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Abstract

We consider voting rules in settings where voters’ identities are difficult to verify.

Voters can manipulate the process by casting multiple votes under different identities

or abstaining from voting. Immunities to such manipulations are called false-name-

proofness and participation, respectively. For the universal domain of (strict) prefer-

ences, these properties together imply anonymity and are incompatible with neutrality.

For the domain of preferences defined over all subsets of a given set of objects, both of

these properties cannot be met by onto and object neutral rules that also satisfy the tops-

only criterion. However, when preferences over subsets of objects are restricted to be

separable, all these properties can be satisfied. Furthermore, the domain of separable

preferences is maximal for these properties.
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1 Introduction

Societies make decisions by means of voting rules, mapping profiles of voters’ preferences

into social alternatives. In highly anonymous settings, such as the Internet, there are var-

ious ways a voter can manipulate the voting mechanism. When participants’ identities

cannot be easily verified, or when the number of participants is unpredictable, oppor-

tunities for manipulation arise. One such manipulation involves a voter using multiple

identities to cast several votes. We say that a rule immune to voters casting duplicate

votes is “false-name-proof”. More generally, a voting rule is “strongly false-name-proof”

if it prevents voters from submitting multiple (and possibly different) votes.1 A voter can

also benefit by abstaining from voting, leading to what is known in the literature as the

no-show paradox (Fishburn and Brams, 1983; Moulin, 1988b). We say that a rule that does

not allow such behavior satisfies “participation”. Since defining these properties requires

a changing active set of voters, we consider societies with a variable set of voters.

We are interested in studying voting rules that satisfy false-name-proofness and partic-

ipation in two different social choice problems. In the first, social alternatives do not have

any specific structure. In the second, social alternatives consist of subsets from a given set

of objects (candidates, binary issues, or alike).

When social alternatives are unstructured and all preferences over those alternatives

are admissible, i.e., when we consider the universal domain of preferences, results on

voting rules satisfying some form of false-name-proofness are rather negative. Bu (2013)

shows that strong false-name-proofness implies both “strategy-proofness” (no voter ever

gains by untruthful voting) and “anonymity” (changing voters’ identities does not affect

the choice made by the rule). As it is well-known from Gibbard (1973) and Satterthwaite

(1975) celebrated result, there are no non-constant strategy-proof and anonymous rules

defined in the universal domain. Therefore, no non-constant strongly false-name-proof

rule defined in the universal domain exists either. Nevertheless, the weakening of this

requirement may allow for some possibility results.2

Our first interest is to analyze the existence of voting rules that satisfy false-name-

proofness and participation in the universal domain of preferences. In most voting set-

1Our strong false-name-proofness property is typically called false-name-proofness in the literature (see,

for example, Yokoo et al., 2004; Conitzer, 2008; Bu, 2013).
2The property of strategy-proofness is central to the literature on mechanism design and has been ex-

tensively studied (see Barberà, 2011, for a comprehensive survey). We deliberately depart from this line of

inquiry and instead focus on rules that satisfy false-name-proofness and participation.
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tings, it is common to also assume that there are no alternatives that deserve special treat-

ment. The requirement of “neutrality” formalizes this by demanding that the changing

of alternatives’ names does not affect the choice made by the rule. We demonstrate that

voting rules satisfying false-name-proofness and participation are inherently anonymous

(Proposition 2) and, as a consequence, that there are no neutral rules that also satisfy our

two requirements of immunity to manipulation (Proposition 3).

When the set of social alternatives consists of all the subsets of a given set of objects,

an important restricted domain of preferences is that of “separable” preferences: adding

an object to a set leads to a better set if and only if the object is “good” (as a singleton set,

the object is better than the empty set). On that restricted domain, Fioravanti and Massó

(2024) characterize all voting rules that satisfy false-name-proofness, strategy-proofness,

and “ontoness” (every subset of objects is a possible outcome) as the class of voting by

quota (Barberà et al., 1991), where to be chosen, each object needs either at least one vote

or a unanimous vote.

