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Abstract

We consider the problem where a set of individuals has to classify
m objects into p categories and does so by aggregating the individual
classifications. We show that if m ≥ 3, m ≥ p ≥ 2, and classifications
are fuzzy, that is, objects belong to a category to a certain degree,
then an independent aggregator rule that satisfies a weak unanimity
condition belongs to the family of Weighted Arithmetic Means. We
also obtain characterization results for m = p = 2.
Keywords: Classification Aggregation; Weighted Arithmetic Mean;
Fuzzy Setting.
JEL Classification: D71.

1 Introduction

The study of the problem of individuals classifying objects can be traced
back to Kasher and Rubinstein (1997). In their paper, they consider a finite
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society that has to determine which one of its subsets of members consists of
exactly those individuals that can be deemed to be part of a group named
J . They propose different sets of axioms characterizing three aggregators:
the liberal one, where each individual decides by herself whether she belongs
or not to the group; the oligarchic one, where a subset of individuals defines
who belongs to the group; and the dictatorial, where a unique individual
decides who is a J . Kasher and Rubinstein (1997) gave rise to what can be
regarded as a subdomain within social choice theory, namely, the study of
the Group Identification Problem (see, among others, Samet and Schmeidler,
2003; Miller, 2008; Fioravanti and Tohmé, 2021, for more details).

A more general problem, where a group of individuals has to classifym ob-
jects into p different categories, has been considered by Maniquet and Mongin
(2016). In their work, they study the case where there are at least as many
objects as categories, at least three categories and all the categories must be
filled with at least one object.1 This aspect is combined with other three
seemingly natural properties, namely Unanimity, which states that when
all individuals make the same classification then the aggregate classification
complies; Independence, which is the requirement that an object be classi-
fied by the aggregator in the same way at any two classification profiles if
every individual classifies it equally in both profiles; and Non-Dictatorship,
which requires that there is no individual such that her classification is always
selected. The result is that there is no aggregator satisfying these three con-
ditions. Recently, Cailloux et al. (2024) weaken the Unanimity axiom and
find a weakening of the impossibility result that holds for m ≥ 3 and p ≥ 2,
with the existence of an essential dictator. This is an individual such that
a permutation of her classification is always selected. They also characterize
the unanimous and independent aggregators when m = p = 2.

Our work considers the problem where m objects have to be classified
into p categories, m ≥ p ≥ 2, and the classifications, both by the individuals
and the rule, indicate degrees of membership of the objects to each of the
categories. Consider a scenario where a national government allocates equal
funds to all regions, with the stipulation that the central government deter-
mines how the funds are distributed. For instance, funds might be allocated
for security, education, and health, ensuring that each category, across the
country, receives at least the amount provided by the government to each

1This surjectivity condition becomes relevant, for example, in situations where m work-
ers have to be assigned to p tasks, and no task can be left unassigned.
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region. As an illustration, one region could be tasked with allocating half
of the funds to security, a quarter to education, and a quarter to health.
Another scenario involves assigning individuals to various mandatory tasks
with equal time requirements, where proportions dictate how each person’s
time is allocated. For instance, if tasks include laundry, lawn mowing, and
grocery shopping, Bob might spend half of his time on laundry, a quarter on
mowing the lawn, and the remaining quarter on grocery shopping.

Fuzzy preferences, those that represent vagueness and uncertainty, are a
useful tool that has been used in many aggregation problems. Noteworthy
contributions include the work of Dutta (1987), who deals with exact choices
under vague preferences, Dutta et al. (1986) who investigate the structure of
fuzzy aggregation rules determining fuzzy social orderings, and recent work
by Duddy and Piggins (2018), who prove the fuzzy counterpart of Weymark’s
general oligarchy theorem (Weymark, 1984), and by Raventos-Pujol et al.
(2020), who analyze Arrow’s (1951) theorem in a fuzzy setting.

Numerous studies have addressed the Group Identification Problem when
the preferences or classifications are not crisp. For instance, Cho and Park
(2018) present a model of group identification for more than two groups, al-
lowing fractional classifications but no fractional opinions, Ballester and Garćıa-Lapresta
(2008) deal with fuzzy opinions in a sequential model, and Fioravanti and Tohmé
(2022) show that some of the impossibility results of Kasher and Rubinstein
(1997) can be avoided. Alcantud et al. (2019) analyze the classification prob-
lem in a fuzzy setting, and consider a strong fuzzy counterpart of the surjec-
tivity condition, extending the impossibility result of Maniquet and Mongin
(2016).

