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Abstract

We study a one-to-one labor matching market. If a worker considers resigning from
her current job to obtain a better one, how long does it take for this worker to actually
get it? We present an algorithm that models this situation as a re-stabilization process
involving a vacancy chain. Each step of the algorithm is a link of such a chain. We show
that the length of this vacancy chain, which can be interpreted as the time the worker
has to wait for her new job, is intimately connected with the lattice structure of the set of
stable matchings of the market. Namely, this length can be computed by considering the
cardinalities of cycles in preferences derived from the initial and final stable matchings
involved.

JEL classification: C78, D47.
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1 Introduction

Since the seminal work of Blum et al. (1997), a large literature has emerged studying re-
stabilization processes in two-sided matching markets. Most of this literature has focused
on disequilibrium situations triggered by the retirement of senior-level workers or the entry
of new firms. This perturbation of equilibrium unrolls a vacancy adjustment dynamic that
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leads to a new stable situation. However, some other sources of disequilibrium, and their
consequences for the market functioning, have remained unexplored.

In this paper, we present the following problem. Assume that the market clears in a
stable matching other than the worker-optimal. This implies room for improvement from
the workers’ point of view. If a worker considers resigning from her current job to obtain a
better one, how long does it take for this worker to actually get it? Note that this worker’s
resignation causes the firm that she left to make an offer to another worker, which may
generate another vacant position in a different firm and thus trigger a vacancy chain. This
vacancy chain continues until a new stable matching is eventually reached in which the
worker that first resigned obtains a new (and better) job. The length of this vacancy chain
can be interpreted as the time the worker has to wait for her new job. Since she will be
unemployed during this adjustment process, knowing its length will allow her to decide
whether to resign and wait for the new job or to remain in her status quo.

To solve this problem, we present an algorithm that models the aforementioned vacancy
chain process. At each stage of this algorithm, a worker-firm pair is matched, modifying the
previously obtained overall matching between workers and firms. We demonstrate that the
algorithm terminates in a finite number of steps and yields a new stable matching as output.
This solution is intimately connected with the lattice structure of the set of stable matching
with respect to the unanimous ordering for workers (Knuth, 1976). Beginning from a sta-
ble matching (different from the worker-optimal) and through a procedure of “reduction of
preferences”, we can define a “cycle in preferences” that allows us to generate a new match-
ing, called a “cyclic matching”, that turns out to be stable (Irving and Leather, 1986).1 A
cycle in preferences is a set of worker-firm pairs that carries the information on how to mod-
ify the original matching in order to obtain its derived cyclic matching. Moreover, given two
stable matchings related under this unanimous ordering, one can find a sequence of stable
matchings from one to the other. Each stable matching of the sequence (but the first one)
can be obtained from the previous one as a cyclic matching. From this sequence of cyclic
matchings, we can extract a sequence of cycles in preferences.

Our algorithm exploits this lattice structure in the following way. For a sequence of
cycles generated from the input and output stable matchings of the algorithm, and when all
acceptable worker-firm pairs are stable, we show that: (i) at each stage of the algorithm, the
pair that is matched belongs to a cycle of the sequence; (ii) all pairs from the last cycle of the
sequence are matched; and (iii) for each remaining cycle, all pairs except one are matched
at some stage of the algorithm. This implies that we can compute the number of steps of
the algorithm (i.e., the length of the vacancy chain) in terms of the cardinality of the cycles
involved: it equals the sum of the cardinality of the last cycle and the cardinality minus one
of all the remaining cycles.

Besides the aforementioned seminal paper of Blum et al. (1997), where in a one-to-one

1To the best of our knowledge, Irving and Leather (1986) is the first paper that introduces the notion of
cycles in preferences, under the name of “rotations”.
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model a decentralized process using the “deferred acceptance algorithm”2 mimics a vacancy
chain dynamic that achieves stability, there are other papers that study re-stabilization pro-
cesses triggered by the retirement of senior-level workers or the creation of new firms. For
example, a similar process with an adequate version of the deferred acceptance algorithm
can be adapted to a many-to-one setting (Cantala, 2004). Another approach to address this
issue is based on Tarski’s Fixed Point Theorem. In several works, the vacancy chain gen-
erated by the market destabilization is modeled by iterating Tarski operators having stable
matchings as their fixed points (see Bonifacio et al., 2022a, 2024; Kamada and Kojima, 2023;
Wu and Roth, 2018, among others). It is important to highlight that, unlike previous work,
we do not assume changes in the size of the population in our market. Instead, we consider
a scenario where a worker, without exiting the market, destabilizes it by resigning from her
current job, thereby triggering a vacancy chain that results in a new stable matching where
this worker is better off.

The notion of cycles in preferences has been widely exploited in the literature, mainly
for computing the full set of stable matchings. The first works in this direction (for a one-
to-one model) are those of Irving and Leather (1986) and Gusfield (1987).3 For many-to-
one and many-to-many models with responsive preferences, the concepts were extended in
Cheng et al. (2008) and Bansal et al. (2007), respectively. Finally, for a more general many-
to-many model with substitutable preferences that satisfy the law of aggregate demand, the
concept was adapted by Bonifacio et al. (2022b). Furthermore, cycles in preferences have also
been exploited in another direction. The set of probabilistic matchings fulfilling a notion of
strong stability has been characterized using cycles in preferences and cyclic matchings for
a one-to-one model (Neme and Oviedo, 2019) and for a many-to-one model with responsive
preferences (Neme and Oviedo, 2021).

The rest of the paper is organized as follows. The model and preliminary results are
presented in Section 2. In Section 3, an algorithm for re-stabilizing the market when a worker
decides to resign in order to improve her labor situation is presented. The results on how
many steps the algorithm takes to reach stability are gathered in Section 4. Finally, some final
remarks are presented in Section 5. All proofs are relegated to the Appendix A. In Appendix
B, we discuss the validity of our results without the assumption that all acceptable pairs are
stable. Moreover, we show that the extension to a many-to-one model is not straightforward.

2 Model and preliminaries

We consider one-to-one matching markets where there are two disjoint sets of agents: the
set of firms F and the set of workers W. Each agent a ∈ F ∪ W has a strict preference relation
Pa over the agents on the other side of the market and the prospect of being unmatched,

2For a one-to-one model, Gale and Shapley (1962) introduce this algorithm and prove that it always termi-
nates in a stable matching, thus showing that the stable set is non-empty.

3See also the treatment of cycles in preferences in the classic book by Roth and Sotomayor (1990).
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denoted by ∅. For each agent a ∈ F ∪ W, Ra is the weak preference associated with Pa. Let
PF be the preference profile for all firms, and let PW be the preference profile for all workers.
We denote by P the preference profile for all agents. Since the sets F and W are kept fixed
throughout the paper, we often identify the market (F, W, P) with the preference profile P.
Given an agent a ∈ F ∪ W, an agent b in the opposite side of the market is acceptable for
a under P if bPa∅. A pair (w, f ) ∈ W × F is an acceptable pair under P if f is acceptable
for w under P and w is acceptable for f under P. In this paper, the preference relation Pa is
represented by the ordered list of its acceptable agents (from most to least preferred).4

A matching µ is a function from the set F ∪W into F ∪W ∪ {∅} such that for each w ∈ W
and for each f ∈ F (i) µ(w) ∈ F ∪ {∅}, (ii) µ( f ) ∈ W ∪ {∅}, and (iii) w = µ( f ) if and only if
f = µ(w).