Our second interest is to analyze what happens when separability is relaxed, i.e. when

all preferences over subsets of objects are admissible.3 Besides false-name-proofness and

participation, we would like to impose three other desirable properties. The first one is

ontoness. As we previously said, it implies that no subset of objects should be discarded

from consideration a priori. Second, the internal structure of this restricted domain allows

us to define the weaker neutrality axiom of “object neutrality”, by which changing ob-

jects’ names does not affect the choice made by the rule. Third, as voters may not be will-

ing to submit full preferences (this seems particularly important, for example, in online

voting settings), we also require the informational simplicity property of “tops-onliness”,

by which only the top choices of the voters are relevant for the rule. We demonstrate

that there are no rules satisfying false-name-proofness and participation that also fulfill

these three additional desiderata (Theorem 1). Even though it might seem to be over-

demanding to require voting rules to satisfy so many properties, the impossibility result

is far from being straightforward since (i) we show that the five axioms are independent

in the domain of all preferences over subsets of objects, and (ii) the rules characterized

by Fioravanti and Massó (2024) satisfy all these axioms in the domain of separable prefer-

ences.
3A typical example of when this domain can be deemed relevant is inspired by Barberà et al. (1991).

Suppose you are on a university professor hiring committee. You might think that Borda and Condorcet

are outstanding professors, and would love to have any of them employed, but believe that the department

will be chaos with the two of them in it (probably because of some dissidence on how they like to vote).
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Finally, we ask to what extent the domain of separable preferences can be enlarged

while maintaining the compatibility of all five properties. It turns out that such a restricted

domain is maximal for those properties: adding a non-separable preference to the domain

entails losing at least one of the properties involved (Theorem 2).

The property of (strong) false-name-proofness was introduced by Yokoo et al. (2004),

for the problem of assigning objects with transfers where agents have quasi-linear prefer-

ences. In voting environments, for the case when the preferences are single-peaked (Black,

1948), Todo et al. (2011) characterize the class of all strongly false-name-proof, anony-

mous, and “efficient” (no voter can be made better off without making some voter worse

off) voting rules. Todo et al. (2011) and Todo et al. (2020) extend the analysis to the case

where the set of alternatives has a tree structure. Moreover, Conitzer (2008) characterizes

all anonymous and neutral probabilistic voting rules over a finite set of alternatives that

satisfy strong false-name-proofness and participation. Each element in the class identi-

fied by Conitzer (2008) is characterized by a probability p ∈ [0, 1]. With probability p,

an alternative is chosen uniformly at random. With probability 1 − p, a pair of alterna-

tives is chosen uniformly at random. If all voters unanimously prefer one alternative over

the other in the pair, the preferred alternative is chosen; otherwise, a fair coin is used to

decide between the two. Although Conitzer’s (2008) result implies the impossibility of

neutral and deterministic voting rules that satisfy strong false-name-proofness and par-

ticipation, our Proposition 3 is not a direct corollary of his, as we use a weaker version of

the axiom.

The plan of the paper is as follows. Section 2 presents the basic notions and axioms

that we use, while we present the results in Section 3. Finally, Section 4 contains some

concluding remarks.

2 Model

Let N be the family of all finite and non-empty subsets of the set of positive integers Z+.

An element N ∈ N is interpreted as a society. We denote the cardinality of N by n and

refer to an element i ∈ N as a voter. Each set of voters N ∈ N has to collectively choose an

alternative from a set A. Let UA denote the set of all strict linear orders over A. Therefore,

each voter i is endowed with a preference Pi ∈ UA, where A Pi B means that for voter i,

alternative A is preferred to alternative B. We denote the weak counterpart of Pi by Ri.

When a preference order is not attached to a particular voter, we write it as P0. For each
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N ∈ N , a profile is an ordered list of preferences PN = (Pi)i∈N ∈ U N
A . Given a preference

Pi ∈ UA, denote with t(Pi) ∈ A to the top alternative for voter i and denote with b(Pi) ∈ A

to the bottom alternative for voter i.

When the set of alternatives A is unstructured, we call UA the universal domain of

preferences. Besides studying this domain, we will be interested in the domain arising

from considering as alternatives all the subsets of a given set of objects O = {1, . . . , O}

with O ≥ 2, i.e., the case where A = 2O. Call UO the domain (of preferences) over subsets

of objects. Notice that, after some renaming of the alternatives involved, any domain over

subsets of objects can be considered a universal domain but, in general, there are universal

domains that cannot be considered as domains over subsets of objects.4

Given a domain D ⊆ UA, let DN =
⋃

N∈N DN . A voting rule on D is a mapping

f : DN −→ A that assigns, for each N ∈ N and each PN ∈ DN, an element f (PN) ∈ A.

Next, we define desirable properties for voting rules. To do this, fix a domain D and a rule

f : DN −→ A.

