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Abstract
Effective implementation, monitoring, and evaluation of targeted poverty reduction pro-
grams require accurate measurements of poverty levels and their changes over time. The
Multidimensional Poverty Index (MPI) offers a more comprehensive measure compared to
traditional income-based assessments. However, for many countries, MPI data are either
unavailable or limited to a few years due to the high cost of conducting relevant surveys.
This paper presents alternative methodologies to predict the Global MPI across different
countries and time periods using the World Bank’s World Development Indicators as pre-
dictor variables. Given that MPI construction involves proportions bounded within the unit
interval, we tailor statistical learning methods accordingly. In a high-dimensional context,
where the number of predictors exceeds the number of training observations, we evaluate
methodologies such as dimension reduction, regularized models, and ensemble learning.
We conduct cross-validation experiments to assess model performance, incorporating both
measured and non-measured countries in the testing dataset.

Keywords: MPI, Beta Regression, Statistical Learning, Data Imputation, Global Poverty
Assessment, High-Dimensionality.
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1. Introduction
The Sustainable Development Agenda for 2030 commits to “Ending Poverty in all its forms”.
Having comparable poverty measures is essential for monitoring the progress of such a goal.
This was the main motivation for the World Bank $1-a-day global poverty line (now adjusted
to $2.15-a-day).

However, ending poverty in all its forms entails the acknowledgment of the multidi-
mensional nature of poverty. In this context, the global Multidimensional Poverty Index
(MPI) has been launched and yearly published by the Oxford Poverty And Human Devel-
opment Initiative (OPHI) and the United Nations Development Program (UNPD) [1, 2].
This internationally comparable measure was created with the aim of complementing the
World Bank monetary approach and tracking changes worldwide in other fundamental human
development dimensions, such as health, education and minimum living standards.

The global MPI has been estimated in more than 100 countries of the developing world at
least once since 2000 based on nationally representative samples containing information on
each dimension. In spite of significant advances in socioeconomic data availability, poverty
data is still severely limited by frequency and coverage in comparison to other economic
phenomena, such as inflation or trade balance [3]. This is mainly because of the lack of public
resources, or even fragility, conflicts, and natural disasters, that characterize the developing
world. Even in countries with consistent and periodical multi-topic survey data collection, the
time-span between conducting the survey and publishing results can take more than a year. As
a consequence, poverty estimates, particularly the global MPI, can be lagged or discontinued
in time, thus becoming inaccurate as the current representation of poverty in a country.

This inherent problem in poverty measurement has motivated researchers to explore
alternative development indicators, such as the GDP, for estimating poverty [e.g. 4–8]. How-
ever, much of the research on poverty prediction using development indicators has remained
focused on monetary poverty measures, neglecting multidimensional poverty. Given that
MPI measures gain prominence in supplementing income-based measures within poverty
reduction strategies [1, 9], estimating a country’s global MPI for a specific time period
becomes meaningful for tracking progress toward poverty eradication. This information
can then inform policy decisions and prioritization efforts at the national level. In order to
extend the OPHI-UNPD estimates platform, we explore various methods for predicting global
multidimensional poverty using the World Bank’s World Development Indicators (WDI).

The present paper is encompassed in a growing literature that applies Machine Learning
(ML) methods for predicting aggregate socioeconomic indicators that require an intensive
data collection process (namely, poverty, unemployment, inflation, etc.). For instance, Felix
et al. [10] compare traditional linear models with eight different ML-based algorithms to pre-
dict the size of informal economies in 122 countries from 2004 to 2014. As a result, not only
ML models outperform the linear ones but also the determinants of the shadow economies
size found in the former were consistent with the traditional linear models. Chakraborty et al.
[11] integrate machine learning methods with traditional time series models to predict unem-
ployment rates in developed countries. In their study, they show that ML-based methods are
able to capture better linear and nonlinear tendencies present in data than traditional models.

In the work by Mahler et al. [6], various machine learning methods are tested for pre-
dicting global poverty rates for both the current and previous year using data from the World
Development Indicators (WDI), the World Economic Outlook, and Google Earth Engine. The
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authors go beyond directly predicting poverty rates; they also find that real GDP per capita is
an exceptionally strong predictor of changes in poverty, with no other variable demonstrating
comparable importance for predictive accuracy.

On the other hand, Alkire et al. [12] modeled the multidimensional poverty projections for
75 in order to evaluate which countries are on track to meet the goal of halving poverty inci-
dence in 2030 in which they assert that projections should consider the initial conditions and
recent trends of a country. In a rapidly changing world, recent trends can be severely affected
by shocks (e.g., COVID-19 pandemic or climate change). Hence, a framework for estimating
recent changes in multidimensional poverty can also be highly relevant for monitoring new
trends and adjusting mid-term poverty reduction goals.

Aligned with Mahler et al. [6] study, this paper aims to assess a diverse range of meth-
ods for predicting global multidimensional poverty within a high-dimensional context for a
bounded target variable.

Specifically, we compare machine learning approaches to identify the most effective
model for multidimensional poverty, with the dual objectives of i) imputing data across
countries and ii) estimating recent trends in poverty changes within individual countries.
Our modeling approach encompasses not only various machine learning techniques (such as
dimensionality reduction and tree-based models) but also considers the nature of the depen-
dent variable. We tailor predictive statistical learning models to a bounded target represented
by a rate or proportion (e.g., poverty rates), where assuming a beta distribution for the condi-
tional response is more appropriate. This is particularly important because models suited for
unbounded continuous response variables may yield implausible predictions, such as negative
poverty rates, in extreme cases.

To carry out this analysis, we use the World Development Indicators (WDI) database
from the World Bank, exploring different data dimensionalities obtained via web scraping.
Specifically, we examine the trade-off between maximizing the number of observations with
fewer predictor variables and incorporating additional predictor variables at the expense of
sample size for model training.

To the best of our knowledge, this is the first paper that examines machine learning meth-
ods for predicting global multidimensional poverty. The rest of the paper is structured as
follows. Section 2 outlines our methodology, focusing on the unique challenges arising from
the bounded nature of our target variables. We provide detailed descriptions of the statistical
learning models used for prediction, data exploration and analysis, as well as the experimen-
tal and validation strategies employed to assess the performance of various predictive models.
In Section 3, we present and analyze the results obtained from our experiments. Lastly, in
Section 4, we draw key conclusions based on our findings. Data and R codes necessary to run
experiments and reproduce the results presented in this paper are available at this repository.

