St 2 X t and

(ii) if Xt 2 X t, then jXtj = jX�
t j.

Proof of the Claim. Let S1; : : : ; SK be the ordered partition, where S1; : : : ; SK�1 is

identi�ed in Lemma 1 for the particular case where k = K � 1. Since SK does not contain
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dummy agents, by Lemma 1 again, there exists M� 2 Cxm with properties (i) and (ii) stated
in the Claim. �

Let M� 2 Cxm be given by the Claim and consider, for each 1 � t < K, X�
t =M

� \ St 2
X t. Observe that X�

K := M
� \ SK 6= ;. Otherwise, X�

K�1 = M
� n [K�2t=1 St 2 Cx;K�1m , which

would imply that X�
K�1 =2 XK�1, a contradiction with part (i) in the Claim. Then, M�

can be written as M� =
SK
t=1X

�
t 2 Cxm. De�ne qt = jM� \ Stj for each t = 1; : : : ; K � 1,

qK = jM� \ SK j � 1 and Q = (q1; : : : ; qK).
We �nish this part of the proof of Theorem 4 by showing that Cxm = CxQ holds.
First, we show that Cxm � CxQ: Let M 2 Cxm be arbitrary. Let 1 � k � K be such that

M \ Sk 6= ; and, for all k < t � K, M \ St = ;. De�ne, for every 1 � t � k,

X t :=M \ St:

Assume that t < k. Then, X1 2 X 1 , and by the Claim, jX1j = jX�
1 j. By anonymity,

M1 := X
�
1 [ (M n S1) 2 Cxm.

Similarly, we get that Mt = X
�
1 [ � � � [ X�

t [ [M n (S1 [ � � � [ St)] 2 Cxm. Therefore, by
the Claim,

��X t

�� = qt for all t < k.
Now we prove that jM \ Skj = qk + 1 holds for all k � 1. First, assume that k = K.

Then, M \ SK 6= ;. Therefore, by anonymity and Claim, jM \ SK j = jM� \ SK j = qK + 1.
Second, assume that k < K. Let ik 2 NDk nX�

k . By the IUP,

M�k = ([kt=1X�
t ) [ fikg 2 Cxm: (13)

Furthermore, asMk�1 = X
�
1 [� � �[X�

k�1[(M \Sk) 2 Cxm if k > 1 andM0 =M \S1 =M
if k = 1, anonymity implies jM \ Skj =

��X�
k [ fikg)

�� = qk + 1. To see that the �rst

equality holds, suppose �rst jM \ Skj <
��X�

k [ fikg)
��. Consider the permutation �S such

that �S(M \ Sk) ( X�
k [ fikg and �S(j) = j for all j =2 Sk. Then, �S(Mk�1) ( M�k. By

anonymity, �S(Mk�1) 2 Cxm, which contradicts that M�k 2 Cxm. Proceed similarly to obtain
the contradiction for the case where the other strict inequality holds.

Therefore, M 2 CxQ.
Now, we will prove that CxQ � Cxm:
Let M 2 CxQ: Then, there is k such that M = [kt=1Tt [ fikg where Tt � St, jTtj =

qt and for all t = 1; � � � ; k, ik 2 Sk n Tk. Then, by de�nition of q, qt = jTtj = jX�
t j for all

t = 1; : : : ; K � 1 if k = K or all t = 1; : : : ; k if k < K. Then, there exits �S such that

�S(X�
t ) = Tt and �

S(ik) = ik for all t = 1; : : : ; K � 1 if k = K or all t = 1; : : : ; k if k < K.

