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Abstract

This paper studies a discrete-time version of the Lucas-Uzawa endogenous growth model

with physical and human capital. Equilibrium existence is proved applying tools of dynamic

programming with unbounded returns. The proofs rely on properties of homogeneous functions

and also apply well-known inequalities in real analysis, seldom used in the literature, which

significantly simplifies the task of verifying certain assumptions that are rather technical in

nature.
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1 Introduction

This paper studies a discrete-time version of a two-sector endogenous growth model with physical

and human capital in the tradition of Lucas (1988) and Uzawa (1965). Equilibrium existence for the

social planner’s problem is proved based on earlier work in dynamic programming with unbounded

returns by Alvarez and Stokey (1998) and further results from Le Van and Morhaim (2002) and

Le Van (2006).

The main results are developed for the model without human capital externalities. It is later

shown that the functional form used to represent output technology allows for a straightforward

extension of all results to the case where the model includes externalities. The proofs rely on certain

useful properties of homogeneous functions and also apply well-known inequalities in real analysis,

seldom used in the literature, which significantly simplifies the task of verifying certain assumptions

that are rather technical in nature.
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2 A two-sector model of endogenous growth

Time is discrete and denoted by t ∈ Z+ (the set of nonnegative integers). The economy is populated

by a large number of identical, infinitely-lived agents with unit mass. In each period t, there is

a single good that is produced using two inputs: physical capital, kt ∈ R+, and human capital

ht ∈ R+. These inputs depreciate every period at constant rates, given by 0 < δk < 1 and

0 < δh < 1, respectively. Each agent has an endowment of one time unit per period, from which

ut ≥ 0 is allocated to market activities and vt ≥ 0 to human capital accumulation.

For simplicity, the main results of the paper are presented for the model without human capital

externalities. Later we show that these results can be extended to a model with externalities in a

straightforward manner. Output per capita is produced with a Cobb-Douglas technology, given by

Akαt (utht)
1−α with A > 0 and 0 < α < 1. Let n ≥ 0 denote the exogenous population growth rate.

The per capita aggregate resource restriction for each t = 0, 1, . . . is then

ct + (1 + n)kt+1 ≤ Akαt (utht)
1−α + (1− δk)kt.

Human capital accumulation is linear in ht and given by

ht+1 = [Bϕ(vt) + (1− δh)]ht,

where B > 0 and ϕ : [0, 1] → R+ is continuous, strictly increasing and concave with ϕ(0) = 0 and

ϕ(1) > δh/B. Note that Lucas (1988) assumes that ϕ(v) = v, for all 0 ≤ v ≤ 1, while Uzawa (1965)

uses a similar specification, but both authors ignore human capital depreciation.

The instantaneous utility of a representative agent U : R+→ R ∪ {−∞} satisfies

U(ct) =


c1−σ
t − 1

1− σ
, if 0 < σ < +∞, σ ̸= 1,

log(ct), if σ = 1.

(1)

Suppose that 0 < β < 1 is the discount factor. Along an optimal path, a social planner chooses a

path {(ct, ut, vt, kt+1, ht+1)}∞t=0 to solve the following problem

max
∞∑
t=0

βtU(ct) (2)

s.t. ct + (1 + n)kt+1 ≤ Akαt (utht)
1−α + (1− δk)kt, t = 0, 1, . . . , (3)

ht+1 = [Bϕ(vt) + (1− δh)]ht, t = 0, 1, . . . , (4)

ut + vt ≤ 1, t = 0, 1, . . . , (5)

ct, ut, vt, kt+1, ht+1 ≥ 0, t = 0, 1, . . . , (6)

(k0, h0) ∈ R2
+ given.
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Since the objective of this problem is strictly monotone in each ct, ut, vt, and both kt and ht are

essential for production, the resource constraint (3) and time constraint (5) in the planner’s problem

will hold with equality. Moreover, standard Inada conditions on preferences and technology are

satisfied, which imply interior optima, provided that (k0, h0) ≫ 0. Using these properties of the

solution, problem (2) can be reformulated in terms of the choice of (kt+1, ht+1) only, for all t. The

following lemma shows that there is a minimum fraction of time v in the human capital sector

needed for this economy to exhibit sustained growth. This result will be useful to reformulate the

problem and for later proofs .