The first property states that all alternatives should be feasible to be selected in all

societies.

Ontoness: For each N ∈ N and each A ∈ A, there is a profile PN ∈ DN such that

f (PN) = A.

The next axiom asserts that all essential information for the voting rule is found in the

top alternatives of the voters. Thus, the rule requires minimal information from the voters.

Tops-onliness: For each N ∈ N and each pair of profiles PN, P′
N ∈ DN such that t(Pi) =

t(P′
i ) for all i ∈ N, it is the case that f (PN) = f (P′

N).

The following three properties are particularly relevant in contexts such as online vot-

ing, where a social planner cannot easily verify voters’ identities or determine the total

number of participants. The first property asserts that a voter should never have an in-

centive to cast repeated votes.

False-name-proofness: For each N, N′ ∈ N with N ∩ N′ = ∅, each i ∈ N, each PN ∈ DN ,

and each PN′ ∈ DN′
such that Pj = Pi for each j ∈ N′, we have f (PN) Ri f (PN∪N′).

Conitzer (2008)’s related condition imposes stronger restrictions on the voting rule by

not requiring that the additional preferences submitted by voter i ∈ N coincide with voter

i’s original preference Pi.

4For example, if |A| = 3 then there is no set of objects O such that A = 2O .
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Strong false-name-proofness: For each N, N′ ∈ N with N ∩ N′ = ∅, each i ∈ N, each

PN ∈ DN , and each PN′ ∈ DN′
, we have f (PN) Ri f (PN∪N′).

The next axiom states that voters should be induced to vote.

Participation: For each N ∈ N with |N| ≥ 2, each i ∈ N, and each PN ∈ DN, we have

f (PN) Ri f (PN\{i}).

The following property states that no voter should receive a differential treatment.

Anonymity: For each permutation σ : Z+ −→ Z+, each N ∈ N , and each PN ∈ DN ,

f (σ(PN)) = f (PN), where σ(PN) = (Pσ(i))i∈N .

Conitzer (2008) merges the properties of strong false-name-proofness, participation and

anonymity under the name of anonymity-proofness. A principle similar to anonymity, but

applied to alternatives, is provided next. Given a permutation γ : A −→ A, and a pro-

file PN ∈ DN , let P
γ

N be the profile such that, for each i ∈ N and each pair A, A′ ∈ A,

γ(A) P
γ

i γ(A′) if and only if APi A
′.

Neutrality: For each permutation γ : A −→ A and each PN ∈ DN, γ( f (PN)) = f (Pγ

N).

A weaker notion of neutrality is available for voting rules defined on the domain of

subsets of objects, UO. Given a permutation µ : O −→ O, a subset of objects S ∈ 2O, and

a profile PN ∈ U N
O , let µ(S) = {µ(x) : x ∈ S} and let P

µ

N be the profile such that, for each

i ∈ N and each pair S, T ∈ 2O, µ(S) P
µ

i µ(T) if and only if S Pi T.

Object neutrality: For each permutation µ : O −→ O, each N ∈ N , and each PN ∈ U N
O ,

µ( f (PN)) = f (P
µ

N).

3 Results

3.1 Universal domain

Our first result shows that if the identity of a voter changes while the ballot remains the

same, the outcome of the rule remains unchanged. This result is instrumental in proving

one of our main findings: that any false-name-proof voting rule satisfying participation

must also be anonymous. Let D ⊆ UA, that is, a generic subset of the universal domain.

Proposition 1 Let f : DN −→ A be a voting rule that satisfies false-name-proofness and

participation. Let N ∈ N , i ∈ N, and PN ∈ DN . Then, if i⋆ /∈ N and Pi⋆ ∈ D is such that

Pi⋆ = Pi, it is the case that f (P(N∪{i⋆})\{i}) = f (PN).
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To show that Proposition 1 holds, we use the following result, which helps us get rid

of repeated votes.

Lemma 1 Let f : DN −→ A be a voting rule that satisfies false-name-proofness and partici-

pation. Let N ∈ N , i ∈ N, and PN ∈ DN. Then, if i⋆ /∈ N and Pi⋆ ∈ D is such that Pi⋆ = Pi, it

is the case that f (PN) = f (PN∪{i⋆}).