35



First, assume that k = K. Then, M \ SK 6= ;. Therefore, by anonymity and Claim,
jM \ SK j = jM� \ SK j. Then, there exist �S such that �S(M) = M�. Therefore, by

anonymity, M 2 Cxm. Second, assume that k < K. By (13), M�k 2 Cxm. Then, anonymity
implies that M 2 Cxm.
(() The statement follows by the de�nitions of CxQ and the IUP with respect to S.
This �nishes the proof of the Theorem 4. �

Theorems 2 and 4 together characterize the family of all social choice functions in this

setting (i.e., EMVRs) that are OSP with respect to a partition and anonymous relative to

the same partition.13

Theorem 4 may also be used to describe in an alternative way a given EMVR fCx, whose

committee Cx is anonymous relative to S and satis�es the IUP with respect to S. The
description is as follows. By Theorem 4, let S = fS1; : : : ; SKg be the ordered partition of N
and let Q = (q1; : : : ; qK) be its associated vector of quotas. Fix an arbitrary pro�le P 2 PN ,
and let A(P ) = fi 2 N j Pi = P xi g be the set of agents that approve (or vote for) x at P .
Then, fCx(P ) is the alternative identi�ed by the following step-wise process.

Step 1:

(1.1) if jA(P ) \ S1j < q1, then fCx(P ) = y,
(1.2) if jA(P ) \ S1j > q1, then fCx(P ) = x,
(1.3) if jA(P ) \ S1j = q1, then go to Step 2.
Step k (1 < k < K):

(k.1) if jA(P ) \ Skj < qk, then fCx(P ) = y,
(k.2) if jA(P ) \ Skj > qk, then fCx(P ) = x,
(k.3) if jA(P ) \ Skj = qk, then go to Step k+1.
Step K:

(K.1) if jA(P ) \ SK j � qK , then fCx(P ) = y,
(k.2) if jA(P ) \ SK j > qK , then fCx(P ) = x,

Let Cx be an anonymous committee relative to a partition S that satis�es the IUP

with respect to S. Theorem 2 guarantees that there exists a game � 2 GS such that
(�; (�Pii )Pi2P ; i2N)) OSP-implements fCx with respect to S. The description of fCx by means
of the above step-wise process, applied to each P 2 P, allows to identify a much simple
game �Q to be used to the OSP-implementation of fCx with respect to S.
13A social choice function f : PN ! fx; yg is anonymous relative to the partition S if, for all bijections

�S 2 �S and P = (P1; : : : ; Pn) 2 PN , f(P1; : : : ; Pn) = f(P�(1); : : : ; P�(n)).
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Given an ordered partition So = fS1; : : : ; SKg and a vector of quotas Q = (q1; : : : ; qK),
de�ne the extensive game form �Q 2 GS through the following �nite sequence of steps, to
which we refer to as the [So; Q]-process

� Step 1: Agents in S1 play only once and simultaneously, and the set of available choices
of each i 2 S1 is the partition ffP xg; fP ygg. Let h1 be a given history at the end
of Step 1. Then, (i) h1 is terminal and the outcome of �Q is x if strictly more than

q1 agents in S1 have chosen fP xg along h1, (ii) h1 is terminal and the outcome of
�Q is y if strictly less than q1 agents in S1 have chosen fP xg along h1, and (iii) h1 is
non-terminal if q1 agents in S1 have chosen fP xg along h1, in which case go to Step 2.

� . . .

Given S1; : : : ; Sk�1, with 1 < k < K.

� Step k: For each non-terminal and commonly known history hk�1 at the end of Step
k� 1, agents in Sk play only once and simultaneously, and the set of available choices
of each i 2 Sk is the partition ffP xg; fP xgg. Let hk be a given history at the end of
Step k. Then, (i) hk is terminal and the outcome of �Q is x if strictly more than qk

agents in Sk have chosen fP xg along hk, (ii) hk is terminal and the outcome of �Q
is y if strictly less than qk agents in Sk have chosen fP xg along hk, and (iii) hk is
non-terminal if qk agents in Sk have chosen fP xg along hk, in which case go to Step
k + 1.

� Step K: For each non-terminal and commonly known history hK�1 at the end of Step
K�1, agents in SK play only once and simultaneously, and the set of available choices
of each i 2 SK is the partition ffP xg; fP ygg. Let hK be a given terminal history at
the end of Step K. Then, (i) hK is terminal and the outcome of �Q is x if strictly

more than qK agents in SK have chosen fP xg along hK and (ii) hK is terminal and the
outcome of �Q is y if less than or equal to qK agents in SK have chosen fP xg along
hK .