We avoid both impossibility results, the crisp and the fuzzy ones, by
considering a different, but also very natural, fuzzy surjectivity condition.
Building on some previous results in functional analysis by Aczél and Wagner
(1980); Aczél and Wagner (1981), and Wagner (1982), we show that the only
aggregators that are independent and that satisfy a weak version of Unanim-
ity, are the Weighted Arithmetic Means.

Section 2 presents the basic notions and axioms that we use, while we
present the results in Section 3. Finally, Section 4 contains some concluding
remarks.
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2 Basic Notions and Axioms

Let N = {1, . . . , n} be a finite set of agents and let X = {x1, . . . , xm} be
m objects that need to be classified into the p categories of a set P , with
m ≥ p ≥ 2.

The individuals classify each object according to a partial degree of mem-
bership to each category. In the crisp setting, classifications are surjective
mappings c : X → P . In the fuzzy setting, a fuzzy classification is a map-
ping c : X → [0, 1]p such that

∑m

j=1 c(xj)t ≥ 1 for each t ∈ {1, . . . , p} and
∑p

t=1 c(x)t = 1 for all x ∈ X . The former condition is the fuzzy counterpart
of the surjectivity of the classification function, while the latter is the fuzzy
counterpart of the assumption that every object xj must be assigned to ex-
actly one category by each voter. It is easy to see that when m = p, then all
the inequalities turn into equalities.

We use C to denote the set of fuzzy classifications, and every c = (c1, . . . , cn) ∈ CN

is a fuzzy classification profile. Given c ∈ CN and x ∈ X , we denote with
cx ∈ [0, 1]N×P the fuzzy classification profile restricted to x, such that the
entry cxij indicates the degree of membership of the object x to the category
j, according to the agent i. Thus, cxij = ci(x)j .

A fuzzy classification aggregation function (FCAF) is a mapping α : CN → C
such that α(c)(x) indicates the degrees of membership to the different cate-
gories of the object x. We call the outcome of α, the fuzzy social classification.

Next, we introduce a particular FCAF, the Weighted Arithmetic Mean.
Let w = (w1, . . . , wn) be a set of weights such that wi ∈ [0, 1] for all i ∈ N

and
∑n

i=1wi = 1. Then αw : Cn → C is such that for all x ∈ X ,

αw(c)(x) = w1c1(x) + . . .+ wncn(x).

We say that the set of weights is degenerate if there is an i ∈ N such that
wi = 1. If we think of the FCAF as a group of experts classifying objects,
this FCAF can be appropriate for situations where the individuals differ in
expertise, with more experienced voters having higher weights. In particular,
if wi =

1
n
for all i ∈ N , we call this FCAF the Arithmetic Mean.

Example 1. Consider a situation where there are n = 3 individuals that
have to classify m = 3 objects into p = 3 categories. Let c be a fuzzy classi-
fication profile such that:
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c
x1 =





1
3

2
3

0
1 0 0
1
2

1
4

1
4



, cx2 =





2
3

0 1
3

0 0 1
1
2

0 1
2



, and c
x3 =





0 1
3

2
3

0 1 0
0 3

4
1
4



.

If we consider the Weighted Arithmetic Mean with a set of non-degenerate
weights w = (1

2
, 0, 1

2
), we obtain the following social classifications:

αw(c)(x1) = (10
24
, 11
24
, 3
24
), αw(c)(x2) = (14

24
, 0, 10

24
), and αw(c)(x3) = (0, 13

24
, 11
24
).

In the following, we introduce some axioms that an FCAF may satisfy.
The first axiom states that the fuzzy social classification of an object in
two different fuzzy classification profiles does not change if the classification
regarding that object is the same in both profiles for every individual.

Definition 1 (Independence). Let c, c
′ ∈ CN and x ∈ X be such that

ci(x) = c
′

i(x) for all i ∈ N . If an FCAF is independent, then α(c)(x) = α(c′)(x).