Proof. Let f , N, PN , i, i⋆, and Pi⋆ be as stated in the lemma. By false-name-proofness,

f (PN) Ri f (PN∪{i⋆}). By participation, f (PN∪{i⋆}) Ri⋆ f (PN). As Pi⋆ = Pi, we have that

f (PN∪{i⋆}) Ri f (PN). Thus, f (PN) Ri f (PN∪{i⋆}) Ri f (PN) and f (PN) = f (PN∪{i⋆}). �

Proof of Proposition 1. Let f , N, PN , i, i⋆, and Pi⋆ be as stated in the proposition. By Lemma 1

and participation, f (PN) = f (PN∪{i⋆}) Ri f (PN\{i}∪{i⋆}). By Lemma 1 and participation

again, f (PN\{i}∪{i⋆}) = f (PN∪{i⋆}) Ri⋆ f (PN). As Pi = Pi⋆ , f (PN) Ri f (PN\{i}∪{i⋆}) Ri f (PN)

and, therefore, f (PN) = f (PN\{i}∪{i⋆}). �

Bu (2013) and Fioravanti and Massó (2024) explore the connection between false-name-

proofness and anonymity. Our next result follows that line and shows that the names of the

voters are not important for a rule that satisfies false-name-proofness and participation.

Proposition 2 A voting rule f : DN −→ A that satisfies false-name-proofness and partici-

pation, also satisfies anonymity.

Proof. Let f satisfy false-name-proofness and participation. Consider N ∈ N , a profile

PN ∈ DN , and a permutation σ : Z+ −→ Z+. We need to show that f (σ(PN)) = f (PN),

where σ(PN) = (Pσ(i))i∈N . There are two cases to consider:

1. N ∩ σ(N) = ∅. By iterating the result of Proposition 1, we obtain that f (σ(PN)) =

f (PN).

2. N ∩ σ(N) 6= ∅. Let N′ = σ(N), and consider N′′ ∈ N such that N′′ ∩ (N ∪ N′) = ∅

and |N′′| = |N|. Then, there are two permutations σ̃, σ̂ : Z+ −→ Z+ such that

σ̃(N) = N′′, σ̂(N′′) = N′, and σ = σ̂ ◦ σ̃. By the previous case, f (σ(PN)) = f (PN′) =

f (σ̂(PN′′)) = f (PN′′) = f (σ̃(PN)) = f (PN).

Therefore, f satisfies anonymity.

�
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Remark 1 Both requirements in Proposition 2 are necessary to obtain anonymity, i.e., there

are non-anonymous voting rules that satisfy either false-name-proofness or participation. The

rule that selects voter 1’s top alternative whenever 1 is present, and otherwise assigns a

status-quo alternative, satisfies participation and is not anonymous. Furthermore, the rule

that selects voter 1’s bottom alternative whenever 1 is present, and otherwise assigns a

status-quo alternative, satisfies false-name-proofness and is not anonymous.

It is well known that, for most choices of |N| and |A|, there is no way to make anonymity

and neutrality compatible on the universal domain.5 This implies that both requirements

cannot be met for voting rules defined in a variable population environment.

Remark 2 There is no voting rule f : U N
A −→ A that satisfies anonimity and neutrality.

Our first impossibility result says that for rules defined in the universal domain, false-

name-proofness together with participation are incompatible with neutrality.

Proposition 3 There is no voting rule f : U N
A −→ A that satisfies false-name-proofness,

participation, and neutrality.

Proof. Let f satisfy false-name-proofness and participation. Then, by Proposition 2, f satisfies

anonymity. By Remark 2, f cannot be neutral. �

Remark 3 Proposition 3 is not directly implied by Theorem 1 of Conitzer (2008), which

states there is no neutral and deterministic voting rule that satisfies these properties, as he

uses strong false-name-proofness for his negative result. Still, using our weaker false-name-

proofness, an impossibility result is obtained.

3.2 Domain over subsets of objects

Now, we turn our attention to rules defined in the domain over subsets of objects, UO.

In this new environment, it makes sense to relax neutrality to object neutrality, in order to

look for positive results. In the following example we show the existence of false-name-

proof rules that also satisfy participation and object neutrality. Alas, neither ontoness nor

tops-onliness are guaranteed.

5In fact, such compatibility exists if and only if |A| cannot be written as the sum of dividers of |N|

different than 1 (see, for example, Exercise 9.9 in Moulin, 1988a, for more details).
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Example 1 First, define rule fO : U N
O −→ 2O as follows. For each N ∈ N and each

PN ∈ U N
O , fO(PN) = O. This constant rule always selects the whole set of objects O and

clearly satisfies all properties but ontoness.