Lemma 1. There exists a unique value v ∈ (0, 1), implicitly defined by ϕ(v) = δh/B, such that

[Bϕ(v) + (1− δh)] ≤ 1, for all v ∈ [0, v], and [Bϕ(v) + (1− δh)] > 1, for all v ∈ (v, 1].

Proof. By the assumptions made on ϕ, we have that B[ϕ(0) + (1 − δh)] = B(1 − δh) < 1 and

[Bϕ(1) + (1 − δh)] > 1. Hence, the intermediate value theorem implies that there is a v ∈ (0, 1)

such that [Bϕ(v) + (1− δh)] = 1. Since ϕ is strictly increasing, the value of v must be unique. The

remaining properties follow from the continuity of ϕ.

Given that (5) holds with equality, substituting vt = 1− ut into (4) allows to define a function

ψ : R2
+ → [0, 1] by

ψ (ht, ht+1) =


1 if 0 ≤ ht+1 ≤ (1− δh)ht,

1− ϕ−1
[
1
B

(
ht+1

ht
− (1− δh)

)]
if (1− δh)ht ≤ ht+1 ≤ [Bϕ(1) + (1− δh)]ht,

(7)

for all ht > 0, and ψ(0, ht+1) = 1, for all ht+1 ≥ 0. It follows directly from the definition of ψ in (7)

and Lemma 1 that there is a maximum fraction of time u devoted to market activities compatible

with sustained growth, which is defined by u := ψ(h, h) = 1 − ϕ−1(δh/B), for all h > 0. Then, in

each period t where ut = u and ht > 0, human capital is kept constant at its current level, i.e.,

ht+1 = ht, and, for any 0 ≤ ut < u, human capital increases next period, i.e., ht+1 > ht.

Given (kt, ht) ∈ R2
+, combining the restrictions for ct, ut, and vt yields the feasible choices for

the state next period (kt+1, ht+1) as

(1− δk)kt
(1 + n)

≤ kt+1 ≤
Akαt h

1−α
t + (1− δk)kt
(1 + n)

, (8)

(1− δh)ht ≤ ht+1 ≤ [Bϕ(1) + (1− δh)]ht, (9)

for each t = 0, 1, . . . This defines a feasibility correspondence Γ : R2
+ → R2

+ given by

Γ(kt, ht) :=
{
(kt+1, ht+1) ∈ R2

+ : (8) and (9) hold for some (kt, ht) ∈ R2
+

}
. (10)
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The planner’s problem (2) can be written as

max
{kt+1,ht+1}∞t=0

∞∑
t=0

βtF (kt, ht, kt+1, ht+1) (11)

s.t. (kt+1, ht+1) ∈ Γ(kt, ht), t = 0, 1, . . . ,

(k0, h0) ∈ R2
+ given,

where the return function F : R2
+ × R2

+ → R ∪ {−∞} is defined as

F (kt, ht, kt+1, ht+1) := U
[
Akαt (ψ(ht, ht+1)ht)

1−α + (1− δk)kt − (1 + n)kt+1

]
, (12)

for all (kt, ht, kt+1, ht+1) ∈ R2
++× R2

+ for which U(·) > −∞. In the cases where any of kt or ht is

zero, F (kt, ht, kt+1, ht+1) := U [max {0, (1− δk)kt − (1 + n)kt+1}], for all (kt+1, ht+1) ∈ R2
+.

For any (k0, h0) ∈ R2
+, let

Π(k0, h0) := {{(kt, ht)}∞t=0 : (kt+1, ht+1) ∈ Γ(kt, ht), t = 0, 1, . . .} (13)

be the set of all sequences of the state variables that are feasible from (k0, h0). A typical element

of Π will be denoted by (k˜, h˜).
3 Equilibrium existence and characterization

Equilibrium existence for the model developed in the previous section is mainly based on Le Van

and Morhaim (2002) and Le Van (2006). For ease of notation, the Euclidean norm of any vector

(k, h) ∈ R2
+ will be written as ∥k, h∥. If the current state of the system is given by (k, h), the next

period value is represented by (k′, h′). Also, the graph of Γ is denoted as gr(Γ).