Agent a ∈ F ∪W is matched if µ(a) ̸= ∅, otherwise she is unmatched. For the following
definitions, fix a preference profile P. A matching µ is blocked by agent a if ∅Paµ(a). A
matching is individually rational if it is not blocked by any individual agent. A matching µ

is blocked by a worker-firm pair (w, f ) if, f Pwµ(w), and wPf µ( f ). A matching µ is stable if
it is not blocked by any individual agent or any worker-firm pair. The set of stable matchings
for a preference profile P is denoted by S(P).

Given a preference profile P and two matchings µ and µ′, we write µPFµ′ whenever
µ( f )R f µ′( f ) for each f ∈ F, and there is f ′ ∈ F such that µ( f ′)Pf ′µ

′( f ′). We write µRFµ′

whenever µ( f )R f µ′( f ) for each f ∈ F. Similarly, we write µPW µ′ and µRW µ′. Note that RF

and RW , which represent the common preferences of the firms and workers, respectively,
are partial orders over the set of matchings.

Knuth (1976) established that the stable matchings set has a dual lattice structure with
respect to the partial orders RF and RW . These lattices contain two distinctive matchings: the
firm-optimal stable matching with respect to RF, denoted by µF , and the worker-optimal
stable matching with respect to RW , denoted by µW . Moreover, matching µF is the worker-
pessimal stable matching with respect to RW , and µW is the firm-pessimal stable matching
with respect to RF (see Roth and Sotomayor, 1990, for more details).

2.1 The reduction procedure

We present the preference reduction procedure initially presented by Irving and Leather
(1986). This procedure will allow us to define a cycle in preferences, an essential concept for
counting the stages of our algorithm. Given a market P, let µ, µ̃ ∈ S(P) such that µPFµ̃. The
reduction procedure is described as follows.

Step 1: (a) Remove all w who are more preferred than µ( f ) from f ′s list of acceptable workers.

(b) Remove all f who are more preferred than µ̃(w) from w′s list of acceptable firms.

Step 2: (a) Remove all f who are less preferred than µ(w) from w′s list of acceptable firms.

4For instance, Pf : w1, w4, w2 indicate that w1Pf w4Pf w2Pf ∅ and Pw : f1, f2, f3 indicate that f1Pw f2Pw f3Pw∅.
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(b) Remove all w who are less preferred than µ̃( f ) from f ′s list of acceptable workers.

Step 3: After steps 1 and 2, if f is not acceptable for w (i.e., if f is not on w′s preference list
as now modified), then remove w from f ′s list of acceptable workers, and similarly,
remove from w′s list of acceptable firms any f to whom w is no longer acceptable.

The profile obtained by this procedure is called the reduced preference profile with respect
to µ and µ̃, and is denoted by Pµ,µ̃. When µ̃ = µW , the profile is simply called the reduced
preference profile with respect to µ, and is denoted by Pµ.

Remark 1 Let P be a market and assume µ, µ̃ ∈ S(P) with µPFµ̃. Then, the following statements
hold:

(i) for each f ∈ F, µ( f ) and µ̃( f ) are the first and last entries in f ′s reduced preference, respec-
tively. Symmetrically, for each w ∈ W, µ̃(w) and µ(w) are the first and last entries in w′s
reduced preference, respectively.

(ii) µ is the firm–optimal stable matching under Pµ,µ̃ and µ̃ is the worker–optimal stable matching
under Pµ,µ̃. Furthermore, µ̃ is the firm–pessimal stable matching under Pµ,µ̃ and µ is the
worker–pessimal stable matching under Pµ,µ̃.

(iii) f is acceptable to w under Pµ,µ̃ if and only if w is acceptable to f under Pµ,µ̃.

The following proposition is taken from Roth and Sotomayor (1990).

Proposition 1 Let µ, µ̃ ∈ S(P) with µPFµ̃. Then, µ′ ∈ S(P) and µPFµ′PFµ̃ if and only if µ′ ∈
S(Pµ,µ̃).

The following example illustrates the reduction procedure for a matching market.

Example 1 Consider a market where F = { f1, f2, f3, f4}, W = {w1, w2, w3, w4}, and the prefer-
ence profile is given by:

Pf1 : w1, w2, w3, w4

Pf2 : w2, w1, w4, w3

Pf3 : w3, w4, w1, w2

Pf4 : w4, w3, w2, w1

Pw1 : f4, f3, f2, f1

Pw2 : f3, f4, f1, f2

Pw3 : f2, f1, f4, f3

Pw4 : f1, f2, f3, f4

Let us consider the following stable matchings

µ =

(
f1 f2 f3 f4

w2 w1 w3 w4

)
and µW =

(
f1 f2 f3 f4

w4 w3 w2 w1

)
.

After the reduction procedure is performed, the reduced preference profile with respect to µ and µW is
presented in Table 1. ♢
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Pµ
f1

: w2, w3, w4

Pµ
f2

: w1, w4, w3

Pµ
f3

: w3, w4, w1, w2

Pµ
f4

: w4, w3, w2, w1

Pµ
w1 : f4, f3, f2

Pµ
w2 : f3, f4, f1

Pµ
w3 : f2, f1, f4, f3

Pµ
w4 : f1, f2, f3, f4

Table 1: Reduced preference profile Pµ.

3 Algorithm

Consider a labor market where all agents are matched under a stable matching and that
such stable matching is not the worker-optimal. Thus, there is a worker and another stable
matching in which she could be better off. This worker can resign her position in order to
wait for a better offer. We show in this section that such a better offer always arrives and that
the market is re-stabilized into a matching in which no worker is worse off. In each stage of
the algorithm, the firm left alone in the previous stage chooses the best worker willing to be
employed with this firm (such a worker always exists). This generates a new empty position
in another firm. This process continues until the worker who disrupted the initial stability
of the market receives an offer. Of course, this offer improves upon her initial situation.

Given a preference profile P and a stable matching µ ∈ S(P) \ {µW}, the algorithm takes
as inputs a worker w0 such that µ(w0) ̸= µW(w0) and the reduced preference profile Pµ. We
formally present the algorithm in Table 2.

Remark 2 Concerning the algorithm in Table 2, notice that:

(i) If νt(w0) = ∅, then (w0, f 0) blocks νt under Pµ. Thus, νt is not a stable matching under Pµ.
However, each νt is individually rational under Pµ.

(ii) For each stage t of the algorithm, ν(w)Rµ
wνt(w)Rµ

wνt−1(w) for each w ∈ W.

(iii) For each w ∈ W such that µ(w) ̸= ν(w), there is a stage t of the algorithm in which w is
chosen, i.e., there is a stage t such that w = wt.

Next, we demonstrate that the algorithm is well-defined. The following theorem shows
that: (i) for each stage of the algorithm, there is always at least one worker willing to accept
the position in the offering firm (that was abandoned in the previous stage); (ii) the worker
who disrupted the initial stability of the market receives an improving offer, generating that
the algorithm stops; (iii) the market always reaches stability once the algorithm stops.

Theorem 1 For the algorithm presented in Table 2, we have that:

(i) For each stage t of the algorithm, Wt ̸= ∅.

(ii) The algorithm stops in a finite number of stages.
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Algorithm:

Input A reduced profile Pµ and w0 ∈ W such that µ(w0) ̸= µW(w0).
Output A set of worker-firm pairs A, and a matching ν ∈ S(Pµ).