Next, given N ∈ N and PN ∈ U N
O , let Õ(PN) = {i ∈ N : t(Pi) 6= O and O Pi S for

each S ∈ 2O \ {t(Pi),O}}. Define rule f̃ : U N
O −→ 2O as follows. For each N ∈ N and

each PN ∈ U N
O ,

f̃ (PN) =





t(Pi) if i ∈ Õ(PN) and t(Pi) = t(Pj) for each j ∈ Õ(PN)

O otherwise

Rule f̃ selects the set of all objects, O, unless all voters who consider O as their second

choice share their top choice, in which case the rule recommends such top choice. This

rule satisfies all properties but tops-onliness. To see this, let O = {x, y}, N ∈ N , and

consider PN, P′
N ∈ U N

O such that t(Pi) = t(P′
i ) = {x} for each i ∈ N, b(Pi) = O for each

i ∈ N, and Õ(P′
N) = N. Then, f̃ (PN) = O 6= {x} = f̃ (P′

N). ♦

Our second impossibility result says that, in the domain over subsets of objects, our

five desired properties are not compatible.

Theorem 1 There is no voting rule f : U N
O −→ 2O that satisfies ontoness, tops-onliness,

false-name-proofness, participation, and object neutrality.

Proof. Assume there is a voting rule f : U N
O −→ 2O that satisfies the five axioms. First,

we claim that there are N ∈ N , a profile PN ∈ U N
O , and a voter i ∈ N, such that

f (PN) 6= f (PN\{i}). (1)

If this is not the case, for each {j, k} ∈ N and each (Pj, Pk) ∈ U
{j,k}
O , we have f (Pj) =

f (Pj, Pk) = f (Pk) and thus f (Pj) = f (Pk), implying that all one-voter societies are assigned

the same alternative. This violates ontoness. So (1) holds.

Next, let P′
i ∈ UO be such that t(P′

i ) = t(Pi) and t(P′
i ) R′

i f (PN\{i}) P′
i T for each

T ∈ 2O \ {t(Pi), f (PN\{i})}. By participation, f (P′
i , PN\{i}) R′

i f (PN\{i}). By tops-only,

f (P′
i , PN\{i}) = f (PN). Thus, (1) implies f (P′

i , PN\{i}) 6= f (PN\{i}) and, therefore, we

have f (P′
i , PN\{i}) = t(P′

i ). Hence, using tops-only again, we get

f (PN) = t(Pi). (2)

By Lemma 1, we can safely assume that all the tops in PN are different. Let j ∈ N \ {i}

and consider P′
j ∈ UO such that t(P′

j ) = t(Pj) and b(P′
j ) = t(Pi). By tops-only and (2),
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f (P′
j , PN\{j}) = t(Pi). By participation, f (P′

j , PN\{j}) R′
j f (PN\{j}) and, since b(P′

j ) = t(Pi),

we have f (PN\{j}) = t(Pi). Removing in the same way each remaining voter, one at a time,

we obtain f (Pi) = t(Pi). Thus, by object neutrality, f (P
µ

i ) = µ( f (Pi)) for any permutation

µ : O −→ O. Together with anonymity, granted by Proposition 2, this implies that

f (P′
ℓ) = t(P′

ℓ) for each {ℓ} ∈ N and P′
ℓ ∈ UO with |t(P′

ℓ)| = |t(Pi)|. (3)

Now, let {j, k} ∈ N and (Pj, Pk) ∈ U
{j,k}
O be such that t(Pj) 6= t(Pk) and |t(Pj)| =

|t(Pk)| = |t(Pi)|. There are three cases to consider:

1. f(Pj , Pk) /∈ {t(Pj), t(Pk)}. Let P′
j ∈ UO be such that t(P′

j ) = t(Pj) and b(P′
j ) =

f (Pj, Pk). By tops-only, f (P′
j , Pk) = f (Pj, Pk). By participation, f (P′

j , Pk) R′
j f (Pk). Thus,

f (Pk) = f (Pj, Pk) 6= t(Pk), contradicting (3).