A number of assumptions on Γ, F , and β will be used to state and prove the results.

(A1) Γ is a nonempty, continuous, compact-valued correspondence and (0, 0) ∈ Γ(0, 0).

(A2) There exist constants ζ ≥ 0 and ζ ′ ≥ 0, with ζ ̸= 1, such that (k′, h′) ∈ Γ(k, h) implies

∥k′, h′∥ ≤ ζ∥k, h∥+ ζ ′.

(A3) For all (k, h, k′, h′) ∈ gr(Γ), there exist constants η ≥ 0 and η′ ≥ 0 such that

F (k, h, k′, h′) ≤ η
(
∥k, h∥+ ∥k′, h′∥

)
+ η′.

(A4) If ζ > 0 in (A2), then βζ < 1.

(A5) F is continuous at any point in gr(Γ) such that F (k, h, k′, h′) > −∞. If F (k, h, k′, h′) = −∞,

then for any sequence {(kn, hn, k′n, h′n)}
∞
n=0 in gr(Γ) that converges to (k, h, k′, h′), it follows

that lim
n→∞

F (kn, hn, k
′
n, h

′
n) = −∞;

(A6) For all (k, h, k′, h′) ∈ gr(Γ) and for all λ ∈ (0, 1],
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(a) (λk, λh, λk′, λh′) ∈ gr(Γ);

(b) there exist continuous functions Φ1 : (0, 1] → R and Φ2 : (0, 1] → R, with Φ1(1) = 1 and

Φ2(1) = 0, such that F (λk, λh, λk′, λh′) ≥ Φ1(λ)F (k, h, k
′, h′) + Φ2(λ);

(c) if (k̃, h̃) ∈ R2
+, then for all (k′, h′) ∈ Γ(k̃, h̃) and ε > 0 sufficiently small, there exists

a neighborhood N of (k̃, h̃) in R2
+, such that ((1− ε)k′, (1− ε)h′) ∈ Γ(k, h) for each

(k, h) ∈ N (k̃, h̃).

The next two lemmas, although somewhat technical, are needed to develop the main results.

Lemma 2. Assume that (A1) and (A2) are satisfied. Then

(a) Π(k0, h0) is compact in the product topology, for all (k0, h0) ∈ R2
+;

(b) The mapping Π : R2
+ →

(
R2
+

)∞
is continuous in the product topology.

Proof. First, it is shown that (A1) and (A2) are verified. From the definition given in (10), it is

clear that (0, 0) ∈ Γ(0, 0). In fact, Γ satisfies the stronger condition Γ(0, 0) = {(0, 0)} in this case.

For each (k, h) ∈ R2
+, by (8) and (9), the feasibility correspondence can be written as the Cartesian

product of two closed intervals

[
(1 + n)−1(1− δk)k, (1 + n)−1

(
Akαh1−α + (1− δk)k

)]
and [(1− δh)h, (Bϕ(1) + (1− δh))h] ,

which is a compact set. Thus, Γ is compact-valued. The continuity of Γ can be proved with

standard arguments, hence it is omitted. Therefore, (A1) is satisfied.

Now suppose that (k′, h′) ∈ Γ(k, h) for some k, h ≥ 0. Applying the (weighted) generalized

mean inequality1 to the righ-hand side of (8) yields

k′ ≤ Akαh1−α + (1− δk)k

(1 + n)
≤ A (αk + (1− α)h) + (1− δk)k

(1 + n)
=

(αA+ (1− δk)) k + (1− α)Ah

(1 + n)
.

It immediately follows that k′ ≤ θ∥k, h∥, where

θ := max

{
αA+ (1− δk)

(1 + n)
,
(1− α)A

(1 + n)

}
. (14)

On the other hand, by (4), we have that h′ ≤ [Bϕ(1) + (1− δh)] ∥k, h∥. Set ζ to be the greater

between θ and Bϕ(1)+(1−δh), and let ζ ′ = 0. Clearly, ζ > 0. The condition ζ ̸= 1 is also satisfied,

for if ζ = 1 would contradict that Bϕ(1) + (1− δh) > 1. Hence, (A2) holds.