Define:
f 0 = µ(w0),

ν0( f ) =

{
∅ if f = f 0

µ( f ) otherwise
,

ν0(w) =

{
f if w = ν0( f )
∅ otherwise

,

A0 = ∅.
Stage t ≥ 1 Let Wt = {w ∈ W \ {w0} : f t−1Pµ

wνt−1(w)}
IF f t−1Pµ

w0µ(w0)

THEN Wt = Wt ∪ {w0}
Choose wt ∈ Wt such that wtRµ

f t−1w for each w ∈ Wt

IF wt ̸= w0 :
THEN Define:

f t = νt−1(wt)

νt( f ) =


∅ if f = f t

wt if f = f t−1

νt−1( f ) otherwise

νt(w) =

{
f if w = νt( f )
∅ otherwise

At = At−1 ∪ {(wt, f t−1)}
AND continue to Stage t + 1.

ELSE: Set ν( f ) =

{
w0 if f = f t−1

νt−1( f ) otherwise

ν(w) =

{
f if w = ν( f )
∅ otherwise

A = At−1 ∪ {(w0, f t−1)}, and STOP.

Table 2: Re-stabilization algorithm

(iii) Let ν be the matching obtained by the algorithm, then ν ∈ S(Pµ).

As, by Theorem 1 (iii), ν ∈ S(Pµ), we have µPµ
F νRµ

FµW . Then, the reduction procedure
implies µPFνRFµW . Therefore, applying Proposition 1 the next result follows.

Corollary 1 Let µ and ν be the input and output of the algorithm, respectively. Then, ν ∈ S(P) and
µPFν.
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The algorithm is illustrated for the market in Example 1 as follows.

Example 1 (Continued) We apply the algorithm to the reduced profile Pµ presented in Table 1, and
considering w0 = w1. Define f 0 = µ(w1) = f2, A0 = ∅, and

ν0 =

(
f1 f2 f3 f4 ∅

w2 ∅ w3 w4 w1

)
.

In what follows, we detail each of its stages:

Stage 1 As W1 = {w3, w4} and w4Pµ
f2

w3, then w1 = w4, and f 1 = ν0(w4) = f4. Since w1 =

w4 ̸= w0 = w1, we have A1 = {(w4, f2)}, and

ν1 =

(
f1 f2 f3 f4 ∅

w2 w4 w3 ∅ w1

)
.

Stage 2 As W2 = {w1, w2, w3} and w3Pµ
f4

w2Pµ
f4

w1, then w2 = w3, and f 2 = ν1(w3) = f3. Since

w2 = w3 ̸= w0 = w1, we have A1 = {(w3, f4), (w4, f2)}, and

ν2 =

(
f1 f2 f3 f4 ∅

w2 w4 ∅ w3 w1

)
.

Stage 3 Lastly, as W3 = {w1, w2} and w1Pµ
f3

w2, then w3 = w1, and w3 = w1 = w0. Therefore, the

algorithm stops, and the outputs of the algorithm are A = {(w1, f3), (w3, f4), (w4, f2)}, and

ν =

(
f1 f2 f3 f4

w2 w4 w1 w3

)
.

♢

4 Counting steps for re-stabilization

This section contains two subsections. Subsection 4.1 presents the notions of cycle in prefer-
ences and cyclic matching that are essential for counting the stages that the algorithm takes
to re-stabilize. The main result of the paper establishes the number of stages that the algo-
rithm needs to re-stabilize the market and is presented in Subsection 4.2. This result can be
interpreted as how many stages a worker has to wait for a better position when she resigns.

4.1 Cycles in preferences

In this subsection we present the notions of cycle in preferences and cyclic matching, first
presented in Irving and Leather (1986) for computing the full set of stable matchings. Con-
sider a stable matching µ ∈ S(P), and the reduced preference profile with respect to µ,
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denoted by Pµ. Recall some important facts about this reduced profile: (i) µ( f ) is f ’s most
preferred partner and µW( f ) is f ’s least preferred partner according to Pµ

f , for each f ∈ F;
and (ii) µW(w) is w’s most preferred partner and µ(w) is w’s least preferred partner accord-
ing to Pµ

w, for each w ∈ W. A cycle for Pµ can be seen as an ordered sequence of worker-firm
pairs {(w1, f0), (w2, f1), . . . , (wr, fr−1), (w0, fr)} such that wi = µ( fi) and wi+1 is the second
most-preferred worker for fi according to Pµ

fi
. Formally,

Definition 1 Let µ ∈ S(P). A cycle σ for Pµ is an ordered sequence of worker-firm pairs σ =

{(w1, f0), (w2, f1), . . . , (wr, fr−1), (w0, fr)} ⊆ W × F such that, for i = 0, . . . , r, we have:

(i) wi = µ( fi) ̸= µW( fi),

(ii) wi+1Rµ
fi

w for each w ∈ W \ {wi}, and where wr+1 = w0.

Let σ be a cycle for Pµ. Denote by σF and σW to the set of firms and workers involve in
cycle σ respectively. Given a cycle {(w1, f0), (w2, f1), . . . , (wr, fr−1), (w0, fr)} for Pµ can be
used to obtain a new matching from matching µ by breaking the partnership between firm
fi and worker wi and establishing a new partnership between firm fi and worker wi+1 for
each i = 0, . . . , r (modulo r + 1), keeping all remaining partnerships in µ unaffected. This
new matching is called a cyclic matching. Formally,

Definition 2 Let P be a market. Given µ ∈ S(P), and the reduced preference profile Pµ, let σ =

{(w1, f0), (w2, f1), . . . , (wr, fr−1), (w0, fr)} be a cycle for Pµ. The cyclic matching of µ is defined
as follows:

µσ( f ) =


µ( fi+1) if f = fi for i = 0, . . . , r − 1,
µ( f0) if f = fr,
µ( f ) for each f ̸∈ σF.

The resulting cyclic matching is stable not only in the reduced preference profile Pµ, but
also in the original preference profile P (see Irving and Leather, 1986; Roth and Sotomayor,
1990, for more details).

The following theorem is taken from Gusfield (1987).

Theorem 2 Let P be a market, and let µF and µW be the firm-optimal and worker-optimal stable
matchings, respectively. Then, there is a sequence of stable matchings {µ0, . . . , µq} such that µ0 =

µF, µi is a cyclic matching of µi−1 for i = 1, . . . , q, and µq = µW . Moreover, such a sequence may
not be unique but all sequences contain the same cycles (probably in different order and only once).

Let µ and ν be the input and output of the algorithm, respectively. Notice that, by the
reduction procedure, µ and ν are the firm-optimal and worker-optimal stable matchings
under Pµ,ν, respectively. A sequence of cycles generated from µ to ν is a sequence of cycles
{σ1, . . . , σk} such that there is a sequence of stable matchings {µ0, . . . , µk} with µ0 = µ,
µi = µi−1

σi where σi is a cycle for Pµi−1,ν with for i = 1, . . . , k and µk = ν. Theorem 2 implies
that such sequence exists. Notice that the sequence of cycles generated from µ to ν may not
be unique.
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Lemma 1 If two different sequences of cycles are generated from µ to ν, the last cycle of each sequence
is the same.

Below, we return to Example 1 to illustrate the calculation of cycles and cyclic matchings
in the reduced preference profile.

Example 1 (continued) Considering the reduced preference profile Pµ, and the output of the
algorithm ν ∈ S(Pµ), we compute the reduced preference profile Pµ,ν presented in Table 3.

Pµ,ν
f1

: w2

Pµ,ν
f2

: w1, w4

Pµ,ν
f3

: w3, w4, w1

Pµ,ν
f4

: w4, w3

Pµ,ν
w1 : f3, f2

Pµ,ν
w2 : f1

Pµ,ν
w3 : f4, f3

Pµ,ν
w4 : f2, f3, f4

Table 3: Reduced preference profile Pµ,ν.