2. f(Pj , Pk) = t(Pj). Consider a permutation µ : O −→ O such that µ(t(Pj)) = t(Pk)

and µ(t(Pk)) = t(Pj). By object neutrality we obtain f (P
µ

j , P
µ

k ) = µ( f (Pj, Pk)) =

µ(t(Pj)) = t(Pk), and thus f (P
µ

j , P
µ

k ) = t(Pk). By Theorem 2, f is anonymous. There-

fore, by anonymity and tops-only,

f (Pj, Pk) = f (Pk , Pj) = f (P
µ

j , P
µ

k ) = t(Pk),

and so f (Pj, Pk) = t(Pk), contradicting this case’s hypothesis.

3. f(Pj , Pk) = t(Pk). A similar reasoning to the previous case allows us to deduce that

f (Pj, Pk) = t(Pj), contradicting this case’s hypothesis.

Since in each case we reach a contradiction, we conclude that no such rule f exists. �

It is important to notice that we are not demanding voting rules to satisfy an exces-

sively high number of properties, i.e., there are no redundant axioms in Theorem 1. To see

this, we consider several voting rules. Each one satisfies all the axioms but one.

• All but ontoness: The rule fO in Example 1.

• All but tops-onliness: The rule f̃ in Example 1.

• All but false-name-proofness: For each N ∈ N and each PN ∈ U N
O , f min(PN) =

t(Pmin{i : i∈N}). This rule selects the top of the voter with the minimum index in the

society. This rule satisfies participation but is not anonymous, thus, by Proposition 2,

f min is not false-name-proof.
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• All but participation: For each N ∈ N and each PN ∈ U N
O , x ∈ f ⋆(PN) if and only

if |{i ∈ N | x ∈ t(Pi)}| = 1. This rule selects those objects that belong to only one

top-choice set of the preference profile. To see that f ⋆ does not satisfy participa-

tion, let O = {x, y, z}, N = {i, j} and (Pi, Pj) ∈ U
{i,j}
O be such that t(Pi) = {x, y},

{x, y, z} Pi {z}, and t(Pj) = {x, y, z}. Then, if voter i does not participate, she can

manipulate f ⋆ since f ⋆(Pj) = {x, y, z} Pi {z} = f ⋆(Pi, Pj).

• All but object-neutrality: Let ≻ be a linear order over 2O. For each N ∈ N and each

PN ∈ U N
O , f≻(PN) = max≻{t(Pi) : i ∈ N}. This rule selects, for each profile, the

best positioned top according to ≻. To see that f≻ does not satisfy object-neutrality, let

O = {x, y, z}, {x} ≻ {y} ≻ {z}, N = {i, j}, and PN ∈ U N
O be such that t(Pi) = {x}

and t(Pj) = {z}. Thus f (PN) = {x}. If we consider a permutation µ : O −→ O such

that µ(x) = z, µ(y) = x, and µ(z) = y, then µ( f≻(PN)) = µ({x}) = {z} 6= {y} =

f≻(P
µ

N).

3.3 Domain of separable preferences: maximality

We have seen that when we consider the domain of all preferences over subsets of ob-

jects, there are no voting rules that satisfy ontoness, tops-onliness, false-name-proofness, par-

ticipation, and object neutrality. Nevertheless, we can find several rules that satisfy all of

them when the preferences of the voters are separable. We can find two examples in

Fioravanti and Massó (2024), with voting by quota 1 and voting by unanimous quota. A

natural question is whether there is a domain larger than the domain of separable prefer-

ences in which voting rules still satisfy all the axioms. Next, we answer the latter in the

negative.

First, we remember the definition of separability. For a voter, an object is good if it is

better to choose this object alone than choosing no object at all; otherwise, the object is bad.

A preference is separable if the division between good and bad objects guides the ordering

of subsets, in the sense that adding a good object leads to a better set while adding a bad

object leads to a worse set. Formally, preference P0 is separable if for each S ∈ 2O and each

x ∈ O \ S,

S ∪ {x} P0 S if and only if {x} P0 ∅.

Let S be the domain of separable preferences. An important characterization of separa-

bility is presented in the following remark.

11



Remark 4 (Barberà et al., 1991) Preference P0 ∈ UO is separable if, for each S ∈ 2O and

each x ∈ O \ S,

S ∪ {x} P0 S if and only if x ∈ t(P0).