The result given in part (a) of this Lemma follows from Tychonoff’s theorem, which states that

the product of any collection of compact sets is compact with respect to the product topology. The

proof for (b) can be found in Lemma 2 on Le Van and Morhaim (2002).
1Let x1, . . . , xn be positive real numbers and wi ∈ [0, 1], for each i = 1, . . . , n, such that

∑
i wi = 1. Then,

n∏
i=1

xwi
i ≤

(
n∑

i=1

wix
p
i

)1/p

for any p > 0.
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Lemma 3. Suppose that (A1), (A2), (A3), and (A4) are satisfied. Then, for all (k0, h0) ∈ R2
+ and

for all (k˜, h˜) ∈ Π(k0, h0), the sum
∑∞

t=0 β
tF (kt, ht, kt+1, ht+1) is well defined and equals

lim
T→∞

T∑
t=0

βtF (kt, ht, kt+1, ht+1).

Proof. Given that the validity of (A1) and (A2) has already been established in the proof of the

previous lemma, it will suffice to show that (A3) and (A4) also hold. A detailed proof of the result

for a general case is given in Le Van (2006) (Lemma 2.1.1 and Remark 2.2.1).

It is easily verified from (1) that U is pointwise bounded on R+. In particular, as σ → 0+,

it follows that U(c) ≤ (c − 1), for all c ≥ 0. From this fact, and given that ψ(h, h′) ≤ 1 for all

(h, h′) ∈ R2
+, we have from (12) that

F (k, h, k′, h′) ≤ Akα
(
ψ(h, h′)h

)1−α
+ (1− δk)k − (1 + n)k′ − 1,

≤ Akαh1−α + (1− δk)k − (1 + n)k′ − 1,

for every (k, h, k′, h′) ∈ gr(Γ). Therefore,

F (k, h, k′, h′) ≤ A [αk + (1− α)h] + (1− δk)k − (1 + n)k′ − 1,

≤ [αA+ (1− δk)] k + (1− α)Ah− (1 + n)k′ − 1,

≤ ζ(1 + n)∥k, h∥,

≤ ζ(1 + n)
(
∥k, h∥+ ∥k′, h′∥

)
,

where the generalized mean inequality is applied on the first line. Thus, (A3) is satisfied with

η := ζ(1 + n) and η′ := 0.

In order for (A4) to hold, we simply impose the condition βζ < 1, which is equivalent to

β ·max

{
αA+ (1− δk)

(1 + n)
,
(1− α)A

(1 + n)
, Bϕ(1) + (1− δh)

}
< 1.

This completes the proof.

From Lemma 3, it is possible to define total discounted returns J : Π → R ∪ {−∞} as

J(k˜, h˜) :=
∞∑
t=0

βtF (kt, ht, kt+1, ht+1). (15)

Then, problem (11) can be written more compactly as

max
{
J(k˜, h˜) : (k˜, h˜) ∈ Π(k0, h0)

}
. (16)
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Proposition 4. If (A1), (A2), (A3), and (A4) are satisfied, then a solution to problem (16) exists.

Proof. Applying the result from Lemma 2.2.1 in Le Van (2006), the function J(k˜, h˜) given in (15)

is upper semi-continuous in the product topology for each (k˜, h˜) ∈ Π(k0, h0). Since Π(k0, h0) is

compact in the same topology, by Lemma 2, then J attains its maximum on Π(k0, h0).

Let V (k0, h0) be the value of problem (16). To further characterize the solution, it is useful to

define the set of feasible paths for which total discounted returns are finite, that is,

Π′(k0, h0) :=
{
(k˜, h˜) ∈ Π(k0, h0) : J(k˜, h˜) > −∞

}
.

Lemma 5. Π′(k0, h0) is nonempty for all (k0, h0) ̸= (0, 0).