We can compute cycle σ1 = {(w4, f3), (w3, f4)} and the cyclic matching of µ

µ1 =

(
f1 f2 f3 f4

w2 w1 w4 w3

)
.

To compute the next cycle in the sequence of cycles generated from µ to ν, first we compute
the reduced preference profile Pµ1,ν presented in Table 4.

Pµ1,ν
f1

: w2

Pµ1,ν
f2

: w1, w4

Pµ1,ν
f3

: w4, w1

Pµ1,ν
f4

: w3

Pµ1,ν
w1 : f3, f2

Pµ1,ν
w2 : f1

Pµ1,ν
w3 : f4

Pµ1,ν
w4 : f2, f3

Table 4: Reduced preference profile Pµ1,ν.

Then, the next cycle is σ2 = {(w4, f2), (w1, f3)}. Notice that the cyclic matching of µ1 is

µ2 =

(
f1 f2 f3 f4

w2 w4 w1 w3

)
= ν.

♢

4.2 Counting steps

In this subsection, we establish how many stages the algorithm takes in order to re-stabilize
the market when worker w0 decides to improve her labor situation. To do this, we make the
crucial assumption that all acceptable pairs are stable. Given a market P, recall that a pair
(w, f ) is stable for P if there is a stable matching µ such that f = µ(w) (see, for instance,
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Gusfield, 1987). First, we show that each pair that the algorithm computes belongs to one
cycle of any sequence of cycles generated from the input matching to the output matching
of the algorithm. Moreover, we demonstrate that the algorithm computes all but one pair of
each cycle in any sequence, except for the last cycle for which it computes the whole set of
pairs.5

Given a reduced preference profile Pµ and a worker w0, denote by A(Pµ, w0) to the out-
put of the algorithm applied to the preference profile Pµ when w0 decides to improve her
labor situation. The following lemma states that every worker-firm pair in A(Pµ, w0) be-
longs to exactly one cycle of the sequence of cycles generated from µ to ν.

Lemma 2 Let {σ1, . . . , σk} be any sequence of cycles generated from µ to ν. For each (w, f ) ∈
A(Pµ, w0) there is exactly one cycle σ ∈ {σ1, . . . , σk} such that (w, f ) ∈ σ.

The following lemma states that: (i) each pair of the last cycle is computed by the algo-
rithm (A(Pµ, w0)), and (ii) if the sequence of cycles generated from µ to ν has at least two
cycles, all but one of the pairs in the first cycle of the sequence belong to A(Pµ, w0). Formally,

Lemma 3 Let {σ1, . . . , σk} be any sequence of cycles generated from µ to ν. The following hold:

(i) σk ⊆ A(Pµ, w0).

(ii) If k ̸= 1, then |A(Pµ, w0) ∩ σ1| = |σ1| − 1.

Note that, item (i) is equivalent to |A(Pµ, w0) ∩ σk| = |σk|. In the following result, we
determine exactly how many pairs are contained in the output set of the algorithm.

Theorem 3 Let µ ∈ S(P), w0 ∈ W such that µ(w0) ̸= µW(w0), and let ν be the output of the
algorithm applied to the profile Pµ and worker w0. Then,

|A(Pµ, w0)| = |σk|+
k−1

∑
i=1

(|σi| − 1) (1)

where {σ1, . . . , σk} is any sequence of cycles generated from µ to ν.

Thus, the number of steps for a vacancy chain triggered by the resignation of worker w0

needed to reach stability is computed as in Theorem 3. The following example illustrates
this result.

Example 1 (continued) Recall that A(Pµ, w1) = A = {(w1, f3), (w3, f4), (w4, f2)}, σ1 =

{(w4, f3), (w3, f4)}, and σ2 = {(w4, f2), (w1, f3)}. Then, |A(Pµ, w1)∩σ1| = 1, and |A(Pµ, w1)∩
σ2| = 2. Therefore, |A(Pµ, w1)| = 3. ♢

5By Lemma 1, the last cycle is well-defined because it is the same for all sequences.
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5 Final remarks

Given a job matching market in equilibrium, if a worker resigns to obtain a better job, we
present an algorithm that restores stability to the market. Notice that the resigning worker
triggers a unique vacancy chain, leading to a unique stable matching. We show that the
output of the algorithm not only recovers stability but also weakly improves the situation
for all workers, leaving some of them strictly better off together with the one responsible
for disrupting the original stability. By using cycles in preferences, we can count the steps
necessary to restore such stability. We finish with some final comments.

A crucial assumption in our main result is that all acceptable pairs are stable pairs. If
some acceptable pairs are not stable, then Theorem 3 is no longer valid. The reason is
twofold. On one hand, some stage of the algorithm could select a worker-firm pair that
is acceptable yet not stable, and thus such pair would not be part of any cycle in preferences.
On the other hand, it could be the case that all the pairs in a cycle of the sequence different
than the last one are included in the output of the algorithm, violating Lemma 3 (ii). How-
ever, the calculation involving the cardinalities of the cycles obtained in Theorem 3 still can
be used as a lower bound for the amount of steps necessary to re-stabilize the market. We
discuss these facts and present this weaker version of our result in Appendix B.

Concerning the cost of our algorithm, its operational time is linked to the operational
time of computing all cycles in market Pµ,ν. Gusfield (1987) proves, in his Theorem 5, that
all cycles can be found in O(n2) time, where n is the number of agents on each side of the
market. So, this result is also true for our algorithm as a consequence of our Theorem 3.

There are many papers studying re-stabilization processes in several matching markets.
Some of these papers model a destabilization of the market by assuming that new workers
arrive at the market, senior workers retire, firms create new positions, and firms downsize,
among others. Each of these phenomena triggers either a layoff chain or a vacancy chain
that eventually reaches stability (see Bonifacio et al., 2022a, 2024; Blum et al., 1997; Cantala,
2004; Wu and Roth, 2018, among others). Each of these papers shares a common feature:
the re-stabilization process occurs within the realm of quasi-stable matchings.6 A natural
question arises of whether the matchings νt are firm-quasi-stable or worker-quasi-stable.
The answer is neither of them. Leaving aside ν that is stable, Lemma 4 (in Appendix A)
shows that (w0, f 0) is a blocking pair for νt at each stage t and νt( f 0) ̸= ∅, implying that νt

is not a firm-quasi-stable matching. Moreover, Theorem 1 (i) assures Wt ̸= ∅ for each stage
t. This implies that the pair (wt, f t−1) is a blocking pair for νt−1 and νt−1(wt) ̸= ∅. Then,
νt−1 is not a worker-quasi-stable matching.

6In short, a quasi-stable matching allows only blocking pairs (if any) where one of the agents of the blocking
pair has an empty position. When firms have empty positions, the matching is referred to as firm-quasi-stable
or envy-free. Otherwise, it is termed worker-quasi-stable.
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A Proofs

The following lemma will be used in the proof of Theorem 1.

Lemma 4 If (w, f ) is a blocking pair for νt under Pµ, then either (w, f ) = (w0, f 0) or f = f t.