2. Methods and Materials

2.1. The Target Variables and Modeling
Our main target response variable is the multidimensional poverty measure constructed using
the Alkire–Foster method [13], the so-called Adjusted Headcount Ratio (M0), also referred
in the literature as, the Multidimensional Poverty Index (MPI). We will treat both terms inter-
changeably in the text. This poverty measure consists of building a score of the weighted sum

3

https://github.com/agdaniela/GlobalMultidimensionalPovertyWDI


deprivations in d poverty indicators for each person. Under the Alkire-Foster framework, a
person is identified as poor if this score is greater or equal to a multidimensional poverty cut-
off k that censors the non-poor out from the analysis. Then, M0 is calculated as the average
of the censored score over the whole population. That can be written as the product of two
partial indices: H and A [14]. The first refers to the incidence of poverty (the proportion of
the population identified as poor in multidimensional terms). In contrast, the second repre-
sents the intensity of poverty (the average weighted deprivation suffered by the poor). Note
that A should be always greater or equal to k. In this way,

M0 = A×H, (1)

Predicting M0 identifies trends of multidimensional poverty. Furthermore, predicting H and
A can help to elucidate the nature of these trends. In other words, an increase in the MPI can
be attributed to either a rise in the proportion of the population experiencing poverty (H) or
an intensification of deprivations among the already poor (A).
We aim to predict a target variable (namely, M0, H or A), denoted as Y , for a country i at a
specific time ti using a set of p predictor variables X sourced from the World Development
Indicators (WDI). For this purpose, consider the regression model

Yiti |Xiti = g(Xiti) + εiti , (2)

where Yiti ∈ R is the response variable, XT
iti

= (X1,iti , X2,iti , . . . , Xp,iti) is a vector of
p predictor variables measured for the country i in the time period ti, g : Rp −→ R is an
unknown function and εiti is a zero-mean error term. As can be noted, the time period sub-
script, ti, depends on i, indicating that the period in which the response and predictor variables
are measured varies depending on the specific country i.
Although our target variables are real-valued, they are defined as proportions. In this vein,
analyzing the outcomes constrained to the interval (0, 1) and employing methods specifically
tailored to bounded data is recommended. Notably, a flexible approach that assumes a beta
distribution for the conditional response variable of the regression model (2) is considered.
The beta distribution captures a variety of response shapes through its parameters: mean (µ)
and precision (ϕ), as these are modeled as functions of the covariates X [15, 16].
Several prior studies employing machine learning (ML) for predicting socioeconomic vari-
ables expressed as proportions or rates have assumed a normal distribution of the response
variable [6, 10, 11]. For this reason, we compare the predictive performance of traditional ML
models that assume an unbounded continuous response with alternative models assuming a
beta distribution for Yiti |Xiti , a more suitable choice for bounded data.

2.2. Statistical Learning Methodologies
Various methodologies can address the challenges of high-dimensional data. We consider
three distinct ML approaches: supervised dimension reduction using Partial Least Squares
(PLS), regularization and variable selection models, and sequential ensemble learning
through Boosting algorithms.
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2.2.1. Supervised Dimension Reduction

Dimension reduction in regression consists of estimating a p×d orthogonal projection matrix
Ŵ of the p-dimensional predictors space with d ≪ p. Then, the projected predictor space,
ŴTX replaces the original design matrix of the model such that d is sufficiently smaller than
n. The most commonly used dimension reduction technique is Principal Component Analysis
(PCA), which, when applied to regression, is known as Principal Component Regres-
sion (PCR). However, PCA/PCR is unsupervised, as it does not use information from the
response variable during the reduction process. In contrast, supervised dimension reduction
methods—particularly Partial Least Squares (PLS)—have gained popularity because they
incorporate the response variable to inform the projection directions [17]. This approach sig-
nificantly improves predictive performance over unsupervised methods like PCA, especially
for income and poverty prediction [18, 19].

Although PLS regression (PLSR) is associated with a linear regression model between Y
and the predictor vector X (i.e. linearly specifying g(.) of (2)), some research has extended
PLS to cases where Y ∈ (0, 1) using beta regression and proposing alternative algorithms for
PLS estimation [20, 21]. Furthermore, Cook and Forzani [22] extended PLS to cases where
E(Y |X) is not necessarily a linear function of X. This approach employs a two-step algo-
rithm: first, a dimension reduction step that assumes that exist d linear combinations, ŴTX,
sufficient for capturing E(Y |X). Once the predictors are reduced, these linear combinations
can be used to predict Y with a general (potentially nonlinear) rule when d is sufficiently
small. Cook and Forzani [22] demonstrated that, under mild conditions, these linear combi-
nations correspond to the first d-PLS projections. In this way, we can employ beta regression
using the d linear combination ŴTX as predictor variables.

As we will see later, global MPI measures exhibit a noticeable heterogeneity pattern,
forming a bimodal distribution with two distinct clusters: one concentrated around very low
poverty levels and the other around medium to high poverty levels. Generally, observable pre-
dictor variables, such as development indicators and regional dummy variables, are related to
these clusters, so their inclusion in the regression model can help control for this heterogene-
ity. However, in some cases, additional latent, unobserved factors may contribute to group
heterogeneity that cannot be fully captured through the mean and precision of beta models
[23].

To account for both observed and unobserved sources of heterogeneity, a plausible
approach is model-based recursive partitioning [24], which builds on the Classification and
Regression Tree (CART) methodology. This technique recursively partitions the sample based
on selected partitioning variables to capture parameter differences that describe the response
distribution. Model-based recursive partitioning for beta regression is referred to as beta
regression trees by Grün et al. [23], where the detailed algorithm is provided.

In our analysis, we incorporate beta regression trees as a prediction rule within the
dimension reduction and regularized model frameworks. We use a dummy variable as the
partitioning variable, constructed around a cutoff that marks a potential distributional shift,
selected by visualization. Specifically, this cutoff is set at 0.2 for predicting M0 and H and at
0.5 for predicting A.

In summary, using PLS as dimension reduction we compare the following methods:

1. Linear-PLS: PLS using linear regresion (PLSR) of Yiti on WTXiti .
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2. Beta-PLS: a generalized linear PLSR model of Yiti on WTXiti using the beta
distribution family.

3. Beta-Tree-PLS: a generalized linear PLSR model of Yiti on WTXiti using the beta
distribution family with tree model (model-based recursive partitioning).