Let F denote the class of all rules defined on the domain of separable preferences

that are onto, tops-only, false-name-proof, satisfy participation, and are object neutral. The fol-

lowing definition, inspired by Bonifacio et al. (2023) and Arribillaga and Bonifacio (2025),

formalizes the idea of maximal domain for a set of rules satisfying a list of properties.6

Definition 1 Let S ⋆ be such that S ⊆ S ⋆ ⊆ UO and let F ⋆ ⊆ F . Domain S ⋆ is maximal

for F⋆ if

(i) for each f ∈ F ⋆ the tops-only extension of f to S ⋆ satisfies ontoness, false-name-

proofness, participation and object neutrality,7 and

(ii) for each P0 ∈ UO \S ⋆ there is f ∈ F ⋆ such that the tops-only extension of f to S ⋆ ∪{P0}

violates (at least) one of the properties listed in (i).

An important fact about the maximality of a domain with respect to a list of properties

thus defined is its monotonicity: the bigger the set of rules considered for maximality,

the smaller the domain of preferences in which the properties hold. We highlight this

observation in the following remark.

Remark 5 Assume that S ⋆ is maximal for F ⋆. If F i ⊆ F ⋆ and S i is maximal for F i with

i ∈ {1, 2}, then by Definition 1 it follows that S ⋆ ⊆ S 1 ∩S 2.

Next, we present our maximality result.

Theorem 2 The domain of separable preferences is maximal for the set of all onto, tops-only, and

false-name-proof rules that satisfy participation and object neutrality, i.e., S is maximal for

F .

6Previous studies on maximal domains, mostly focus on the property of strategy-proofness (see, for exam-

ple, Serizawa, 1995; Ching and Serizawa, 1998; Massó and Neme, 2001).
7Given a tops-only rule f : S N −→ 2O and a domain S ⋆ such that S ⊆ S ⋆, the tops-only extension

of f to S ⋆ is such that, for each N ∈ N and each PN ∈ S ⋆, f (PN) = f (PN) for some PN ∈ S with

t(Pi) = t(Pi) for each i ∈ N.
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Proof. Let P0 ∈ UO \S . By Remark 4, there are S ⊆ O and x ∈ O \ S such that either

x ∈ t(P0) and S P0 S ∪ {x} (4)

or

x /∈ t(P0) and S ∪ {x} P0 S. (5)

First, consider rule f> : S N −→ 2O such that, for each N ∈ N and each profile PN ∈ S N

satisfies8

x ∈ f>(PN) if and only if |{t(Pi) ∈ t(PN) : x ∈ t(Pi)}| >
|t(PN)|

2
.

Clearly, f> is tops-only and object neutral. Since the rule only depends on the set of top

subsets of options and not on how many times each subset appears, f> is false-name-proof.

Moreover, as casting a vote can only add support to a good object for a voter, f> also

satisfies participation. Therefore, f> ∈ F .

Assume further that t(P0) 6= ∅ and consider the tops-only extension of f> to S ∪{P0}.

There are two cases to consider. If (4) holds, let (P1, P2) ∈ (S ∪ {P0}){1,2} be such that

t(P1) = S and t(P2) = S ∪ {x}. Let i⋆ /∈ {1, 2} and endow voter i⋆ with preference P0.

Notice that, by (4), t(Pi⋆) 6= S ∪ {x}. Then,

f>(P1, P2) = S Pi⋆ S ∪ {x} = f>(P1, P2, Pi⋆),

contradicting participation. If (5) holds and t(P0) * S, let y ∈ t(P0) \ S and consider

(P1, P2, P3) ∈ (S ∪ {P0}){1,2,3} such that t(P1) = S, t(P2) = S ∪ {x}, and t(P3) = S ∪

{x, y}. Let i⋆ /∈ {1, 2, 3} and endow voter i⋆ with preference P0. Then,

f>(P1, P2, P3) = S ∪ {x} Pi⋆ S = f>(P1, P2, P3, Pi⋆),

contradicting participation. If (5) holds and t(P0) ⊆ S, let y ∈ t(P0) and consider (P1, P2, P3) ∈

(S ∪ {P0}){1,2,3} such that t(P1) = S, t(P2) = S ∪ {x}, and t(P3) = (S \ {y}) ∪ {x}. Let

i⋆ /∈ {1, 2, 3} and endow voter i⋆ with preference P0. Notice that, by (5), t(Pi⋆) 6= S. Then,

f>(P1, P2, P3) = S ∪ {x} Pi⋆ S = f>(P1, P2, P3, Pi⋆),

contradicting participation. Since in both cases we reach a contradiction, it follows that

t(P0) = ∅. Thus, this implies that

if S
> is maximal for { f>}, then S

> ⊆ S ∪ {P0 ∈ UO \S : t(P0) = ∅}. (6)

8Notation: given a society N ∈ N and profile PN ∈ U N
O , let t(PN) = {t(Pi) | i ∈ N} be the collection of

(different) tops of profile PN.
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Second, consider the rule f≥ : S N −→ 2O such that, for each N ∈ N and each profile

PN ∈ S N satisfies that

x ∈ f≥(PN) if and only if |{t(Pi) ∈ t(PN) : x ∈ t(Pi)}| ≥
|t(PN)|

2
.