Proof. Let (w, f ) a blocking pair for νt under Pµ. Assume that (w, f ) ̸= (w0, f 0), and f ̸= f t.
There are two cases to consider:
Case 1: f = f t−1. The fact that (w, f t−1) is a blocking pair for νt and definition of νt imply
that

wPµ

f t−1νt( f t−1) = wt (2)

and
f t−1Pµ

wνt(w). (3)

By (2) and definition of Wt we have w /∈ Wt. Assume that w = w0. Since (w0, f t−1) blocks
νt, w0Pµ

f t−1νt( f t−1) = wt. The fact that t is not the last stage of the algorithm implies that,

wtPµ

f t−1w0. Thus, wtPµ

f t−1w0Pµ

f t−1wt and we have a contradiction. Therefore w ̸= w0. Hence,

Remark 2 (ii) implies that, νt(w)Rµ
wνt−1(w), and the fact that w /∈ Wt implies that νt(w) =

νt−1(w)Pµ
w f t−1. Therefore, νt(w)Pµ

w f t−1, contradicting (3).
Case 2: f ̸= f t−1. By definition of νt, νt( f ) = νt−1( f ) together with the fact that (w, f ) is a
blocking pair for νt imply that

wPµ
f νt( f ) = νt−1( f ) (4)

and
f Pµ

wνt(w). (5)

If νt−1( f ) = µ( f ), then by (4), wPµ
f µ( f ) and this contradicts Remark 1 (i). Thus, there is a

stage t′ < t − 1 of the algorithm such that f t′ = f , νt′−1( f ) = ∅ and νt′( f ) = wt′ = νt−1( f ).
This together with (4) imply that wPµ

f wt′ . Hence w /∈ Wt′ . Assume that w = w0. Since (w0, f )

blocks νt under Pµ, w0Pµ
f νt( f ) = wt′ . The fact that t′ is not the last stage of the algorithm

implies that, wt′Pµ
f w0. Thus, wt′Pµ

f w0Pµ
f wt′ and we have a contradiction. Therefore, w ̸= w0.

This implies that νt′(w)Pµ
w f and, by Remark 2 (ii), we have that νt(w)Rµ

wνt′(w)Pµ
w f . This last

fact contradicts (5).
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Therefore, either (w, f ) = (w0, f 0) or f = f t. □

Proof of Theorem 1.

(i) We proceed by induction. First, we prove that W1 ̸= ∅. Since w0 = µ( f 0) ̸= µW( f 0),
by the Single Agent Theorem7, there is w ∈ W \ {w0} such that w = µW( f 0). By the op-
timality of µW and the definition of ν0, f 0 = µW(w)Pwµ(w) = ν0(w). Thus, f 0Pwν0(w).
By the preference reduction procedure, f 0Pµ

wν0(w). Therefore w ∈ W1. Hence, W1 ̸= ∅.

Next, assume that W t̂ ̸= ∅ for each t̂ < t. Thus, Wt−1 ̸= ∅. Since wt−1 ̸= w0 (since
t − 1 is not the last stage of the algorithm) we have that wt−1 = νt−2( f t−1). This
implies that µ( f t−1) ̸= ∅. Let w⋆ ∈ W be such that w⋆ = µ( f t−1). By the working of
the algorithm, νt−1( f t−1) = ∅. Thus, there is a stage of the algorithm in which w⋆ is no
longer matched to f t−1. Let j ∈ {1, . . . , t − 1} be the lowest index such that νj( f t−1) ̸=
µ( f t−1). Then, w⋆ = wj. Hence, f j−1Pµ

wj ν
j−1(wj) = f t−1. By the reduction procedure,

we have that µW(wj)Rµ

wj f j−1Pµ

wj f t−1. Then, µW(wj) ̸= µ(wj). Thus, as µ(wj) = f t−1,
µW( f t−1) ̸= µ( f t−1).

Let w ∈ W be such that w = µW( f t−1). First, assume that w = w0. Therefore,

f t−1 = µW(w0)Pµ

w0µ(w0) = f 0

and the algorithm includes w0 in Wt. Second, assume that w ̸= w0. By the reduc-
tion procedure we have that f t−1 = µW(w)Rµ

wνt−1(w). Since νt−1( f t−1) = ∅, then
f t−1Pµ

wνt−1(w) and w ∈ Wt. We conclude that Wt ̸= ∅.

(ii) Assume that the algorithm does not stop in a finite number of stages. Then, by the
finiteness of the model, there are two stages of the algorithm t and t′ with t < t′, a
worker w ∈ W such that w = wt = wt′ ̸= w0, and a firm f ∈ F such that f = f t−1 =

f t′−1 that satisfy
νt−1( f ) = ∅ and νt( f ) = w, (6)

together with
νt′−1( f ) = ∅ and νt′( f ) = w. (7)

By (6) and (7), we have that νt(w) = f , and νt′−1(w) ̸= f , so t < t′ − 1. Then, by
Remark 2 (ii), νt′−1(w)Pµ

wνt(w) = f . Hence,

f = νt′(w)Pµ
wνt′−1(w)Pµ

wνt(w) = f .

Thus, f Pµ
w f , a contradiction. Therefore, the algorithm stops in a finite number of stages.

(iii) Let ν be the matching obtained by the algorithm. Let T be the stage in which the
algorithm stops and let ν0, . . . , νT−1, ν and f 0, . . . , f T the sequences of matchings and

7The Single Agent Theorem states that if an agent is single in a stable matching, then it is single in all stable
matchings (McVitie and Wilson, 1970).
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firms involved in the pairs defined by the algorithm, respectively. By Remark 2 (i),
the pair (w0, f 0) is blocking pair for νt under Pµ with t = 1, . . . , T − 1. By Lemma
4, the firms involved in blocking pairs for νt are f 0 (only with worker w0) and f t, for
t = 1, . . . , T − 1. By definition of ν, it is only left to prove that neither f 0 nor f T−1

can be members of a blocking pair under Pµ. First, by definition of ν and w0 ∈ WT,
ν(w0)Pµ

w0µ(w0) = f 0 implying that (w0, f 0) is not a blocking pair for ν under Pµ. Lastly,
since w0 ∈ WT we have that ν( f T−1) = w0Pµ

f T−1w for each w ∈ WT. Therefore, ν is a
stable matching under Pµ.

□

Lemma 5 Let σk be the last cycle of any sequence of cycles generated from µ to ν. Let T be the stage
of the algorithm such that (w0, f T−1) ∈ AT(Pµ, w0). Then, (w0, f T−1) ∈ σk.

Proof. Let σk be the last cycle of any sequence of cycles generated from µ to ν. Let T be the
stage of the algorithm such that (w0, f T−1) ∈ AT(Pµ, w0).8 Assume that (w0, f T−1) /∈ σk. Let
t be a stage of the algorithm such that ( f , w) ∈ σk, f is the last firm of σk

F that is unmatched
at stage t − 1 and matched to w at stage t. This means that νt−1( f ) = ∅, νt( f ) = w =

ν( f ) = µk( f ) and for each f ′ ∈ σk
F \ f , νt−1( f ′) = ν( f ′) = µk( f ′). Assume that w = w0, then

w0 = µk( f ) = ν( f ). Hence, by the output of the algorithm, f = f T−1. Thus (w0, f T−1) ∈ σk

and this is a contradiction. Therefore, w ̸= w0 and there is f ∈ F \ σk
F such that νt−1( f ) = w,

and νt( f ) = ∅. Hence, wPµ

f
ν( f ). Since µk = ν, and f /∈ σk

F, then

wPµ

f
ν( f ) = µk( f ) = µk−1( f ). (8)

Since f = νt(w) and f = νt−1(w), by Remark 2 (ii), we have that f Pµ
w f . Since w ∈ σk

W , then
there is

f̃ = µk−1(w). (9)

Let w̃ = µk( f̃ ). Thus, w = µk−1( f̃ ), and w̃ = µk( f̃ ) = ν( f̃ ). Hence,

w = µk−1( f̃ )Pµ

f̃
µk( f̃ ) = w̃. (10)