For linear PLS, we used the standard NIPALS algorithm, extending it to accommodate a
nonlinear mean function as suggested by Cook and Forzani [22], specifically for both beta
regression models in our study. Due to PLS predictive models’ flexibility in overcoming the
so-called curse of dimensionality, we initially fitted non-parametric regressions based on ker-
nels for g(.). However, this approach did not yield superior results compared to the three cited
models. Additionally, this predictive rule requires an optimal bandwidth choice, which incurs
a correspondingly higher computational cost. For these reasons, it was excluded as a compa-
rable methodological strategy in this paper. Nonetheless, in many cases, it could represent a
viable approach when d is sufficiently small.

The optimal number of dimensions, d, serves as the hyperparameter in our dimension
reduction methods and is selected via 5-fold cross-validation on the training sample.

2.2.2. Regularized models

An alternative approach to dimension reduction for high-dimensional data is regularized mod-
eling, also known as shrinkage or penalized methods for variable selection.1 This approach
relies on the assumption of model sparsity; that is, only a small subset of predictors play
an important role in the response or target variable. Under a parametric specification of
g(.), a penalty is applied to the parameters during estimation, shrinking the coefficients and
simultaneously performing model and variable selection to enhance prediction accuracy.

One of the most widely used regularized methods is the so-called Lasso estimator [25].
For a linear regression model g(X) = XTβ, the Lasso finds a solution for the constrained
least squares (LS) problem subject to ||β||1 =

∑p
j=1 |βj | ≤ t. The LS’s Lagrangian form

includes a penalization term λ||β||1 where the tuning parameter λ controls the strength of the
penalization. Using the ℓ1-norm, many coefficient estimates are exactly zero, which excludes
the corresponding predictors from the model. In consequence, Lasso is highly effective in
high-dimensional contexts where p >> n [26]. Alternatively, using the euclidean ℓ2-norm for
penalization, as in the Ridge regression method (which predates Lasso), shrinks coefficients
toward zero but does not perform variable selection. Nevertheless, in usual situations where
n > p, Ridge regression could outperform Lasso in predictive terms [25].

Despite its well-deserved popularity, the Lasso method has certain limitations, some of
which can be addressed through extensions. One notable limitation is that when p >> n,
Lasso tends to select at most n variables, limiting its effectiveness for variable selection
in high-dimensional settings. Another limitation, particularly relevant in this context, arises
when groups of predictor variables are highly correlated. In such cases, Lasso exhibits a ten-
dency to under-perform [26, 27]. Regarding WDI as predictor variables, there are groups
that measure similar aspects, leading to high pairwise correlations. For example, between
gross domestic product and national income variables, life expectancy and mortality rates,
or employment and labor market indicators. In these situations, Lasso typically selects

1In some cases, these approaches can be complementary, where dimension reduction is performed jointly with variable selection
via regularization, resulting in more interpretable coefficients for the directions of the reduction; see, for example, Duarte et al. [18].
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only one variable from each correlated group, without regard for which specific variable is
selected. To overcome this, [27] proposed a regularization method that combines the Ridge
and Lasso penalties in a convex combination, obtaining a variable selection method that
has the ability to reveal the grouping information doing grouped selection. This approach
is called Elastic Net, as well as Lasso or Ridge, is a LS problem but with the elastic net
penalty λ (α||β||1 + (1− α)||β||2). Considering the characteristics of our data, we adopt this
approach.

As we mentioned, traditional regularization methods, including Elastic Net, are built on
a linear regression framework. Since traditional Elastic Net predictions can fall outside the
interval (0, 1), they do not align with the bounded nature of our response variables, making
these out-of-bound predictions nonsensical in this context. Extensions of Elastic Net for Gen-
eralized Linear Models (GLMs) can be found in the literature, including applications to Cox
proportional hazards models [28, 29]. However, since the beta distribution does not strictly
meet GLM assumptions due to its more complex mean-variance relationship—where the vari-
ance depends on both the mean and a precision parameter—it cannot be directly incorporated
into these GLM extensions. To address this, we rely on the idea of a Flexible Elastic Net,
as introduced by Meinshausen [30] for Lasso, which combines the lasso estimator with the
OLS estimator on selected variables, demonstrating strong performance across various sce-
narios [31]. For our application, we adapt this approach by applying beta regression in place
of OLS on the active set identified through Elastic Net estimation. Rather than combining
Elastic Net and beta regression coefficients—due to differences in the link function for linear
predictions—we use the coefficients from the second-step beta regression directly for predic-
tions. Empirical research also supports this procedure, showing that predicting with selected
variables using a non-regularized model - typically OLS, but beta regression in our case - per-
forms well in out-of-sample prediction [e.g. 32]. Additionally, as in the dimension reduction
approach, we incorporate a beta regression tree model to capture potential nonlinearity and
account for heterogeneity in the predictor-response relationship.

Therefore, within the regularized models approach, we consider the following methods:

1. Elastic Net: a Elastic Net model assuming a gaussian model for linear g(.) .
2. Beta (elastic): Flexible Elastic Net for beta regression model, using active set

variables form a first-step Elastic Net estimation.
3. Beta-Tree (elastic): Flexible Elastic Net for beta regression tree model, using

active set variables form the Elastic Net.

In these cases, the penalization λ and α are the tuning parameters or hyperparameters of
these models, that are selected via 5-fold cross-validation on the training sample.

2.2.3. Ensemble learning and Boosting

Ensemble learning refers to a combination of a large number of M base models or weak
learners during the fitting process, denoted by E = {g1(.), . . . , gM (.)}, where each weak
learner gm(.) may utilize any modeling approach, ranging from linear models to decision
trees. Generally, the final prediction ĝ(X) at a new point X is determined by averaging the
predictions of all M base learners, 1

M

∑M
m=1 gm(X)), or by using a weighted combination,
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∑M
m=1 wm gm(X). This methodology is particularly effective for high-dimensional prob-

lems, as each weak learner relies on a relatively simple model (e.g., a linear regression with a
single predictor).

Ensemble methods are classified into three primary categories: Bagging, Stacking,
and Boosting. Each category encompasses a variety of algorithms, allowing for diverse
approaches to ensemble learning.

Bagging, which stands for Bootstrap Aggregating, is the simplest ensemble approach.
It consists of sampling M random subsets of the predictors space with replacement,
X(1), . . . ,X(M), and train the base models independently [33]. Since this method relies on
bootstrap samples, it often results in correlations among weak learners. A widely used bag-
ging technique is Random Forest [34], which mitigates this issue by randomly selecting a
subset of predictors at each split, thereby constructing an ensemble model composed of a for-
est of largely uncorrelated decision trees. This reduction in correlation among trees enhances
the stability and accuracy of predictions.