Given and ordered partition So = fS1; : : : ; SKg and a vector of quotas Q = (q1; : : : ; qK)
for which, for all k = 1; : : : ; K, qk � jSkj, denote by FSo; Q the subclass of GS containing all
extensive game forms that can be obtained as a [So; Q]-process.
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Theorem 5 Let Cx be an anonymous committee relative to the partition S. Then, Cx satis-
�es the IUP with respect to S if and only if there exists � 2 FSo; Q such that (�; (�Pii )i2N ;Pi2P)

OSP-implements fCx : PN ! fx; yg with respect to S.

Proof. Let Cx be an anonymous committee relative to the partition S.

(() Assume � 2 FSo; Q is such that (�; (�Pii )i2N ;Pi2P) OSP-implements fCx with respect to

S. Since FSo; Q ( GS , � 2 GS . Then, by Theorem 2, the committee Cx satis�es the IUP
with respect to S.

()) Assume Cx satis�es the IUP with respect the S. By Theorem 4, there exist an order

in S, written as So = fS1; : : : ; SKg, and a vector of quotas Q = (q1; : : : ; qK) such that, for
each 1 � k � K, qk � jSkj and

Cxm = CxQ:

Let �Q 2 FSo; Q be the extensive game form obtained by a [So; Q]-process. For each
i 2 N , consider the truth-telling type-strategy (�Pii )Pi2P where, for every zi 2 Zi such that
jCh(zi)j = 2, �Pii (zi) = fP xi g if Pi = P xi and �Pii (zi) = fP

y
i g if Pi = P

y
i .

We shall show that (�Q; (�
Pi
i )i2N ;Pi2P) OSP-implements fCx with respect to S.

First, we show that �Q and (�
Pi
i )i2N ;Pi2P induce fCx by going through the sequence of

steps de�ning �Q. Fix an arbitrary pro�le P 2 PN .

� Step 1: Agents in S1 play only once and simultaneously, and the set of their available
choices is the partition ffP xg; fP ygg. Let h1 be the history at the end of Step 1. We
distinguish among three di¤erent cases. depending on the feature of h1.

(i) h1 is terminal and g(z�Q(z0; �P )) = x. By the de�nition of �Q, strictly more than

q1 agents in S1, a wining coalition of x, have chosen fP xg. Accordingly, fCx(P ) = x.

(ii) h1 is terminal and g(z�Q(z0; �P )) = y. By the de�nition of �Q, strictly less than

q1 agents in S1, a coalition that is not winning for x, have chosen x, which means that

agents of a winning coalition for y have chosen fP yg. Accordingly, fCx(P ) = y.

(iii) h1 is non-terminal. This means that exactly q1 agents in S1 have chosen fP xg.
By the de�nition of �Q, the [SoQ]-process moves to Step 2.

� . . . Let 1 < k < K.

� Step k: Agents in Sk play only once and simultaneously, and the set of their available
choices is the partition ffP xg; fP ygg. Let hk be the history at the end of Step k. We
distinguish among three di¤erent cases, depending on the feature of hk.
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(i) hk is terminal and g(z�Q(z0; �P )) = x. By the de�nition of �Q, for each 1 � t < k,
exactly qt agents in St have chosen fP xg and strictly more than qk agents in Sk has
also chosen fP xg. According to its de�nition in (10), this set belongs to CxQ;k and so
a winning coalition of x has chosen fP xg. Accordingly, fCx(P ) = x.

(ii) hk is terminal and g(z�Q(z0; �P )) = y. By the de�nition of �Q, for each 1 � t < k,
exactly qt agents in St have chosen fP xg and strictly less than qk agents in Sk have
also chosen fP xg. According to its de�nition in (10), this set does not belong to CxQ;k
and so a winning coalition of y has chosen fP yg. Accordingly, fCx(P ) = y.