Proof. If 0 < σ < 1, then F is bounded below by F (0, 0, 0, 0) = −(1− σ)−1 > −∞, so the result is

immediate. Some analysis is required for the case 1 ≤ σ < +∞. Let (k0, h0) ̸= (0, 0). Moreover,

assume ut = u for all t = 0, 1, . . ., and

k0 <

(
A

n+ δk

) 1
1−α

uh0. (17)

By Lemma 1 and the definition of u, ht = h0, for all t. Then, it is possible to choose a constant

consumption sequence (c0, c0, . . .) with c0 := Akα0 (uh0)
1−α − (n+ δk)k0 > 0, such that

kt+1 =
Akα0 (uh0)

1−α + (1− δk)k0 − c0
1 + n

= k0, for all t = 0, 1, . . .

Clearly, the constant sequences k˜0 := (k0, k0, . . .) and h˜0 := (h0, h0, . . .) are in Π(k0, h0), and

J(k˜0, h˜0) = U [Akα0 (uh0)
1−α − (n+ δk)k0]

1− β
> −∞.

Now, if (17) is not satisfied, i.e., k0 ≥ (A/(n+ δk))
1

1−α (uh0), set k1 > 0 so that

c0 = Akα0 (uh0)
1−α + (1− δk)k0 − (1 + n)k1 > 0, and

c1 = Akα1 (uh0)
1−α − (n+ δk)k1 > 0, (18)

which in turn requires that

k1 < min

{
Akα0 (uh0)

1−α + (1− δk)k0
(1 + n)

,

(
A

n+ δk

) 1
1−α

uh0

}
.

Note that, by construction, ct = c1 implies kt = k1, for all t ≥ 1. Then, there exist sequences

h˜0 = (h0, h0, h0, . . .) and k˜1 = (k0, k1, k1, . . .) that are feasible from (k0, h0), whose total discounted
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value J(k˜1, h˜0) is given by

U
[
Akα0 (uh0)

1−α + (1− δk)k0 − (1 + n)k1

]
+

β

1− β
U
[
Akα1 (uh0)

1−α − (n+ δk)k1

]
> −∞.

This completes the proof.

Let S be the space of functions f : R2
+ → R∪{−∞} that are upper semicontinuous and satisfy:

(i) for all (k0, h0) ∈ R2
+ and for all (k˜, h˜) ∈ Π(k0, h0), lim supT→+∞ βT f(kT , hT ) ≤ 0;

(ii) for all (k0, h0) ∈ R2
+ such that Π′(k0, h0) is not empty, and for all (k˜, h˜) ∈ Π′(k0, h0),

lim
T→+∞

βT f(kT , hT ) = 0.

Proposition 6. Suppose that (A1), (A2), (A3), (A4), and (A5) hold.

(a) The value function V : R2
+ → R ∪ {−∞} satisfies the following Bellman equation

V (k, h) = max
{
F (k, h, k′, h′) + βV (k′, h′) : (k′, h′) ∈ Γ(k, h)

}
, (19)

for all (k, h) ∈ R2
+.

(b) V is the unique solution to the Bellman equation (19) in the space S.

(c) If, in addition, (A6) is satisfied, then V is continuous for any (k˜, h˜) ∈ Π′(k0, h0), and if

V (k0, h0) = −∞, then for any sequence {(kn, hn)}∞n=0 that converges to (k0, h0), if follows

that lim
n→∞

V (kn, hn) = −∞.

Proof. In order to prove parts (a) and (b) of this Proposition, it remains to verify that (A5)

holds, and the results follow from Theorem 2 in Le Van and Morhaim (2002). Standard continuity

arguments apply, hence the proof is omitted. Next we show that (A6) is satisfied.

Note from (7) that ψ is homogeneous of degree zero in (h, h′). Moreover, from (8) and (9), if

(k′, h′) ∈ Γ(k, h) then (λk′, λh′) ∈ Γ(λk, λh), for every λ ≥ 0; that is, Γ is a cone. Hence, (A6)(a)

holds. By the definition of U in (1), it follows that for every c > 0 and λ > 0,

U(λc) =
(λc)1−σ − 1

1− σ
=
λ1−σ(c1−σ − 1)

1− σ
+
λ1−σ − 1

1− σ
= λ1−σU(c) + U(λ). (20)

Let Φ1(λ) := λ1−σ and Φ2(λ) := U(λ) for all λ ∈ (0, 1]. Then (20) implies that

F (λk, λh, λk′, λh′) = Φ1(λ)F (k, h, k
′, h′) + Φ2(λ),

with Φ1(1) = 1 and Φ2(1) = 0, for all (k, h, k′, h′) ∈ gr Γ, which also implies that (A6)(b) holds.