Stacking consists of training a set of different independent machine learning algorithms
and combining the predictions [35]. Hence, Staking is based on learning how to weight the
different models’ predictions. Note that the weak learners in this case are more sophisticated.
For instance, combining a PLSR, an Elastic Net and a Random Forest in the same model
would be possible. Sometimes the stacking models are called meta-models, where the base
models are referred to as level-0 models and their ensemble is known as level-1 models [36],
where the latter can be of any predictive rule. Commonly, boosting-based models are used to
combined the level-0 models [37]. This ensemble approach gives the possibility to combine
highly different modeling approaches that capture different patterns in data.

Boosting is a powerful ensemble approach that builds the ensemble model sequentially
rather than independently as in Bagging or Stacking [38]. In each iteration, m, a base learner
gm is fitted based on the errors of the previous weak learners g1, . . . , gm−1. The algorithm
identifies the best subset of covariates to improve its prediction, which subsequently enhances
the overall model’s prediction. Therefore, boosting-based models naturally carry out variable
selection and improve predictive accuracy by giving higher weights to those observations
with prediction mistakes of the earlier m− 1 weak learners. However, this approach presents
a trade-off, as it can be sensitive to noise in data, increasing the risk of over-fitting, and the
learning process can be slower than other ensemble methods.

There are different approaches to Boosting. The two most well-known are AdaBoost [39]
and Gradient Boosting [40]. A variant of the latter, XGBoost [41], has recently emerged
as a leading algorithm in the field of applied machine learning, achieving notable success
by winning multiple Kaggle competitions [42]. XGBoost is a tree-based ensemble model
that improves gradient boosting by including a penalization term, a maximum tree depth, a
learning rate, and a subsampling to prevent the model from overfitting during the learning
process.

While no single ensemble method strictly outperforms others across all tasks and data
types, we focus on boosting-based models in this paper, given their proven high perfor-
mance in applied machine learning contexts [43]. Specifically, we employ XGBoost due to
its strong methodological advantages, including the efficiency in handling large datasets and
the reduced need for feature engineering.
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However, in the context of predicting poverty indices, XGBoost and other ensemble
methods may produce out-of-bound predictions—a challenge when working with bounded
response variables. To address this issue and provide a meaningful comparison with XGBoost,
we apply a gradient boosting-based beta regression model. Mayr et al. [44] adapted boost-
ing algorithms for classical beta regression, enabling beta models to be used effectively in
high-dimensional settings.

Based on these considerations, we employ the following two methodologies within the
boosting framework:

1. XGBoost: a tree-based gradient boosting model.
2. BetaBoost: an additive model with gradient boosting using the beta distribution family.

The main hyperparameter of boosting models is the learning rate η and the number of
boosting iterations [45]. Additionally, there is a set of hyperparameters associated with deci-
sion tree models, including aspects like maximum depth, minimum child weight, and the
number of leaves. As with other approaches, we determine these parameters through 5-
fold cross-validation, aiming to minimize the mean squared error (MSE) within the training
datasets.

2.3. Data
2.3.1. The global Multidimensional Poverty Index

Briefly, the global MPI is a measure of acute poverty in the developing world that accounts
for deprivations in three key dimensions of human development: health, education and basic
living standards. These deprivations are represented by ten indicators, each one is identi-
cal, or related, to a specific item of the Sustainable Development Goals (SDGs). The formal
structure of the global MPI corresponds to equation (1) with a poverty cut-off of k = 33%,
which means that a person is multidimensionally poor if she is deprived in one out the three
dimensions.

The global MPI is published every year by the Oxford Poverty and Human Development
Initiative [46] for more than 100 developing countries. Our data takes the 106 countries and
the years for which we have a global MPI measure (a period from 2000 to 2021). Its calcula-
tion relies on two main multi-topic household surveys: the Demographic and Health Survey
(DHS) and the Multiple Indicators Cluster Survey (MICS). For some countries, national
household surveys with similar content and questionnaires are standardized and used.

In spite of the great increase in data availability and quality, the frequency of multi-topic
surveys for collecting data on poverty remains limited [3]. For this reason, the global MPI data
has a remarkable feature: there is no country with a global MPI measure for each year in our
time period (2000-2021). For most countries, we have two global MPI measures, at most 4
observations in some countries and between 5 and 8 in a few cases. Figure 1a (top-left panel)
depicts the annual distribution of surveys, revealing a rise in multidimensional surveys during
the mid-2000s, 2010s, and before the COVID-19 pandemic. The top-right panel of Figure 1
presents the distribution of countries by the number of survey rounds conducted. Notably, a
majority of countries have undergone between 2 and 4 survey rounds, with a limited number
exceeding this range across the entire study period (2000-2021). However, a significant geo-
graphic skew is evident in survey distribution. Sub-Saharan African countries contributed the
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most surveys to the global MPI calculation (105 of 249), followed by Latin America & the
Caribbean (54), Europe & Central Asia (30), East Asia & the Pacific (28), South Asia (19),
and the Middle East & North Africa (13).

(a) Number of surveys by year (b) Number of surveys by World Region

(c) Poverty distribution by World Regions (d) Distribution of Multidimensional Poverty

Fig. 1: Multidimensional poverty: surveys frequencies and data analysis

Figure 1c shows the distribution of the global MPI by region, which further highlights
the geographic disparities in multidimensional poverty. Sub-Saharan Africa and South Asia
exhibit significantly higher levels of poverty on average, and also greater dispersion compared
to other regions. While East Asia & the Pacific show some distinct patterns, the remaining
regions (Latin America & the Caribbean with some exceptions) have lower and less dispersed
poverty levels. These geographical disparities underscore the importance of including world
regions as a key control variable in our prediction model, as discussed in Pasha [47]. Last
but not least, 1d illustrates the kernel density distribution of the global MPI, showing a clear
bimodality, with peaks near 0 and 0.3.

Given the world region disparities and the bimodal empirical distribution of the MPI,
we postulate that more flexible methods such as the tree-based boosting models described in
Section 2.2 will produce more accurate predictions. Furthermore, since many observations
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are close to the lower boundary, beta regression models will yield meaningful predictions in
these cases, avoiding negative poverty rate estimates.