A reasoning similar to the one used for f> shows that f≥ ∈ F .

Assume now that t(P0) 6= O and consider the tops-only extension of f≥ to S ∪ {P0}.

There are two cases to consider. If (4) holds and S 6= ∅, let (P1, P2, P3) ∈ (S ∪ {P0}){1,2,3}

be such that t(P1) = S, t(P2) = S ∪ {x}, and t(P3) = ∅. Let i⋆ /∈ {1, 2, 3} and endow voter

i⋆ with preference P0. Notice that, by (4), t(Pi⋆) 6= S ∪ {x}. Then,

f≥(P1, P2, P3) = S Pi⋆ S ∪ {x} = f≥(P1, P2, P3, Pi⋆),

contradicting participation. If (4) holds and S = ∅, let y ∈ O \ t(P0) and consider (P1, P2, P3) ∈

(S ∪ {P0}){1,2,3} be such that t(P1) = ∅, t(P2) = {x}, and t(P3) = {y}. Let i⋆ /∈ {1, 2, 3}

and endow voter i⋆ with preference P0. Notice that, by (4), t(Pi⋆) 6= {x}.9 Then,

f≥(P1, P2, P3) = ∅ Pi⋆ {x} = f≥(P1, P2, P3, Pi⋆),

contradicting participation. If (5) holds, let (P1, P2) ∈ (S ∪{P0}){1,2} be such that t(P1) = S

and t(P2) = S ∪ {x}. Let i⋆ /∈ {1, 2} and endow voter i⋆ with preference P0. Notice that

by (5), t(Pi⋆) 6= S. Then,

f≥(P1, P2) = S ∪ {x} Pi⋆ S = f≥(P1, P2, Pi⋆),

contradicting participation. Since in each case we reach a contradiction, it follows that

t(P0) = O. Thus, this implies that

if S
≥ is maximal for

{
f≥

}
, then S

≥ ⊆ S ∪ {P0 ∈ UO \S : t(P0) = O}. (7)

Finally, let S ⋆ be maximal for F . By Definition 1, S ⊆ S ⋆. Since f>, f≥ ∈ F , Remark

5 implies that S ⋆ ⊆ S > ∩S ≥. By (6) and (7), S > ∩S ≥ ⊆ S and thus S ⋆ ⊆ S . Hence,

S ⋆ = S . �

Remark 6 Notice that to prove Theorem 2, the only property used, besides tops-onliness,

is participation. Therefore, a more general maximality result is available considering only

these two properties.
9Also note that, if O = {x, y}, then (4) is trivially contradicted.

14



4 Conclusion

We analyze voting rules that satisfy false-name-proofness and the participation criterion. We

show that these two axioms imply anonymity and that this holds for any domain of prefer-

ences. Moreover, we further extend previous negative results for the case of the universal

domain, showing that there are no neutral voting rules consistent with these two axioms.

For the domain where preferences are strict linear orders over subsets of objects, we show

that compatibility of these two properties of immunity to manipulation with ontoness,

tops-onliness and object neutrality can only be achieved, in a strong sense, in the domain of

separable preferences.

As a by-product of Proposition 2 we obtain a new characterization of voting rules over

the domain of separable preferences. This follows from two observations. The first one

is that the combination of false-name-proofness, strategy-proofness, and ontoness is equiva-

lent, due to Propositions 6 and 8 of Fioravanti and Massó (2024), to the combination of

strong false-name-proofness, participation, ontoness, and anonymity. The second is due to

our Proposition 2: anonymity is superfluous in the latter list. Therefore, by Theorem 1 of

Fioravanti and Massó (2024) we can characterize all voting rules that satisfy strong false-

name-proofness, participation, and ontoness as the class of voting rules in which an object

is chosen if it has either at least one vote in every society or a unanimous vote in every

society.
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