Now, assume that (k, h) ≫ (0, 0),

(1− δk)k

(1 + n)
< k′ ≤ Akαh1−α + (1− δk)k

(1 + n)
, and (1− δh)h < h′ ≤ [Bϕ(1) + (1− δh)]h.
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Then, there exists ε > 0 such that

(1− δk)k

(1 + n)
< (1− ε)k′ <

Akαh1−α + (1− δk)k

(1 + n)
, and

(1− δh)h < (1− ε)h′ < [Bϕ(1) + (1− δh)]h.

Since both lower and upper bounds are continuous functions of k and h, the above inequalities also

hold for every (k̃, h̃) ∈ N (k, h). If k ≥ 0, h ≥ 0,

(1− δk)k

(1 + n)
= k′ <

Akαh1−α + (1− δk)k

(1 + n)
, and (1− δh)h = h′ < [Bϕ(1) + (1− δh)]h,

simply multiply both sides of the left-hand side equalities by (1 − ε) and both conditions are also

verified for all (k̃, h̃) ∈ N (k, h). Part (c) follows.

Remark 7. Note that every result in Proposition 6 remains valid if σ = 1, i.e., utility is logarithmic.

In particular, for U(c) = log c, it follows that for all λ ∈ (0, 1],

log(λc) = log c+ log λ = λ0 log c+ log λ,

thus (20) is satisfied. This in turn implies that Φ1(λ) = 1 and Φ2(λ) = log λ. Hence, a separate

treatment for logarithmic utility, as in Alvarez and Stokey (1998) or Le Van and Morhaim (2002)

is not needed with our set of assumptions.

4 Concluding remarks

To conclude, it is shown that all the results presented in the previous section extend to the model

with externalities à la Lucas (1988). Let hat denote the average level of human capital in the

population. Output technology is now given by Akαt (utht)
1−α (hat)

γ , with γ ≥ 0. In this case,

the social planner’s problem is similar to (11), with an additional equilibrium condition given by

hat = ht, for all t. Then, the resource constraint takes the form

ct + (1 + n)kt+1 ≤ Akαt u
1−α
t h1−α+γ

t + (1− δk)kt, t = 0, 1, . . . , (21)

which is no longer homogeneous of degree one in (kt, ht), provided that γ > 0.2 However, it is

possible to keep this convenient feature of the model and apply the methods developed above, by

making a change of variables. Let

ĥt := h
1−α+γ
1−α

t . (22)

2It is convenient to allow γ = 0, which reduces the model to the case without externalities, for ease of comparison.
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Clearly, output technology is homogeneous of degree one in kt and the transformed variable ĥt, i.e.,

Akαt u
1−α
t ĥ1−α

t . Substituting (22) in (4) yields

ĥt+1 = [Bϕ(vt) + (1− δh)]
1−α+γ
1−α ĥt,

hence the human capital accumulation technology is still linear in ĥt and concave in vt.
3 Finally,

define a function ψ̂ : R2
+ → [0, 1] by

ψ̂(ĥt, ĥt+1) =


1 if 0 ≤ ĥt+1 ≤ dĥt,

1− ϕ−1

{
1
B

[(
ĥt+1

ĥt

) 1−α
1−α+γ − d

1−α
1−α+γ

]}
if dĥt ≤ ĥt+1 ≤ Dĥt,

(23)

where

d := (1− δh)
1−α+γ
1−α and D := [Bϕ(1) + (1− δh)]

1−α+γ
1−α ,

to play the same role as ψ(ht, ht+1) in the problem without externalities. Changing the definitions

of Γ(kt, ĥt) and F (kt, ĥt, kt+1, ĥt+1) accordingly, it is easy to verify that all arguments developed

in the previous section apply to the social planner’s problem (11) reformulated appropriately with

the transformed variable.
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