An independent FCAF α can be seen as a collection of mappings (αx)x∈X ,
such that αx : [0, 1]N×P → [0, 1]P and αx(c

x) = α(c)(x) (Cailloux et al.,
2024). We call these mappings Elementary FCAFs. A stronger version of
Independence requires that if two objects are classified equally in a profile,
then the fuzzy social classification must be the same.2

Definition 2 (Symmetry). An FCAF is symmetric if for all x, y ∈ X

and all c ∈ C such that ci(x) = ci(y) for all i ∈ N , it is the case that
α(c)(x) = α(c)(y).

Wagner (1982) shows that a symmetric FCAF is also independent, and
thus has the same elementary FCAF for every object. The next property
states that if there is an object that is unanimously classified by the individ-
uals, then the FCAF has to classify that object accordingly.

Definition 3 (Unanimity). An FCAF is unanimous if for all c ∈ CN where
there is an x ∈ X and a category t ∈ P such that c1(x)t = · · · = cn(x)t = r,
it is the case that α(c)(x)t = r.

A weaker version of Unanimity states that the only unanimous classifi-
cation required to be respected is when all the individuals classify an object
with a degree of membership 0. The intuition behind this axiom is that if
all individuals consider that an object does not belong at all to a certain
category, then the social classification should agree.

2This property is called Strong Label Neutrality in Wagner (1982).
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Definition 4 (Zero Unanimity). An FCAF is zero unanimous if for all c ∈ C
where there is an x ∈ X and a category t ∈ P such that c1(x)t = · · · = cn(x)t = 0,
it is the case that α(c)(x)t = 0.

Now we introduce our first fuzzy axiom, which can be seen as the fuzzy
counterpart of Unanimity.3 It states that the degree to which an object is
collectively classified must be between the classification degrees regarding
that object for each of the individuals.

Definition 5 (Fuzzy Consensus). An FCAF satisfies fuzzy consensus if
α(c)(x)t ∈ [mini∈N ci(x)t,maxi∈N ci(x)t], for every object x ∈ X and for
every category t ∈ {1, . . . , p}.

It is easy to see that Fuzzy Consensus implies Unanimity, and Unanimity
implies Zero Unanimity. These three axioms can be interpreted as the dif-
ferent ‘degrees’ of consensus that we might require an aggregator to satisfy.
The next axiom states that there must not exist an individual that imposes
her classification.

Definition 6 (Non-Dictatorship). An FCAF is Non-Dictatorial if there is no
individual i ∈ N such that for all x ∈ X, it is the case that α(c)(x) = ci(x).

A stronger version of Non-Dictatorship states that the names of the in-
dividuals are not important for the aggregation of classifications.

Definition 7 (Anonymity). For a classification profile c ∈ C and a per-
mutation σ : N → N we define σ(c) as the classification profile such that
σ(c) = {cσ(1), . . . , cσ(n)}. An FCAF is anonymous if α(σ(c)) = α(c).

3 Results

In the crisp setting, Maniquet and Mongin (2016) show the following impos-
sibility result.

Theorem 1. (Maniquet and Mongin, 2016) Let m ≥ p ≥ 3. There is no
(non-fuzzy) Classification Aggregation Function that satisfies Independence,
Unanimity, and Non-Dictatorship.

3This axiom is called coherence by Alcantud et al. (2019). Here we use the same name
used by Fioravanti and Tohmé (2022).
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Alcantud et al. (2019) extend this result to a fuzzy setting, by using Fuzzy
Consensus and considering a stronger notion of surjectivity, where for each
category there must exist an object with a degree of classification larger
than 0.5. They show the existence of a fuzzy dictator, where whenever the
dictator classifies an object into a category by more than 0.5, then the object
is classified into that category with a degree of more than 0.5. Thus, our main
theorem can be seen as an escape from these impossibility results, even in a
fuzzy setting.

Theorem 2. Let m ≥ 3 and m ≥ p ≥ 2. A Fuzzy Classification Aggregation
Function satisfies Independence, Zero Unanimity, and Non-Dictatorship if,
and only if, it is a Weighted Arithmetic Mean with a non-degenerate set of
weights.

Now we present a result by Aczél and Wagner (1981) that is useful for
our proof.