Then, there is a stage of the algorithm, say t̃, such that νt̃−1( f̃ ) = ∅, and νt̃( f̃ ) = w̃, i.e
(w̃, f̃ ) ∈ At̃(Pµ, w0). By (10), and the fact that νt̃( f̃ ) = w̃, we have that w /∈ W t̃. Then,
νt̃−1(w)Pµ

w f̃ . By definition of t, and the fact that f̃ ∈ σk
F, we have that t̃ ≤ t − 1. This implies,

by Remark 2 (ii), that
f = νt−1(w)Rµ

wνt̃(w) = νt̃−1(w)Pµ
w f̃ . (11)

By (9) and (11), we have that
f Pµ

w f̃ = µk−1(w). (12)

8Note that, by the stopping criterion of the algorithm, T is the last stage.
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By (8) and (12), we have that the pair (w, f ) blocks stable matching µk−1, a contradiction.
Therefore, (w0, f T−1) ∈ σk. □

Proof of Lemma 1. Assume that there are two different sequences of cycles generated from µ

to ν. Let σk and σk′ be the last cycle of each sequence. Let T be the last stage of the algorithm.
By Lemma 5, we have that (w0, f T−1) ∈ σk ∩ σk′ . Consider the reduced preference profiles

Pµk−1
and Pµk′−1

from which cycles σk and σk′ are computed. Since (w0, f T−1) ∈ σk ∩ σk′ , we

have that, by definition of cycles, the second worker of both Pµk−1

f and Pµk′−1

f is µk−1
σk ( f ) =

µk′−1
σk′ ( f ) = ν( f ) for each f ∈ σk ∪ σk′ . Therefore, σk = σk′ . □

Proof of Lemma 2. Let (wt, f t−1) ∈ At(Pµ, w0). Since all pairs formed by the algorithm
are acceptable under Pµ, and given that we assume that all acceptable pairs under Pµ are
stable under Pµ, by Theorem 4 in Gusfield (1987),9 (wt, f t−1) belongs to exactly one cycle.
Assume that this cycle is not in the sequence. Then, ν( f t−1)Pµ

f t−1wt. Let w⋆ = ν( f t−1). By

definition of Wt, w⋆ /∈ Wt. Therefore, νt−1(w⋆)Pµ
w⋆ f t−1 = ν(w⋆). This contradicts Remark 2

(ii), implying that the cycle belongs to the sequence. □

Lemma 6 Let {σ1, . . . , σk} be a sequence of cycles generated from µ to ν . Then for each σj, there is
a stage of the algorithm, say t, such that (wt, f t−1) ∈ At(Pµ, w0) and (wt, f t−1) ∈ σj.

Proof. Note that, by Lemma 5, for σk (the last cycle of the sequence generated from µ to ν)
the result holds. Now, fix a cycle of a sequence generated from µ to ν, say σj (j ̸= k). Assume
that σj ∩ A(Pµ, w0) = ∅. Let t′ be the first stage of the algorithm such that νt′( f ) = ∅ for
some (w, f ) ∈ σj. This implies that there are w̃, wt′+1 ∈ W such that

νt′−1( f ) = w̃, and νt′+1( f ) = wt′+1.

Recall that by definition of cycle σj, µj( f ) = w. By the assumption that νt( f ) ̸= µj( f ) for
each stage t of the algorithm, we have that wt′+1 ̸= w. Since t′ is the first stage of the algo-
rithm such that νt′( f ) = ∅, then wPµ

f wt′+1. Hence, w /∈ Wt′+1. This implies that νt′(w)Pµ
w f .

Then, νt′(w) ̸= µj−1(w). Let f ′ be such that f ′ ∈ σF
j , and f ′ = µj−1(w). Then, there is a stage

t̃ < t′ such that νt̃−1( f ′) = w and νt̃( f ′) = ∅. This contradicts our election of t′. Therefore,
σj ∩ A(Pµ, w0) ̸= ∅. □

Remark 3 Note that both Lemmata 5 and 6 hold without the assumption that all acceptable pairs
are stable.

9In a model in which all acceptable pairs are stable, this theorem says that if (w, f ) is a stable pair such
that w ̸= µW( f ), then (w, f ) belongs to exactly one cycle. This theorem was originally presented in Irving and
Leather (1986).
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Proof of Lemma 3. Let {σ1, . . . , σk} be any sequence of cycles generated from µ to ν.
To prove (i), by Remark 2 (iii) it is sufficient to show that µ(w) ̸= ν(w) for each w ∈ σk

W .
Note that, by Theorem 2, there is a sequence of stable matchings µ0, . . . , µk such that µ0 = µ,
σi is a cycle for Pµi−1

and µk = ν. Then, ν(w) = µk(w)Pµ
wµk−1(w) for each w ∈ σk

W . Moreover,
by the construction of the sequence of matchings, we have that µk−1Rµ

Wµ. Thus, µ(w) ̸=
ν(w) for each w ∈ σk

W . Therefore, (w, ν(w)) ∈ A(Pµ, w0) for each (w, ν(w)) ∈ σk.
To prove (ii), assume k ̸= 1 and ,w.l.o.g., that σ1 = {(w2, f1), (w3, f2), . . . , (w1, fr)}. By

Lemma 6, we have that A(Pµ, w0)∩ σ1 ̸= ∅. Let t be the first stage of the algorithm in which
a pair of σ1 is formed. W.l.o.g., assume (w2, f1) is such a pair, i.e. νt( f1) = w2. Moreover,
νt( f2) = ∅. Since (w3, f2) ∈ σ1, and µ(w3) = f3, then f2Pµ

w3 f3. Notice that µ(w3) = νt(w3)

imply that f2Pµ
w3νt(w3) = f3. Thus, w3 ∈ Wt+1. Since, w3 is the second worker in Pµ

f2
(by

definition of cycle), then w3 is the most preferred worker in Wt+1, and therefore, νt+1( f2) =

w3. This means that the pair (w3, f2) ∈ At+1(Pµ, w0) \ At(Pµ, w0). Since νt+1( f3) = ∅,
repeating this reasoning, we can prove that the pair (w4, f3) ∈ At+2(Pµ, w0) \ At+1(Pµ, w0).
In each of the subsequent stages, the following pairs in the cycle are formed until pair

(wr, fr−1) ∈ At+|σ1|−2(Pµ, w0) \ At+|σ1|−3(Pµ, w0).

However, (w1, fr) /∈ A(Pµ, w0). To see this, let f t−2 = νt−1(w1). By the election of the pair
(w2, f1), we have (w1, f t−2) /∈ σ1. Since (w1, fr) ∈ σ1, by definition of cycle, f t−2Pµ

w1 fr. This
implies that, by Remark 2 (ii), (w1, fr) /∈ A(Pµ, w0). Therefore, |A(Pµ, w0) ∩ σ1| = |σ1| − 1.
□

Given that, by Corollary 1, µPFν, we assure that Pµ,ν is well defined.

Lemma 7 A(Pµ, w0) = A(Pµ,ν, w0).