2.3.2. Web scraping and World Development Indicators (WDI)

The predictor variables in this study come from the World Development Indicators database,
which provides a comprehensive collection of 1485 national-level estimates across various
topics including education, health, demographics, and other socioeconomic indicators, which
is open-source and frequently updated. The construction of the predictors’ dataset implements
web scrapping as a technique that allows us to extract the data and information from the
World Bank website. Then, each WDI is extracted matching the countries and years for which
the global MPI is provided. However, the resulting dataset contains several missing values
(denoted as ”Not Available” or NA), particularly for developing countries. To address this
issue and facilitate the data cleaning, we employ a multi-step process that results in 25 distinct
datasets. Firstly, we begin with the complete dataset encompassing all available countries and
years. Subsequently, we build another dataset removing countries with only one observation
(one survey round), resulting in a dataset of 249 observations from 106 countries and 110
WDI. This filtering step ensures that each country has multiple target variable measures,
allowing for a more robust evaluation of different methods.

To further explore the impact of missing data in our database, we proceed by iteratively
removing countries with increasing proportions of NAs. For example, in the next dataset,
we have an overall of 218 observations from 75 countries and 167 WDI. This process aims
to evaluate the performance of the selected statistical methods in section 2.2 under a high-
dimensionality scenario, characterized by a limited number of observations relative to the
number of predictor variables, i.e., n ≪ p. Table A1 in Appendix 1 describes the iterative
process of removing countries with greater proportions of NAs in the WDI predictors2.

Finally, in this highly unbalanced panel data, in order to account for systematic changes
that occur across all countries over time, we model the temporal effects as a linear increasing
trend in terms of the observed year to the minimum year observation in the dataset.

2.4. Experiments and Validation Metrics
In order to evaluate the alternative methods for MPI prediction, we select three different
datasets: 1, 2 and 13 from Table A1. This selection allows to have three scenarios for assessing
predictive performance. Within the first one, we train models with n ≫ p; in the second one,
n ≈ p in the training dataset; and the last one has n ≪ p. This approach allows us to assess
the precision of our models’ predictions when transitioning to a high-dimensional context.
We measure the predictive performance in the following ways:

• Experiment 1: For each dataset, we randomly divided the data into two subsets: 20% for
testing and 80% for training and validation. The training and validation set are used to
estimate the models and predict Y for the observations in the test dataset. This experiment
is performed 50 times, measuring the prediction error using the Mean Square Error (MSE)
in each repetition, and then analyzing the distribution of these errors. Specifically, for a

2This process can be examined in detail in https://github.com/agdaniela/GlobalMultidimensionalPovertyWDI
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given predictive rule j, we compute

MSE
(k)
j =

1

ntest

ntest∑
i=1

(Y
(k)
i − Ŷ

(k)
i,j )2, k = 1, . . . , 50,

where Y k
i is the actual value of the target variable for the i-th observation in the testing

sample of size ntest, and Ŷ
(k)
i,j is the corresponding predicted value using the j-th methodol-

ogy. To compare predictive performance we can analyze the distribution of MSEk
j as well

as its average and dispersion over the 50 replications.
• Experiment 2: Given the considerable heterogeneity among countries in terms of socioe-

conomic development and multidimensional poverty, it is crucial that predictions are as
accurate as possible across the entire spectrum of low, medium, and high poverty levels. To
evaluate prediction accuracy across the full range of MPI values, we analyze the empirical
distributions of the predicted responses Ŷ and the observed values Y for each dataset. We
conduct a 10-fold cross-validation experiment, where we obtain Ŷij for each j-th method-
ology and all i = 1, . . . , n. Specifically, the data is partitioned into ten disjoint subsets; in
each fold, one subset serves as the test set, while the remaining subsets are used to train
the models and to predict the MPI values for the test set. We then compare the empiri-
cal distributions of the actual Y and the predicted Ŷ . First, we estimate and compare the
empirical probability density functions of Y and Ŷ , denoted by f̂Y (y) and f̂Ŷ (y), respec-
tively, using Kernel smoothing for density estimation. Second, we compute the Hellinger
distance h [48] to quantify the similarity between the two density functions. For densities
fY (y) and fŶ (y), the Hellinger distance is given by

h(fY , fŶ ) =
1√
2

√(∫ (√
fY (y)−

√
fŶ (y)

)2

dy

)
.

h is bounded to 0 and
√
2
2 , where the closer to zero, the more similarity between fY and

fŶ . The advantage of the Hellinger distance is its meaningful interpretation concerning
probability distributions, making it particularly useful for non-Gaussian observations, as in
our study [49].

• Experiment 3: For the selected countries, we predict MPI values for years with unavail-
able data to evaluate the behavior of the predicted series. Our methods estimate MPI across
the entire period, enabling us to assess the plausibility of the results and evaluate preci-
sion through bootstrap prediction intervals. We focus on Senegal, Bangladesh, and Bolivia,
which have varying amounts of MPI data over the period—specifically 6, 4, and 2 years
of MPI measurements, respectively. To train the models, we use all observed MPI values
from all countries and years, including those from the country of interest, and predict MPI
for years without direct measurements by leveraging the country’s WDI data available.
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3. Results

3.1. Prediction for randomly selected countries and years
Table 1 presents the average MSE and the corresponding standard deviations from the 50
repetitions of experiment 1. The lowest predictive errors for each case are highlighted in
boldface. Additionally, the corresponding box-plots are provided in the Appendix B.

For dataset 1, we have more observations than predictor variables to train the models. In
this case, for the global MPI, M0, the best predictive performance is achieved using gradi-
ent boosting with beta regression (Betaboost). However, XGboost as well as Elastic
Net also show comparable average errors and dispersion. In fact, Elastic Net has the
lowest error for the Intensity of multidimensional poverty, A. Regarding the Incidence of
poverty, H (the proportion of poor people), the beta regression model again proves to be
superior, particularly Beta-Tree-PLS and Betaboost, although the latter shows lower
dispersion.

In the matter of dataset 2, we have a number of observations in the training dataset
ntrain = 218 × 0.8 ≈ 175. Considering the 167 WDI, the 6 dummy variables for regions
and the time effect, we have a total of p = 174 covariates. Therefore, the models are trained
using approximately the same number of observations as predictor variables. For M0 pre-
diction task, Elastic Net, XGBoost and Betaboost yield the lowest average MSE.
For A, Beta-Tree (elastic) has the best performance. For H , Betaboost and
Beta-Tree (elastic) yield the lowest average MSE albeit the former is more precise.

Finally, for dataset 13 where ntrain ≪ p, Betaboost once more achieves the best
M0 prediction. In fact, compared to the other datasets, these results show that including
large information through more predictor variables enhances the prediction compared to
the information provided by a bigger number of observed units (countries and years) in
the training sample However, this pattern does not occur for all methodologies, as can be
seen for Beta-Tree (elastic), Elastic Net or Beta-Tree-PLS. Furthermore,
when considering A’s prediction, the best results are given by Elastic Net, with com-
parable results from XGBoost and Beta-Tree (elastic) models. Last but not least,
Betaboost yields the best performance for H .