(iii) hk is non-terminal. By the de�nition of �Q, for each 1 � t � k, exactly qt agents
in St have chosen fP xg. According to the de�nition of �Q, the [SoQ]-process goes to
Stage k + 1.

� � � � � ��

� Step K: Agents in SK play only once and simultaneously, and the set of their available
choices is the partition ffP xg; fP ygg. Let hK be the history at the end of Step K.

Since K is the last step of the [SoQ]-process, hK is terminal. We distinguish between
two di¤erent cases, depending on the outcome associated to hK .

(i) g(z�Q(z0; �P )) = x. By the de�nition of �Q, for each 1 � t < k, exactly qt agents in
St have chosen fP xg and strictly more than qK agents in SK have also chosen fP xg.
According to its de�nition in (10), this set belongs to CxQ;K and so a winning coalition
of x has chosen fP xg. Accordingly, fCx(P ) = x.

(ii) g(z�Q(z0; �P )) = y. By the de�nition of �Q, for each 1 � t < k, exactly qt agents
in St have chosen fP xg and less than or equal to qK agents in SK have also chosen

fP xg. According to its de�nition in (10), this set does not belong to CxQ;K and so a
winning coalition of y has chosen fP yg. Accordingly, fCx(P ) = y.

Therefore, fCx(P ) = g(z�Q(z0; �P )).

We now prove that the truth-telling strategy �Pii is obviously dominant with respect to

S in �Q for i and Pi.
Assume agent j has to choose, at information set Ikj of Step k that starts after history

hk�1, one from the set Ch(Ikj ) = ffP xj g; fP
y
j gg. By de�nition of �Q, j 2 NDk and the

history hk�1 can be identi�ed with a sequence X1; : : : ; Xk�1 where, for each t = 1; : : : ; k�1,
Xt is the subset of agents in St that have chosen fP xg along the history hk�1. Notice that,
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since the [SoQ]-process has reached Step k, jXtj = qt for all 1 � t � k. We distinguish

between two general cases which, in turn, each is divided into three subcases.

Case A. Assume Pj = P xj . The choice consistent with j�s truth-telling strategy is aj = P
x
j .

Let �i be a �xed strategy for each i 2 Sk n fjg. Denote, for each i 2 Sk n fjg, �i(Iki ) = ai,
where Iki is agent i�s information set that goes across the history that starts at h

k�1 and it

is played by agents in Sk along Step k. Let h
k
= (hk�1; (ai)i2Sk) and Xk = fi 2 NDk j ai =

P xi g: We distinguish among three subcases.

Case A.1. jXkj < qk. Then, h
k
is a terminal history and the outcome of the game is y

because (S1 nX1)[ � � �[ (Sk�1 nXk�1)[ (Sk nXk) 2 CyQ. Suppose agent j deviates and playsbaj = P yj . Let ba = (baj; (ai)i2Sknfjg), bhk = (hk�1; (bai)i2Sk), bXk = fi 2 NDk j bai = P xi g, and
j bXkj < jXkj < qk. Then, (S1 nX1)[� � �[(Sk�1 nXk�1)[(Sk n bXk) 2 CyQ. Hence, the outcome
of the game after j�s deviation continues to be y. Therefore, as Pj = P xj , the truth-telling

strategy �Pjj is an obvious dominant strategy with respect to S.

Case A.2. jXkj > qk. Then X1 [ � � � [Xk�1 [Xk 2 CxQ. Therefore, h
k
is a terminal history

and the outcome of the game is x and, as Pj = P xj , the truth-telling strategy �
Pj
j is an

obvious dominant strategy with respect to S.

Case A.3. jXkj = qk: Suppose agent j deviates and plays baj = P yj . Let ba = (baj; (ai)i2Sknfjg),bhk = (hk�1; (bai)i2Sk), bXk = fi 2 NDk j bai = P xi g, Xk = bXk [ fjg; and j bXkj < qk. Then,
(S1 nX1)[ � � � [ (Sk�1 nXk�1)[ (Sk n bXk) 2 CyQ. Therefore, bhk is a terminal history and the
outcome of the game is y. Thus, as Pj = P xj , the truth-telling strategy �

Pj
j is an obvious

dominant strategy with respect to S.