Proof. By Remark 2 (ii), for each worker, the firms that belong to a pair formed by the al-
gorithm are found in the worker’s preference between his partner under ν and his partner
under µ. This means that ν(w)Rµ

wνt(w)Rµ
wµ(w) for each w ∈ W \ {w0}. Similarly, for each

firm, the workers that belong to a pair formed by the algorithm are found in the firm’s pref-
erence between its partner under µ and its partner under ν. Moreover, since each acceptable
pair is a stable pair we have that wPµ

f w′Rµ
f ν( f ) if and only if wPµ,ν

f w′ for each f ∈ F and

each w, w′ ∈ W. Symmetrically, ν(w)Rµ
w f Pµ

w f ′ if and only if f Pµ,ν
w f ′ for each w ∈ W and each

f , f ′ ∈ F. Therefore, the algorithm forms the same pairs in both preferences Pµ and Pµ,ν. □

Lemma 8 Let σi be a cycle of a sequence of cycles generated from µ to ν. Then, A(Pµi,ν, w0) ⊆
A(Pµ,ν, w0).

Proof. Assume that there is a pair (w, f ) ∈ A(Pµi,ν, w0) and (w, f ) /∈ A(Pµ,ν, w0). Let t′ the
stage of the algorithm applied to the profile Pµi,ν and worker w0 such that At(Pµi,ν, w0) =
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At(Pµ,ν, w0) for each t < t′ and (w, f ) ∈ At′(Pµi,ν, w0). We denote by νt and ν̃t to the match-
ings formed at the stage t in the algorithm applied to the profile Pµ,ν and Pµi,ν, respectively.
Note that, for each t < t′ we have that ν̃t = νt. Moreover, in stage t′ − 1 we have that
ν̃t′−1( f ) = νt′−1( f ) = ∅, and in stage t′, ν̃t′( f ) = w and νt′( f ) ̸= w.

Note that, since f = ν̃t′(w), by Remark 2 (ii) we have that

f Pµi,ν
w ν̃t′−1(w). (13)

Let = w⋆ = νt′( f ). Now, there are two cases to consider:
Case 1: wPµ,ν

f w⋆. Then, w /∈ Wt′ (when the algorithm is applied to Pµ,ν). Let f ′ = νt′−1(w).

Thus, f ′Pµ,ν
w f . Since f = ν̃t′(w) and f ′ = ν̃t′−1(w), we have that f and f ′ are acceptable firms

for w under Pµi,ν
w . Therefore, by the reduction procedure, f ′Pµi,ν

w f . Thus, ν̃t′−1(w)Pµi,ν
w f ,

contradicting (13).
Case 2: w⋆Pµ,ν

f w. The proof is similar to that of Case 1.

Since in both cases we get a contradiction, we conclude that A(Pµi,ν, w0) ⊆ A(Pµ,ν, w0). □

Proof of Theorem 3. Let µ ∈ S(P), w0 ∈ W such that µ(w0) ̸= µW(w0), and let ν be the output
of the algorithm applied to the profile Pµ and worker w0. Let {σ1, . . . , σk} the sequence
of cycles generated from µ to ν, and let µ = µ0, µ1, . . . , µk = ν be the sequence of stable
matchings between µ and ν generated by the sequence of cycles. Recall that, by Theorem 2
and Lemma 1, any sequence of cycles generated from µ to ν has the same cycles (possibly
in different order) and the last one is always the same, so the right-hand side of equation
(1) is well defined. If k = 1, by Lemma 3 (i) the proof is completed. If k = 2, by Lemma
3 (i) and (ii) the proof is completed. Now, we prove the case k ≥ 3. Note that, by Lemma
3 (i), |A(Pµk−1,ν, w0) ∩ σk| = |σk|. Since σk−1 is a cycle for Pµk−2,ν, by Lemmata 6 and 8,
A(Pµk−1,ν, w0) ⊊ A(Pµk−2,ν, w0). Thus, by Lemma 2, A(Pµk−2,ν, w0) \ A(Pµk−1,ν, w0) ⊆ σk−1.
Notice that cycle σk−1 is the first cycle of the sequence generated from µk−2 to ν. Then, by
Lemma 3 (ii), |A(Pµk−2,ν, w0)| = |σk|+ (|σk−1| − 1).

Following the same reasoning, by Lemmata 6 and 8, A(Pµk−2,ν, w0) ⊊ A(Pµk−3,ν, w0).
Thus, by Lemma 2, A(Pµk−3,ν, w0) \ A(Pµk−2,ν, w0) ⊆ σk−2. As σk−2 is the first cycle of the
sequence generated from µk−3 to ν, then by Lemma 3 (ii), |A(Pµk−3,ν, w0)| = |σk|+ (|σk−1| −
1)+ (|σk−2|− 1). Repeating this argument we achieve that |A(Pµ0,ν, w0)| = |σk|+∑k−1

i=1 (|σi|−
1). Therefore, by Lemma 7, equation (1) holds. □

B Further results

In this appendix, we present two examples. One of them illustrates that when we allow for
some acceptable pairs that are not stable, we only find a lower bound for the number of steps
needed to re-stabilize the market. The other example shows that the extension to a many-
to-one model is not straightforward. Although our (adapted) algorithm can be applied and
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reaches a stable matching, our result on counting the steps for re-stabilization using cycles
in preferences is not true.

B.1 When all acceptable pairs are not stable

Example 2 Let (F, W, P) be a market where F = { f1, f2, f3, f4}, W = {w1, w2, w3, w4}, and the
preferences profile given by:

Pf1 : w1, w2, w3, w4

Pf2 : w2, w1

Pf3 : w3, w2

Pf4 : w4, w1, w3

Pw1 : f2, f4, f1

Pw2 : f3, f1, f2

Pw3 : f4, f1, f3

Pw4 : f1, f4

Noto that preference profile P is already reduced, i.e. P = PµF . The stable matchings are

f1 f2 f3 f4

µF w1 w2 w3 w4

µ1 w2 w1 w3 w4

µ2 w3 w1 w2 w4

µW w4 w1 w2 w3

Note that the (w1, f4) is an acceptable pair but not stable. Now, we apply the algorithm to the initial
matching µF, the profile PµF , and consider w0 = w4. Define f 0 = µF(w4) = f4, A0 = ∅, and

ν0 =

(
f1 f2 f3 f4 ∅

w1 w2 w3 ∅ w4

)
.

Now, we detail each stage of the algorithm:

Stage 1 As W1 = {w1, w3} and w1PµF
f4

w3, then w1 = w1, and f 1 = ν0(w1) = f1. Since w1 =

w1 ̸= w0 = w4, we have A1 = {(w1, f4)}, and

ν1 =

(
f1 f2 f3 f4 ∅
∅ w2 w3 w1 w4

)
.

Stage 2 As W2 = {w2, w3, w4} and w2PµF
f1

w3PµF
f1

w4, then w2 = w2, and f 2 = ν1(w2) = f2. Since

w2 = w2 ̸= w0 = w4, we have A2 = {(w2, f1), (w1, f4)}, and

ν2 =

(
f1 f2 f3 f4 ∅

w2 ∅ w3 w1 w4

)
.

Stage 3 As W3 = {w1}, then w3 = w1, and f 3 = ν2(w1) = f4. Since w3 = w1 ̸= w0 = w4, we

have A3 = {(w1, f2), (w2, f1), (w1, f4)}, and

ν3 =

(
f1 f2 f3 f4 ∅

w2 w1 w3 ∅ w4

)
.
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Stage 4 As W4 = {w3}, then w4 = w3, and f 4 = ν3(w3) = f3. Since w4 = w3 ̸= w0 = w4, we
have A4 = {(w3, f4), (w1, f2), (w2, f1), (w1, f4)}, and

ν4 =

(
f1 f2 f3 f4 ∅

w2 w1 ∅ w3 w4

)
.