The box-plots of the MSE presented in Appendix B further support the description
of these results, in which is possible to confirm that for M0, the most precise methods
are Betaboost, XGBoost, and Elastic Net. For H , the Beta Tree (elastic)
yields the best prediction results for datasets 1 and 2, but not for dataset 3, where Elastic
Net shows the best performance. For the A index, Elastic Net performs well across all
datasets, but in dataset 2, Beta-Tree (elastic) outperforms it.

As hypothesized in Section 2.3.1, our results indicate that for the M0 and H measures,
which tend to be close to zero, beta distribution-based models significantly outperform mod-
els assuming continuous real-valued distributions. In contrast, for the A measure, commonly
used methods like Elastic Net and XGBoost achieve better results since A is less likely
to be close to any boundary. These findings underscore the importance of considering the
bounded nature of our target variables when estimating multidimensional poverty predictive
models.Broadly speaking, tree-based models also yield better results as suggested above, with
some exceptions where Elastic Net has the lower average MSE.
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Target Variable Method Dataset 1 Dataset 2 Dataset 13
M0 Linear-PLS 0.0059 (0.0039) 0.0202 (0.0232) 0.0161 (0.0169)

Beta-PLS 0.0125 (0.0076) 0.0065 (0.0038) 0.035 (0.024)
Beta-Tree-PLS 0.0106 (0.0084) 0.0059 (0.0066) 0.0072 (0.0076)
Elastic Net 0.0035 (0.001) 0.0028 (6e-04) 0.0015 (6e-04)
Beta (elastic) 0.0125 (0.0409) 0.0041 (0.0016) 0.0211 (0.0258)
Beta-Tree (elastic) 0.0096 (0.0324) 0.0033 (0.0014) 0.0264 (0.0302)
XGBoost 0.0036 (0.001) 0.0028 (8e-04) 0.0031 (0.0021)
Betaboost 0.0034 (0.0013) 0.0029 (0.001) 0.0025 (0.0014)

A Linear-PLS 0.0031 (0.0015) 0.0062 (0.0118) 0.004 (0.0071)
Beta-PLS 0.0058 (0.0022) 0.0049 (0.0032) 0.0061 (0.0035)
Beta-Tree-PLS 0.0052 (0.0022) 0.0023 (0.002) 0.0019 (8e-04)
Elastic Net 0.0026 (0.0011) 0.0019 (6e-04) 0.0018 (0.0057)
Beta (elastic) 0.0069 (0.0022) 0.0023 (7e-04) 0.0034 (0.0073)
Beta-Tree (elastic) 0.0062 (0.0021) 0.0015 (4e-04) 0.0029 (0.0053)
XGBoost 0.0031 (0.001) 0.0021 (7e-04) 0.0013 (6e-04)
Betaboost 0.0057 (0.0017) 0.0035 (0.0015) 0.009 (0.0074)

H Linear-PLS 0.0432 (0.0572) 0.0728 (0.1188) 0.1319 (0.411)
Beta-PLS 0.0135 (0.0068) 0.0146 (0.0072) 0.0775 (0.0353)
Beta-Tree-PLS 0.0074 (0.0048) 0.014 (0.0088) 0.0316 (0.0308)
Elastic Net 0.0101 (0.0039) 0.0077 (0.0018) 0.0035 (0.0013)
Beta (elastic) 0.0186 (0.0454) 0.0075 (0.002) 0.0371 (0.042)
Beta Tree (elastic) 0.0104 (0.0319) 0.0062 (0.0021) 0.0469 (0.0543)
XGBoost 0.0081 (0.0018) 0.008 (0.0026) 0.007 (0.0033)
Betaboost 0.0075 (0.0015) 0.0062 (0.0018) 0.0051 (0.0024)

Table 1: Average Prediction Errors (MSE) from 50 repetitions experiment. Standard errors
of MSE in parenthesis

3.2. Distribution of predicted and actual MPI
In the second performance evaluation, we compared the probability distributions of the pre-
dicted MPI target variables (M0, H , and A) from a 10-fold cross-validation experiment with
the actual values in the testing samples. We also explore the possibility of estimating M0 from
Ĥ and Â, following equation (1).

A preliminary graphical examination of the empirical densities of the ground truth and the
predicted values revealed that models assuming continuity were less accurate in predicting
values close to the lower bound.

In Figure 2, we compare smoothed empirical density probability functions using dimen-
sion reduction and the three proposed predictive rules: linear regression (Linear-PLS),
beta regression (Beta-PLS), and beta tree-based regression (Beta-Tree-PLS). The solid
red line corresponds to the observed poverty rates. Figures 2a and 2b display the adjusted
headcount ratios predicting directly (M0), or indirectly via Ĥ × Â, respectively. From the
visualization, it is clear that beta regressions outperform linear predictors. The empirical den-
sities of M0 and M̂0 are very close under beta models, whereas the linear regression predicted
values diverge from the true MPI, especially in the more concentrated intervals; that is, for
small MPI values (near zero) and in the middle mode (near 0.3). For the highest MPI values,
the densities show that the linear predictor underestimates the true level of poverty, concen-
trating around the middle mode. Comparing Beta-PLS with Beta-Tree, we observe that
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the empirical density of the Beta-Tree predictions aligns more closely with the density
of the true M0, again supporting our hypothesis that tree-based models fit better than linear
models. However, the Beta-PLS performs better when the MPI is estimated via H ×A.

(a) M0 (b) H ×A

(c) H (d) A

Fig. 2: Kernel Distributions for Actual and Predicted Multidimensional Poverty Rates using
Dimension Reduction.

In Figures 2c and 2d empirical densities of H and A are plotted alongside the corre-
sponding predictions. For H , the predicted and observed densities are similar, particularly for
the regression models based on the beta distribution. However, for A more divergences are
observed. In this case, Beta-Tree-PLS exhibits more pronounced peaks and valleys in the
distribution, while Beta-PLS tends to concentrate the distribution in the middle values of
A where, indeed, a valley is revealed from observed values of A. This poorer performance
in predicting A can be attributed to the fact that its values have a lower bound at the cut-off
k = 0.3, unlike H and M0 which are lower bounded at zero.