Case B. Assume Pj = P
y
j . The choice consistent with j�s truth-telling strategy is aj = P

y
j .

Let �i be a �xed strategy for each i 2 Sk n fjg. Denote, for each i 2 Sk n fjg, �i(Iki ) = ai,
where Ii is agent i�s information set that goes across the history that starts at hk�1 and it

is played by agents in Sk along Step k. Let h
k
= (hk�1; (ai)i2Sk) and Xk = fi 2 NDk j ai =

P xi g. We distinguish among three subcases.

Case B.1. jXkj > qk. Then, h
k
is a terminal history and the outcome of the game is x

because X1 [ � � � [ Xk�1 [ Xk 2 Cx. Suppose agent j deviates and plays baj = P xj . Letba = (baj; (ai)i2Sknfjg), bhk = (hk�1; (bai)i2Sk), bXk = fi 2 NDk j bai = P xi g, Xk = bXk n fjg, and
j bXkj > qk. Then, X1 [ � � � [Xk�1 [ bXk 2 CxQ, bhk is a terminal history and the outcome of
the game is x. Therefore, as Pj = P

y
i , the truth-telling strategy �

Pj
j is an obvious dominant

strategy with respect to S.

Case B.2. jXkj < qk. Then (S1 nX1) [ � � � [ (Sk�1 nXk�1) [ (Sk nXk) 2 Cy. Then, h
k
is a
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terminal history and the outcome of the game is y. Therefore, as Pj = P
y
j , the truth-telling

strategy �Pjj is an obvious dominant strategy with respect to S.

Case B.3 jXkj = qk. Suppose agent j deviates and plays baj = P xj . Let ba = (baj; (ai)i2Sknfjg),bhk = (hk�1; (bai)i2Sk), bXk = fi 2 NDk j bai = P xi g, bXk = Xk [ fjg and j bXkj > qk. Then,

X1[ � � � [Xk�1[ bXk 2 Cxq . Therefore, bhk is a terminal history and the outcome of the game
is x. Thus, as Pj = P

y
j , the truth-telling strategy �

Pj
j is an obvious dominant strategy with

respect to S.

Thus, the game �Q 2 FSo; Q OSP-implements fCx with respect to S. This �nishes the
proof of Theorem 5. �

5 Two �nal remarks

5.1 Round table mechanisms

Before �nishing, we want to comment that in general, as it is the case for the OSP-

implementation, to OSP-implement a social choice function with respect to a partition

one can restrict attention to the class of round table mechanisms with or without perfect

information (see Mackenzie (2020) for the case of perfect information). The reason follows

from two ideas, which adapt the arguments for OSP-implementation to OSP-implementation

with respect to a partition.

The �rst idea is related to the pruning principle (see, for instance, Li (2016) and Ashlagi

and Gonczarowski (2018)). Namely, assume the pair (�; (�R)R2D), composed by the game

and the type-strategy pro�le, OSP-implements the social choice function f ;DN ! A. Delete

the last parts of the paths of � that are never played when agents use (�R)R2D and denote

this pruned game by b� and the restriction of (�R)R2D to b� by (b�R)R2D. It is evident that
the pair (b�; (b�R)R2D) also OSP-implements f , since after pruning � the worst-case from
continuing can only get better and the best-case from deviating can only get worse.

The second idea is related to the relabeling of the choices of b� proposed by Mackenzie
(2020); namely, for each agent i, each history at which i has to play, and each choice available

to i there, relabel that choice with the collection of preferences Ri 2 Di whose corresponding
part of the type-strategy (�Rii )Ri2Di are compatible with the history and the strategies �

Ri
i

select that choice.