Stage 5 As W5 = {w2}, then w5 = w2, and f 5 = ν4(w2) = f1. Since w5 = w2 ̸= w0 = w4, we
have A5 = {(w2, f3), (w3, f4), (w1, f2), (w2, f1), (w1, f4)}, and

ν5 =

(
f1 f2 f3 f4 ∅
∅ w1 w2 w3 w4

)
.

Stage 6 Lastly, as W6 = {w4}, then w6 = w4 = w0. Therefore, the algorithm stops, and the outputs
of the algorithm are A = {(w4, f1), (w2, f3), (w3, f4), (w1, f2), (w2, f1), (w1, f4)}, and

ν =

(
f1 f2 f3 f4

w4 w1 w2 w3

)
.

After six stages ν = µW . The unique succession of cycles from µF to µW is
{

σ1, σ2, σ3} where
σ1 = {(w2, f1), (w1, f2)}, σ2 = {(w3, f1), (w2, f3)} and σ3 = {(w4, f1), (w3, f4)}. Since (w1, f4)

is not a stable pair, Lemma 2 does not hold. In this case, we have that (w1, f4) ∈ A(PµF , w0) however
(w1, f4) /∈ σi for 1 ≤ i ≤ 3. Therefore, |A(PµF , w0)| = 6 > 4 = (|σ1| − 1) + (|σ2| − 1) + |σ3|.
Moreover, observe that σ1 ⊆ A(PµF , w0) implying that Lemma 3 (ii) does not hold also. ♢

Note that in this example, σ1 ⊆ A(PµF , w0). In fact, when not all acceptable pairs are
stable, part (ii) of Lemma 3 should be change to: If k ̸= 1, then |A(Pµ, w0) ∩ σ1| ≥ |σ1| − 1.
The proof is similar, but in this case, the pair (w1, fr) could belong to A(Pµ, w0). To see this,
consider the case that (w1, f t−2) is an acceptable but not stable pair. If f t−2Pµ

w1 fr, following
the same reasoning of the proof of Lemma 3 we get that |A(Pµ, w0) ∩ σ1| = |σ1| − 1. Now,
consider the case that frPµ

w1 f t−2Pw1 f1 = µ(w1). Recall that (w1, f t−2) /∈ σ1. Since (wr, fr−1) ∈
At+|σ1|−2(Pµ, w0) \ At+|σ1|−3(Pµ, w0), we have that νt+|σ1|−2( fr) = ∅. Then, νt+|σ1|−1( fr) =

w1 implying that (w1, fr) ∈ A(Pµ, w0).
Therefore, when acceptable pairs are not necessarily stable, our Theorem 3 can be refor-

mulated into:

Let µ ∈ S(P), w0 ∈ W such that µ(w0) ̸= µW(w0), and let ν be the output of the algorithm
applied to the profile Pµ and worker w0. Then,

|A(Pµ, w0)| ≥ |σk|+
k−1

∑
i=1

(|σi| − 1)

where {σ1, . . . , σk} is any sequence of cycles generated from µ to ν.

The proof follows by an inductive reasoning similar to the one used in the proof of The-
orem 3.
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B.2 Extension to the many-to-one model

In what follows, we introduce a modified version of our algorithm adapted to a many-to-
one market, detailed in Table 5. Although the algorithm leads to a stable outcome, our result
regarding counting the step for re-stabilization using cycles in preferences is not true.

Algorithm:

Input A reduced profile Pµ and w0 ∈ W such that µ(w0) ̸= µW(w0)

Output A set of worker-firm pairs A, and a matching ν ∈ S(Pµ)

Define:
f 0 = µ(w0),

ν0( f ) =

{
µ( f ) \ {w0} if f = f 0

µ( f ) otherwise
,

ν0(w) =

{
f if w ∈ ν0( f )
∅ otherwise

,

A0 = ∅.
Stage t ≥ 1 Let Wt = {w ∈ W \ {w0} : f t−1Pµ

wνt−1(w)}
IF f t−1Pµ

w0µ(w0)

THEN Wt = Wt ∪ {w0}
Choose wt ∈ Wt such that wtRµ

f t−1w for each w ∈ Wt

IF wt ̸= w0 :
THEN Define:

f t = νt−1(wt)

νt( f ) =


νt−1( f ) \ {wt} if f = f t

νt−1( f ) ∪ {wt} if f = f t−1

νt−1( f ) otherwise

νt(w) =

{
f if w ∈ νt( f )
∅ otherwise

At = At−1 ∪ {(wt, f t−1)}
AND continue to Stage t + 1.

ELSE: Set ν( f ) =

{
νt−1( f ) ∪ {w0} if f = f t−1

νt−1( f ) otherwise

ν(w) =

{
f if w ∈ ν( f )
∅ otherwise

A = At−1 ∪ {(w0, f t−1)}, and STOP.

Table 5: Re-stabilization algorithm for many-to-one markets

The following example illustrates how the modified algorithm re-stabilizes the market,
but our result on counting steps fails.
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Example 3 Let (F, W, P) be a market where F = { f1, f2}, W = {w1, w2, w3, w4}, each firm has a
quota q fi = 2 for each i = 1, 2; and the preference profile is given by:

Pf1 : w1, w2, w3, w4

Pf2 : w3, w4, w1, w2

Pw1 = Pw2 : f2, f1

Pw3 = Pw4 : f1, f2

The stable matchings are

f1 f2

µF {w1, w2} {w3, w4}
µ1 {w2, w3} {w1, w4}
µW {w3, w4} {w1, w2}

Observe that all acceptable pairs are also stable. Now, we apply the algorithm to the reduced profile
PµF , and consider w0 = w2. Define f 0 = µF(w2) = f1, A0 = ∅, and

ν0 =

(
f1 f2 ∅

{w1} {w3, w4} {w2}

)
.

Now, we detail each stage of the algorithm:

Stage 1 As W1 = {w3, w4} and w3PµF
f1

w4, then w1 = w3, and f 1 = ν0(w3) = f2. Since w1 =

w3 ̸= w0 = w2, we have A1 = {(w3, f1)}, and

ν1 =

(
f1 f2 ∅

{w1, w3} {w4} {w2}

)
.

Stage 2 As W2 = {w1, w2} and w1PµF
f2

w2, then w2 = w1, and f 2 = ν1(w1) = f1. Since w2 =

w1 ̸= w0 = w2, we have A2 = {(w1, f2), (w3, f1)}, and

ν2 =

(
f1 f2 ∅

{w3} {w1, w4} {w2}

)
.

Stage 3 As W3 = {w4}, then w3 = w4, and f 3 = ν2(w4) = f2. Since w3 = w4 ̸= w0 = w2, we

have A3 = {(w4, f1), (w1, f2), (w3, f1)}, and

ν3 =

(
f1 f2 ∅

{w3, w4} {w1} {w2}

)
.

Stage 4 Lastly, as W4 = {w2}, then w4 = w2 = w0. Therefore, the algorithm stops, and the outputs

of the algorithm are A = {(w2, f2)(w4, f1), (w1, f2), (w3, f1)}, and ν =

(
f1 f2

{w3, w4} {w1, w2}

)
.

After four stages ν = µW . The unique sequence of cycles from µF to µW is
{

σ1, σ2} , where σ1 =

{(w3, f1), (w1, f2)} and σ2 = {(w4, f1), (w2, f2)}. Note that A(Pµ, w2)∩σ1 = {(w1, f2), (w3, f1)} =

σ1, and A(Pµ, w2) ∩ σ2 = {(w2, f2), (w4, f1)} = σ2 implying that |A(Pµ, w2)| = |σ1| + |σ2|.
Thus, |A(Pµ, w2)| > (|σ1| − 1) + |σ2|. ♢
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