The plots in Figure 3 show the empirical densities for predictions using regression models
with elastic net regularization. These plots demonstrate a better performance compared to the
PLS-based predictions. The linear specification (elastic-net) offers reasonably accurate
predictions of MPI. However, similar to the linear PLS model, the prediction densities for low
and mid-range MPI values deviate significantly from the true MPI. Notably, using beta models
leads to substantial improvements. Both Beta elastic and Beta-tree (elastic)
produce empirical distributions of MPI predictions that closely match the actual values of
M0 and H × A. Greater divergences are observed in A predictions, with Beta-tree
(elastic) exhibiting a more erratic pattern.
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(a) M0 (b) H ×A

(c) H (d) A

Fig. 3: Kernel Distributions for Actual and Predicted Multidimensional Poverty Rates using
Regularization for Variable Selection.

On the other hand, empirical densities from boosting models are shown in Figure 4. It is
noticeable that Betaboost fits the true values of M0 and A measures quite well, although
XGBoost have comparable results. Again, the beta regression model fits poorly the true A
values and, consequently, H × A. In the same line as experiment 1 results, the tree-based
boosting models yield better results.

It is possible to compare all methods across all target variables by observing Table 2,
which displays the MSE and the Hellinger distance (h) for the 10-fold experiment in each
of the selected datasets and the three poverty measures (M0, H and A). Once more, the best
results are highlighted in boldface.

Results related to MSE are consistent with the findings from the first experiment, indicat-
ing that beta regression models generally provide better predictions when the target variables
are near their bounds, albeit with some exceptions. When evaluating performance using the
Hellinger distance, which considers the overall distribution and, in particular, the tails where
the target variables are bounded, we find that the predicted probability distribution of the
beta regression models aligns more closely with the empirical distribution of M0 and H . Fur-
thermore, we find that every model under-perfoms for the variable A compared to the other
two poverty measures. Finally, although it does not yield the best results in a few cases, on
average, Betaboost model fits best M0 and H .
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(a) M0 (b) H ×A

(c) H (d) A

Fig. 4: Kernel Distributions for Actual and Predicted Multidimensional Poverty Rates using
Boosting for Model and Variable Selection.

3.3. Evolution of MPI for selected countries with predicted values
We have previously emphasized that, despite the increasing number of multi-topic surveys,
available data for multidimensional poverty measurement remains scarce. As shown in Figure
1b, most countries have conducted fewer than four surveys over a twenty-year period.

For this reason, we predict the series of certain countries to account for the models’ preci-
sion. As we mentioned, we selected three countries from different regions with middle to high
levels of poverty and each one differs in the number of MPI measures in the training sample.
The countries chosen are: Bangladesh, Bolivia and Senegal. Given that dimension reduction
methods have shown to be less accurate, despite particular cases, we have limited our analysis
to a few models that presented better performance. Accordingly, we show results for dataset
1 and the M0 measure, given that in the previous experiment, all the models yielded poorer
predictions for A. The rest of the results for all measures and data sets can be found in the
cited repository3.

Figures 5 to 8 showcase the out-of-sample bootstrap predictions of Beta-Tree,
Elastic Net, XGBoost and Betaboost, respectively, with a number of B repetitions.
The black-solid line refers to the average predicted value, while the blue-dotted lines are the
5% and 95% quantiles denoting the prediction interval over all the bootstrap repetitions. As
it is possible to observe, we include the true multidimensional poverty measure marked with
a cross.

3It is worth mentioning that this code is designed to be flexible, allowing for out-of-sample predictions in any developing country,
not just Bangladesh, Bolivia, and Senegal.
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Target Variable Method Dataset 1 Dataset 2 Dataset 13

MSE h MSE h MSE h
MPI Linear-PLS 0.0052 0.1079 0.0118 0.2226 0.0156 0.3614

Beta-PLS 0.0130 0.2525 0.0068 0.2274 0.0251 1.5913
Beta-Tree-PLS 0.0102 0.1613 0.0069 0.1515 0.0053 0.5066
Elastic Net 0.0039 0.1523 0.0028 0.1116 0.0015 0.1329
Beta (elastic) 0.0037 0.1098 0.0042 0.1346 0.0290 0.3844
Beta-Tree (elastic) 0.0031 0.1496 0.0039 0.1373 0.0330 0.4539
XGBoost 0.0032 0.1299 0.0029 0.1500 0.0024 0.1741
Betaboost 0.0036 0.1076 0.0032 0.1042 0.0021 0.0939

A Linear-PLS 0.0026 0.1911 0.0040 0.3927 0.0045 0.3984
Beta-PLS 0.0045 0.3055 0.0043 0.3607 0.0109 1.6528
Beta-Tree-PLS 0.0044 0.2932 0.0019 0.3274 0.0020 0.5867
Elastic Net 0.0026 0.2734 0.0020 0.2909 0.0051 0.1121
Beta (elastic) 0.0058 0.2956 0.0024 0.1916 0.0081 0.2414
Beta-Tree (elastic) 0.0050 0.2377 0.0015 0.2991 0.0050 0.2173
XGBoost 0.0034 0.2954 0.0019 0.2970 0.0012 0.2347
Betaboost 0.0049 0.3130 0.0034 0.2456 0.0077 0.3302

H Linear-PLS 0.0162 0.1345 0.0380 0.1917 0.0455 0.4261
Beta-PLS 0.0171 0.1072 0.0144 0.0961 0.0655 1.0396
Beta-Tree-PLS 0.0141 0.0787 0.0115 0.1035 0.0186 0.3456
Elastic Net 0.0099 0.1579 0.0078 0.1253 0.0034 0.0876
Beta (elastic) 0.0066 0.1179 0.0081 0.0639 0.0167 0.1156
Beta-Tree (elastic) 0.0048 0.0912 0.0058 0.0571 0.0185 0.0902
XGBoost 0.0083 0.1036 0.0069 0.0793 0.0055 0.12
Betaboost 0.0079 0.1019 0.0062 0.0519 0.006 0.0601

Table 2: Errors from 10-Fold experiment for Multidimensional Poverty Indicators

Fig. 5: MPI Series imputation using out-of-sample predictions with Elastic Net
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Fig. 6: MPI Series completation using out-of-sample predictions with Beta-Tree
(elastic)

Fig. 7: MPI Series imputation using out-of-sample predictions with XGBoost

First of all, the average predictions in general terms are relatively close to the ground
truth. We can order the methods on how well the average response predicts the true values
as follows: XGBoost, Betaboost, Beta-Tree and Elastic Net. This supports our
hypothesis and results of previous experiments that flexible models such as tree-based will fit
data better than other parametric approaches.
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Fig. 8: MPI series imputation using out-of-sample predictions with Betaboost

Secondly, while penalized models (Elastic Net and Beta-Tree) effectively cap-
ture the overall decreasing trend in multidimensional poverty, they struggle to account for
short-term fluctuations. As shown in Figures 5 and 6, these models consistently underesti-
mated the significant rise in poverty levels in Senegal around 2010, whereas ensemble models
were able to accurately capture this shift. Although penalized models provide narrower pre-
diction intervals, indicating greater confidence in their estimates, this narrowness may obscure
underlying uncertainty, especially during periods of rapid change.