The extensive game form obtained after the pruning and the relabeling of choices is

called a round table mechanism, which is therefore an extensive game form, now potentially
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with imperfect information, where the sets of choices are non-empty subsets of preferences

satisfying the following properties: (a) the set of choices at any information set are disjoint

subsets of preferences, (b) when player i has to play for the �rst time the set of choices is a

partition of Di, and (c) later, at an information set Ii, the union of available choices is the
intersection of the choices taken by agent i at all predecessor nodes that lead to Ii.

Observe that the extensive game forms used in Theorem 1 and in the application to

extended majority voting rules with two alternatives (Theorems 2 and 5) are all round table

mechanisms with imperfect information.

In general, the extensive game form � that OSP-implements the social choice function

f with respect to a partition S requires that � has imperfect information. To understand
why, consider the following argument. By de�nition, if the � that OSP-implements f with

respect to S would have perfect information, then � would SP-implement f as well. However,
Mackenzie (2020) establishes that SP-implementation with perfect information is equivalent

to OSP-implementation. Since OSP-implementation with respect to a partition is strictly

stronger than just OSP-implementation, � can not have perfect information; in particular,

the application of Subsection 4.2 with two alternatives contains instances of anonymous

social choice functions that are OSP-implementable with respect to S but, according to
Arribillaga, MassÃ3 and Neme (2020), they are not OSP-implementable. This points out

that certain imperfect information is required to OSP-implement with respect to S.

5.2 Group obvious strategy-proofness

Subsets of agents (coalitions), organized in a partition, play a crucial role in the de�nition

of obvious strategy-proofness relative to a partition. The literature contains other notions

of implementation in which strategic incentives are imposed not only on individual agents

but also on coalitions of agents; for example, implementation in strong Nash equilibria or

group strategy-proofness. Therefore, it is natural to extend the original Li (2017)�s notion

of obvious strategy-proofness based on individual incentives to a notion that addresses

coalitional incentives as well.

This subsection contains a natural de�nition of group obvious strategy-proofness, that

merges group strategy-proofness and obvious strategy-proofness. Theorem 6 establishes

that group obvious strategy-proofness coincides with obvious strategy-proofness.

Let � be an extensive game form with set of agents N and outcomes in A. Fix a subset

of agents S � N . Given �S and �0S such that �
0
j 2 �j n f�jg for all j 2 S, an earliest
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point of departure of i 2 S for �S and �0S is a subset of nodes of an information set Ii
with the properties that all nodes in Ii are compatible with �S, and �i and �0i prescribe

di¤erent actions at each of them but �S and �0S prescribe identical actions at all its previous

information sets that come across to each of their paths.

De�nition 4 Let �S and �0S be such that �
0
j 2 �j n f�jg for all j 2 S and let i 2 S.

Given i�s information set Ii 2 Ii, we say that the set of all nodes z 2 Ii compatible with �S,
denoted by Ii(�S; �0S), is an earliest point of departure of agent i for �S and �

0
S if

(i) �i(Ii) 6= �0i(Ii),
(ii) for every j 2 S; �j(I 0j) = �0j(I 0j) for all I 0j 2 Ij such that I 0j � Ii.

Observe that an earliest point of departure is a subset of an information set of a single

agent i.

Given i 2 S, �S and �0S, denote the set of earliest points of departures of i for �S and
�0S by �i(�S; �

0
S).

Given S; �S; �0S and i 2 S, let Oi(�S; �0S) and O0i(�S; �0S) be the two sets of options left
respectively by �S and �0S at the earliest point of departure Ii(�S; �

0
S) of i; namely,

Oi(�
i
S; �

0
S) = fx 2 A j 9��S 2 ��S and z 2 Ii(�S; �0S) s.t. x = g(z�(z; (�S; ��S)))g

and

O0i(�S; �
0
S) = fy 2 A j 9��S 2 ��S and z 2 Ii(�S; �0S) s.t. y = g(z�(z; (�0S; ��S)))g:

We are now ready to de�ne the notion of group obviously dominant strategy.