Theorem. (Aczél and Wagner, 1981) A family of mappings {cj : [0, 1]N →
[0, 1]}mj=1 satisfies the following conditions:

1. c
j(0, . . . , 0) = 0 for j = 1, . . . , m, and

2. if
∑m

j=1(xj1, . . . , xjn) = (1, . . . , 1), then
∑m

j=1 c
j(xj1, . . . , xjn) = 1

if, and only if, there exists a set of weights (w1, . . . , wn) such that for j =
1, . . . , m we have that

c
j(xj1, . . . , xjn) = w1xj1 + · · ·+ wnxjn.

Proof of Theorem 2. That a Weighted Arithmetic Mean with a non-degenerate
set of weights satisfies the three axioms is straightforward to see. For the
if part, we use the result by Aczél and Wagner (1981). Let α be an FCAF
that satisfies Independence and Zero Unanimity. Recall that an independent
FCAF can be seen as a collection of elementary FCAFs. So we can consider a
family of mappings {αxj

: [0, 1]N×P → [0, 1]P}mj=1. For a fixed category t ∈ P ,
we have that conditions (1) and (2) are satisfied by (αxj

)t.
4 Thus we have

that for each category t there is a set of weights (wt
1, . . . , w

t
n) such that for

j = 1, . . . , m, it is the case that5

(αxj
)t((xj1)t, . . . , (xjn)t) = wt

1(xj1)t + · · ·+ wt
n(xjn)t.

4(αxj
)t is the projection of αxj

over the coordinate t.
5(xji)t is the projection of xji over the coordinate t.
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What is left to show is that for every i ∈ N , the weights are the same for
every category, meaning that wt

i = wt′

i for all t, t′ ∈ P . To avoid excessive
notation, we show it for the case of |N | = 2, and m = p = 3. It is easy to
extend it for the general case. Consider the example where c1(x1) = (1, 0, 0),
c1(x2) = (0, 1, 0), c1(x3) = (0, 0, 1), c2(x1) = (0, 1, 0), c2(x2) = (0, 0, 1),
and c2(x3) = (1, 0, 0). Thus we obtain αx1

(c1(x1), c2(x1)) = (w1
1, w

2
2, 0),

αx2
(c1(x2), c2(x2)) = (0, w2

1, w
3
2), and αx3

(c1(x3), c2(x3)) = (w1
2, 0, w

3
1), where

every three dimensional vector adds up to one. Thus we obtain the following
system of equations:







































w1
1 + w1

2 = 1 (1)

w2
1 + w2

2 = 1 (2)

w3
1 + w3

2 = 1 (3)

w1
1 + w2

2 = 1 (4)

w2
1 + w3

2 = 1 (5)

w1
2 + w3

1 = 1 (6)

From (1) and (4) we obtain that 1 − w1
2 + w2

2 = 1, thus w1
2 = w2

2, and
from (2) and (5) we obtain that 1 − w2

2 + w3
2 = 1, thus w2

2 = w3
2. It is

a similar procedure for the weights of agent 1. So the FCAF associates to
every individual i ∈ N a weight wi such that wi ≥ 0 and that

∑n

i=1wi = 1,
and as it is non-dictatorial, we have that there is no i ∈ N such that wi = 1.
Thus the FCAF is a Weighted Arithmetic Mean with a non-degenerate set
of weights.

The impossibility result from the crisp setting is obtained when the ag-
gregator is a Weighted Arithmetic Mean and the set of weights is degenerate.
As the aggregator must have a crisp outcome, this is the only possible set
of weights (except for permutations on the name of the individuals). One
notable aspect of this result is that the weight assigned to each individual
remains consistent across all categories, with no category receiving a higher
weight than the others. An implication of our main result is that if we want
all individuals to be considered the same, then the weights must be the same
for all individuals.

Corollary 1. Let m ≥ 3 and m ≥ p ≥ 2. A Fuzzy Classification Aggregation
Function satisfies Independence, Zero Unanimity, and Anonymity if, and
only if, it is an Arithmetic Mean.
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As the Weighted Arithmetic Means with non-degenerate weights satisfy
Unanimity and Fuzzy Consensus, stronger versions of Zero Unanimity, we
have the following two corollaries.

Corollary 2. Let m ≥ 3 and m ≥ p ≥ 2. A Fuzzy Classification Aggrega-
tion Function satisfies Independence, Unanimity, and Non-Dictatorship if,
and only if, it is a Weighted Arithmetic Mean with a non-degenerate set of
weights.