On the other hand, XGBoost and Betaboost reveal interesting patterns in the behav-
ior of multidimensional poverty levels in the other two countries, Bolivia and Bangladesh.
In Bolivia, the models suggest a sudden increase in poverty prior to the structural changes
of 2006, which was followed by a sharp decline, halving poverty levels in the subsequent
years. Similar findings were reported by Villarroel and Hernani-Limarino [50]. Bangladesh
also experienced significant reductions in multidimensional poverty between 2001 and 2021.
According to the ensemble model predictions, this progress became particularly evident dur-
ing the 2010s [51]. The observed increase in multidimensional poverty in Senegal around
2010 may reflect the lingering effects of the 2008 food crisis [52].

Finally, we highlight the importance of using beta regression in modeling. It is worth
noting that beta regression models remain in the boundaries of the (0, 1) interval, meanwhile
other models that assume continuity predict negative poverty levels when the ground truth is
close to zero. This is more evident in the predictions of Bolivia with Elastic Net where
we observe a great proportion of negative predicted values. This phenomenon also happens
with XGBoost but to a lower extent. Again, these findings support our modeling approach
considering the bounded nature of the target variable.
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4. Conclusions
This paper addresses the challenge of data scarcity in global multidimensional poverty
measurement by applying advanced statistical and machine learning methodologies to open-
source data, such as the WID, contributing to progress on various Sustainable Development
Goals.

We explore several statistical learning approaches suited to high-dimensional con-
texts, comparing methodological strategies within several frameworks: supervised dimension
reduction, regularization, and ensemble models. Given the bounded nature of our response
variables, we also propose possible extensions to improve model accuracy. Our findings
indicate that tree-based boosting models outperform dimension reduction and shrinkage
methods, showing enhanced flexibility for predicting short-term poverty shocks—such as
those observed in Bolivia and Senegal in 2005 and 2010, respectively. These models also
effectively detect structural shifts in poverty trends, as evidenced by changing patterns in
Bangladesh around 2010.

One limitation of our approach is that none of the models perform well in predicting
poverty intensity. Consequently, when analyzing predicted multidimensional poverty values,
it remains unclear whether reductions in poverty are driven by a decrease in the number of
poor individuals (H) or by improvements in the well-being of the poor (A).

Lastly, in contrast to previous research, our results demonstrate that adapting machine
learning methods to account for the bounded nature of poverty rates can significantly enhance
prediction accuracy. Given that many variables in quantitative social science—particularly in
fields like economics, sociology, public health, and political science—are defined as rates or
proportions, we hope these findings encourage broader application of this approach across
diverse domains.
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[42] Bentéjac, C., Csórgő, A., Martı́nez-Muñoz, G.: A comparative analysis of gradient
boosting algorithms. Artificial Intelligence Review 54, 1937–1967 (2021) https://doi.

24

https://doi.org/10.18637/jss.v106.i01
https://doi.org/10.18637/jss.v106.i01
https://doi.org/10.1016/j.csda.2006.12.019
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1007/978-1-4419-9326-7_1
https://doi.org/10.1007/BF00116037
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5


org/10.1007/s10462-020-09896-5

[43] Mienye, I.D., Sun, Y.: A survey of ensemble learning: Concepts, algorithms, applica-
tions, and prospects. IEEE Transactions on Cybernetics 53(10), 6355–6375 (2023)

[44] Mayr, A., Weinhold, L., Hofner, B., Titze, S., Gefeller, O., Schmid, M.: The betaboost
package—a software tool for modelling bounded outcome variables in potentially high-
dimensional epidemiological data. International Journal of Epidemiology 47(5), 1383–
1388 (2018) https://doi.org/10.1093/ije/dyy093

[45] Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals
of Statistics, 1189–1232 (2001)

[46] OPHI: All Published Global Multidimensional Poverty Index (MPI), Results 2010-
2022. Database, Oxford Poverty and Human Development Iniatiative, Univerity of
Oxford (2022)

[47] Pasha, A.: Regional perspectives on the multidimensional poverty index. World Devel-
opment 94, 268–285 (2017) https://doi.org/10.1016/j.worlddev.2017.01.013

[48] Csiszár, I., Shields, P.C., et al.: Information theory and statistics: A tutorial. Foundations
and Trends® in Communications and Information Theory 1(4), 417–528 (2004)

[49] Zheng, Y., Yang, F., Duan, J., Kurths, J.: Quantifying model uncertainty for the observed
non-gaussian data by the hellinger distance. Communications in Nonlinear Science and
Numerical Simulation 96, 105720 (2021) https://doi.org/10.1016/j.cnsns.2021.105720

[50] Villarroel, P., Hernani-Limarino, W.L.: La evolución de la pobreza en bolivia: un
enfoque multidimensional. Revista Latinoamericana de Desarrollo Económico 20, 7–74
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Appendix A Possible datasets from World Bank web
scrapping

Data sets Number of countries Observations Number of WDI/predictors
1 106 249 110
2 75 218 167
3 63 165 226
4 58 155 258
5 53 142 336
6 48 130 345
7 46 125 351
8 43 118 360
9 39 108 425
10 38 106 445
11 36 102 465
12 33 95 474
13 33 94 477
14 27 75 526
15 26 73 579
16 26 72 581
17 26 71 582
18 18 54 607
19 16 50 610
20 16 49 612
21 14 44 618
22 13 40 635
23 12 36 644
24 11 33 651
25 11 32 652
26 7 17 751
27 4 8 858
28 1 2 1112
29 0 0 1478

Table A1: Alternative Data sets to predict MPI using World Bank indicators
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Appendix B Distribution of Prediction Errors from
Experiment 1

(a) M0 (b) H

(c) A

Fig. B1: Prediction Errors Distribution (MSE) for dataset 1 from 50 repetitions
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(a) M0 (b) H

(c) A

Fig. B2: Prediction Errors Distribution (MSE) for dataset 2 from 50 repetitions

(a) M0 (b) H

(c) A

Fig. B3: Prediction Errors Distribution (MSE) for dataset 13 from 50 repetitions
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