De�nition 5 We say that �S is group obviously dominant in � for RS if for all �0S 2 �S
such that �0j 2 �j n f�jg for all j 2 S, all i 2 S and all Ii(�S; �0S) 2 �i(�S; �0S),

xRi y

holds, for all x 2 Oi(�S; �0S) and all y 2 O0i(�S; �0S).14

De�nition 6 A social choice function f : D ! A is group obviously strategy-proof (GOSP)

if there exist an extensive game form � 2 G and a type-strategy pro�le (�Rii )Ri2Di ; i2N for
� such that, for each R 2 D, (i) f(R) = g(z�(z0; �R)) and (ii) for all S � N , �RSS is group

obviously dominant in � for RS.

14Namely, given RS , �S and �0S , from the point of view of i 2 S the worst alternative that can be reached
when agents in S are playing �S is at least as preferred according to Ri as the best alternative that can be

reached when agents in S are playing �0S ; in this sense, for every i 2 S, �S is undoubtedly better than �0S .
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As in the case of obvious strategy-proofness, when (i) holds we say that � and (�Rii )Ri2Di ; i2N

induce f . When (i) and (ii) hold we say that � GOSP-implements f .

Mackenzie (2020) contains a general revelation principle stating that the extensive game

form used to implement a social choice function in obviously dominant strategies may have,

without loss of generality, perfect information, That is, Ii is a singleton set for every i.

Theorem 6 A social choice function f : D ! A is group obviously strategy-proof if and

only if f is obviously strategy-proof.

Proof. Let f : D ! A be a social choice function.

()) From the two de�nitions, if f is GOSP, then f is OSP.

(() Let f be OSP. Then, there exist � 2 G and (�Rii )Ri2Di ; i2N that OSP-implement f .

Therefore, conditions (i) in De�nitions 6 and 3 coincide; that is, � and (�Rii )Ri2Di ; i2N

induce f . By Mackenzie (2022), we may assume that � has perfect information. To obtain

a contradiction, suppose condition (ii) in De�nition 6 does not hold for � and (�Rii )Ri2Di ; i2N .

Then, there exist S � N and RS such that �
RS
S is not group obviously dominant in � for

RS. That is, there exist �0S 2 �S such that �0j 2 �j n f�jg for all j 2 S, i 2 S and

fzig = Ii(�S; �0S) 2 �i(�S; �0S), such that

y Pi x (14)

holds, for some x 2 Oi(�S; �0S) and some y 2 O0i(�S; �0S). Fix such pair of alternatives x and
y. Then,

max
Ri
fw0 2 X j there exists ��S 2 ��S such that w0 = g(z�(zi; (�0S; ��S)))g

Pimin
Ri
fw 2 X j there exists ��S 2 ��S such that w = g(z�(zi; (�S; ��S)))g

hold because y and x belong respectively to the �rst and second sets where the maximum

and the minimum are obtained according to Ri. Therefore,

max
Ri
fw0 2 X j there exists ��i 2 ��i such that w0 = g(z�(zi; (�0i; ��i)))g

Rimax
Ri
fw0 2 X j there exists ��S 2 ��S such that w0 = g(z�(zi; (�0S; ��S)))g

and

min
Ri
fw 2 X j there exists �S 2 ��S such that w = g(z�(zi; (�S; ��S)))g

Rimin
Pi
fw 2 X j there exists ��i 2 ��i such that w = g(z�(zi; (�i; ��i)))g:
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Thus, there exist i 2 N , �0i 2 �i, and a node zi, which by Mackenzie (2020) it coincides
with an earliest point of departure fzig = Ii(�i; �0i) 2 �i(�i; �0i) for �i and �0i, such that

max
Ri
fw0 2 X j there exists ��i 2 ��i such that w0 = g(z�(zi; (�0i; ��i)))g

Pimin
Ri
fw 2 X j there exists ��i 2 ��i such that w = g(z�(zi; (�i; ��i)))g;

which means that � does not OSP-implement f with respect to the partition ff1g; : : : ; fngg.
According to Remark 1, this contradicts that � OSP-implements f . �
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