Corollary 3. Let m ≥ 3 and m ≥ p ≥ 2. A Fuzzy Classification Aggregation
Function satisfies Independence, Fuzzy Consensus, and Non-Dictatorship if,
and only if, it is a Weighted Arithmetic Mean with a non-degenerate set of
weights.

Thus, both impossibility results by Maniquet and Mongin (2016) and
Alcantud et al. (2019) are avoided in our setting, even if we use their same
‘consensual’ axioms.

We emphasize that Independence does not impose any condition between
objects, in the sense that we can use different elementary FCAFs for each ob-
ject. But the combination of Independence and Zero Unanimity\Unanimity\Fuzzy
Consensus, in this setting with its particular surjectivity conditions, forces
the FCAF to also satisfy the symmetry condition, thus obtaining the follow-
ing collary.

Corollary 4. Let m ≥ 3 and m ≥ p ≥ 2. A Fuzzy Classification Aggregation
Function that satisfies Fuzzy Consensus, and Non-Dictatorship if, and only
if, it is a Weighted Arithmetic Mean with a non-degenerate set of weights.

It is worth mentioning that the previous results are only valid for m > 2.
For the case of 2 objects and 2 categories, Independence is trivially satisfied
(due to the surjectivity conditions). This forces us to use stronger axioms to
obtain a characterization.

For symmetric and Zero Unanimous FCAFs, we can have FCAFs that
are not Weighted Arithmetic Means, as the following result shows.

Theorem 3. Let m = p = 2. A symmetric Fuzzy Classification Aggregation
Function α satisfies Zero Unanimity if, and only if, there is a function h :
[−1

2
, 1
2
]n → [−1

2
, 1
2
] where

h(x1, . . . , xn) = −h(−x1, . . . ,−xn), (1)
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and

h

(

1

2
, . . . ,

1

2

)

=
1

2
, (2)

such that for each c ∈ CN ,

α(c)(xt) =

(

h

(

c
xt

11 −
1

2
, . . . , cxt

n1 −
1

2

)

+
1

2
, h

(

c
xt

12 −
1

2
, . . . , cxt

n2 −
1

2

)

+
1

2

)

for t = 1, 2.

Before the proof, we present the folowing result by Wagner (1982).

Theorem. (Wagner, 1982) Let m = p = 2. A symmetric mapping {c :
[0, 1]N×2 → [0, 1]2}mj=1 satisfies the following conditions:

1. c
xj(0, . . . , 0) = 0 for j = 1, . . . , m, and

2. if
∑2

j=1(xj1, . . . , xjn) = (1, . . . , 1), then
∑2

j=1 c
xj(xj1, . . . , xjn) = 1

if, and only if, there exists a function h : [−1
2
, 1
2
]n → [−1

2
, 1
2
] where

h(x1, . . . , xn) = −h(−x1, . . . ,−xn), (3)

and

h

(

1

2
, . . . ,

1

2

)

=
1

2
, (4)

such that for each (x1, x2) ∈ [0, 1]2,

c(x1, x2) =

(

h

(

x11 −
1

2
, . . . , xn1 −

1

2

)

+
1

2
, h

(

x12 −
1

2
, . . . , xn2 −

1

2

)

+
1

2

)

.

Proof of Theorem 3. That such an FCAF satisfies Zero Unanimity is straight-
forward to see. For the if part, we use the result by Wagner (1982). Thus, we
have for each category, a mapping h satisfying Wagner Theorem’s conditions,
namely h1 and h2. What is left to see is that h1 = h2. We have the following
conditions that must be satisfied by α(c)(x1) and α(c)(x2):

h1

(

c
x1

11 −
1

2
, . . . , cx1

n1 −
1

2

)

+
1

2
+ h2

(

c
x1

12 −
1

2
, . . . , cx1

n2 −
1

2

)

+
1

2
= 1,
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and

h1

(

c
x1

11 −
1

2
, . . . , cx1

n1 −
1

2

)

+
1

2
+ h1

(

c
x2

11 −
1

2
, . . . , cx2

n1 −
1

2

)

+
1

2
= 1.

It is easy to see that c
x1

j2 = c
x2

j1 for all i = 1, . . . , n. Thus we obtain that

h1
(

c
x2

11 −
1
2
, . . . , cx2

n1 −
1
2

)

= h2(cx2

11 −
1
2
, . . . , cx2

n1 −
1
2
), concluding our proof.

Despite its technical flavor, Theorem 3 has as a particular case the class
of Weighted Arithmetic Means, and also any other power mean with an odd
exponent.6 Proposition 1 of Cailloux et al. (2024) is a particular case of
Theorem 3, where condition 1 is implied by the complementary condition of
their result.

A more general result, valid for m ≥ p ≥ 2 can be attained if we slightly
change the surjectivity conditions. For this general case, we consider fuzzy
classifications c : X → R, and the surjectivity requirements are such that for
all x ∈ X , and for a given s ∈ R, it is the case that

∑p

t=1 c(x)t = s, and that
∑m

j=1 c(xj)t ≥ s if s ≥ 0 for all t ∈ P , or
∑m

j=1 c(xj)t ≤ s if s < 0 for all
t ∈ P . We can think of this setting as n individuals assigning s hours of use
of m machines into p different tasks that need s hours to be finished, or s

euros that m persons have to spend in p different projects that need at least
s euros to be done. We use C∗ to denote this set of classifications. Thus, the
FCAF∗ is a mapping α : C∗n → C∗ such that α(c)(xj) indicates, for example,
the different hours assigned to the different tasks of the machine xj .

It is easy to see that when m = p, all the inequalities of the surjectivity
conditions turn into equalities. This implies that trivially, the FCAF∗ satis-
fies the k-allocation property for any k = m ≥ 2 (Aczél and Wagner, 1980),
that is, if

∑m

j=1 c(xj)t = s, then (
∑m

j=1(α(c)(xj))1, . . . ,
∑m

j=1(α(c)(xj))p) = s

where s is a p−dimensional vector with an s on every entry. The k-allocation
property allows us to characterize the symmetric FCAF∗s that satisfy Fuzzy
Consensus for any value of m such that m ≥ p ≥ 2.

Theorem 4. Let m ≥ p ≥ 2. A symmetric FCAF∗ satisfies Fuzzy Consensus
if, and only if, it is a Weighted Arithmetic Mean.

Proof. Aczél and Wagner (1980) show that a mapping c : Rn → R satisfies
the k-allocation property for k = 2, 3 and is bounded if, and only if, it is a

6A power mean with an odd exponent is a function f : R
n → R such that

f(x1, . . . , xn) = ( 1

n

∑n

i=1
xm
i )

1

m where m is an odd number.
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Weighted Arithmetic Mean. In our setting, symmetry implies that for a given
category t ∈ P , we have the same elementary FCAF∗ for every object. By
Fuzzy Consensus, they are bounded and thus they are Weighted Arithmetic
Means. By a similar proof to the one used in Theorem 2, it is easy to see
that the elementary FCAF∗s are the same for every category, concluding our
proof.

4 Final Remarks

In this work, we present an analysis from a fuzzy point of view, of the chal-
lenge of classifying m objects into p different categories. The classifications of
the objects by the agents and the rules are no longer crisp statements about
to which category the object is assigned. Instead of that, the classifications
are expressed in terms of degrees of assignment to each of the categories.
In the crisp setting for more than two objects and two categories, requiring
the rule to fill each category with at least one object, to be unanimous and
independent, implies the existence of an agent such that objects are classi-
fied according to the opinions of that agent (Maniquet and Mongin, 2016).
Even with a weaker surjectivity condition, this result can not have a ma-
jor improvement (Cailloux et al., 2024, showing the existence of an essential
dictator).

The fuzzy setting proves advantageous, as the surjectivity conditions can
assume diverse yet natural interpretations. Strong interpretations, akin to
those in Alcantud et al. (2019), can extend the scope of impossibility results.
However, by considering weaker surjectivity conditions and different versions
of Unanimity, we can circumvent these limitations. Our findings show that
rules that belong to the family of Weighted Arithmetic Means are the only
ones that satisfy Zero Unanimity and Independence. Under different inter-
pretations of the classification process and the consensual axioms, we can
obtain characterization results that hold for m ≥ p ≥ 2.

An intriguing avenue for further inquiry lies in extending our analysis to
dynamic scenarios, where object classifications may evolve over time. Ex-
ploring the temporal dynamics of fuzzy classifications could provide valuable
insights into the adaptability and stability of the proposed framework in real-
world applications.

Declarations of interest: none.
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