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Abstract

In two-sided many-to-many matching markets under substitutable preferences —both

with and without contracts— all stable-dominating mechanisms are manipulable. In

light of this, we examine whether some of these mechanisms are at least not ob-

viously manipulable (NOM). To this end, we discuss three established models that

are encompassed by our general framework: the no-contract case, the unitary con-

tract case, and the multiple-contract case. Our results reveal fundamental differences

among the three models. We transition from a no-contracts model, where all stable-

dominating mechanisms are NOM, to a multiple-contracts model, where all stable

mechanisms and all efficient stable-dominating mechanisms are obviously manipu-

lable (OM). In the intermediate case of unitary contracts the doctor-proposing DA

mechanism remains NOM, but the hospital-proposing DA mechanism and all efficient

stable-dominating mechanisms are OM. These findings reveal fundamental trade-offs

between stability, efficiency, and NOM in these markets.
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1 Introduction

Two-side many-to-many matching markets, both with and without contracts, have been

extensively studied in economics. These markets where agents on both sides of a market

have preferences over potential matches on the other side, play a crucial role in various

applications including labor markets, school choice, and medical residency, among others.

(see,among many others, Gale and Shapley, 1962; Roth and Sotomayor, 1990; Sotomayor,

1996; Echenique and Oviedo, 2006; Hatfield and Milgrom, 2005; Klaus and Walzl, 2009;

Kominers, 2012; Pepa Risma, 2015; Hatfield and Kominers, 2017; Kamada and Kojima,

2024)

A central concern in these models is the design of stable-dominating mechanisms that

prevent strategic manipulation by one side of the market (in this case, doctors).1 However,

in many-to-many settings with substitutable preferences,2 all stable-dominating mecha-

nisms are manipulable.3 This limitation raises a crucial question: Is it possible to identify

mechanisms that, although manipulable, are not obviously manipulable (NOM)? The no-

tion of NOM, introduced by Troyan and Morrill (2020), has gained increasing relevance in

the literature as a viable alternative to strategy-proofness when the latter is unattainable

1A mechanism is stable-dominating if it is either stable or Pareto-dominates a stable mechanism from

the perspective of doctors. The focus on stable-dominating mechanisms rather than solely stable ones arises

because stability is incompatible with Pareto efficiency. Indeed, even the doctor-proposing DA mechanism,

which Pareto-dominates all other stable mechanisms, may be Pareto inefficient. Seeking a relaxation of

stability that is both normatively justified and compatible with efficiency, stable-dominating mechanisms

have been explored in several works (see, among others, Kesten, 2010; Hirata and Kasuya, 2017; Troyan and

Morrill, 2020; Doğan and Ehlers, 2021).
2Substitutability is a fundamental condition widely used in the matching literature, ensuring that agents

do not consider contracts as complements. This assumption is typically required to guarantee the existence

of stable allocations.
3See Martínez et al. (2004); Hatfield and Milgrom (2005) for stable mechanisms without and with con-

tracts, respectively, and Abdulkadiroğlu et al. (2009); Kesten (2010); Alva and Manjunath (2019) for stable-

dominating mechanisms.
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(see, e.g., Troyan et al., 2020; Aziz and Lam, 2021; Ortega and Segal-Halevi, 2022; Psomas

and Verma, 2022; Arribillaga and Bonifacio, 2024, 2025; Arribillaga and Risma, 2025). This

concept captures whether an agent can easily recognize a profitable deviation, even with

limited strategic reasoning. A manipulation is considered obvious if either (i) the best

possible outcome under the manipulation is strictly better than the best possible outcome

under truth-telling, or (ii) the worst possible outcome under the manipulation is strictly

better than the worst possible outcome under truth-telling.

To explore this question, we examine three different domains of doctors’ preferences,

each giving rise to a known and distinct many-to-many matching model embedded in a

general framework: (i) A model with no-contracts, where each doctor-hospital pair has

at most one feasible (individually rational) contract; (ii) A model with unitary contracts,

where each doctor-hospital pair can sign at most one contract; and (iii) A model with

multiple contracts, where each doctor-hospital pair can sign several contracts. Each of

these models has been extensively studied and applied in a broad literature. The classical

no-contracts model has been analyzed in Roth and Sotomayor (1990); Sotomayor (2004);

Echenique and Oviedo (2006); Bonifacio et al. (2024); Kamada and Kojima (2024), among

others. The unitary contracts model is central to many contributions (see, e.g., Komin-

ers, 2012; Klaus and Walzl, 2009; Millán and Pepa Risma, 2018). In fact, Kominers (2012)

demonstrates that unitarity is essentially necessary for the embedding result of Echenique

(2012), which maps the model with contracts into a wage-based model as in Kelso and

Crawford (1982). Finally, several studies have focused on the general model in which

multiple contracts can be signed between each doctor-hospital pair. For instance, Hatfield

and Kominers (2017) shows that non-unitarity arises in various important applications,

such as the United Kingdom Medical Intern Match. Additionally, Pepa Risma (2022) pro-

poses an algorithm to compute the full set of stable allocations in the multiple contracts

setting.

Our findings reveal fundamental differences between the three models. We move

from a model with no-contracts, where all stable-dominating mechanisms are NOM, to

a model with multiple contracts, where all stable mechanisms and all efficient stable-

dominating mechanisms become obviously manipulable.4 In the intermediate case of

4The result for multiple contracts holds even when preferences are responsive. A preference is said to be

responsive when it follows a structured ordering in which the ranking of sets of options depends solely on

the ranking of the individual elements within those sets.
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unitary contracts, the doctor-proposing DA mechanism remains NOM, while the hospital-

proposing DA mechanism and any efficient stable-dominating mechanisms become ob-

viously manipulable. Beyond the theoretical implications, our results contribute to the

broader discussion on strategic behavior in matching markets. They highlight a funda-

mental difference between the three models and underscore the limitations of the stability-

or efficiency-based mechanisms in mitigating manipulation incentives.

Our result for the no-contracts setting extends the one stated by Troyan and Morrill

(2020), which was established for a many-to-one model with responsive preferences, to a

many-to-many model with substitutable preferences. It also generalizes a recent results

by two of the authors of this paper, Arribillaga and Risma (2025), which was previously

stated for a many-to-one model —both with no and (unitary) contracts— to the many-to-

many model.

The remainder of this paper is organized as follows. Section 2 presents the formal

model and definitions. Section 3 discusses our main results for each matching model.

Finally, Section 4 concludes with a summary of key findings and final remarks.

2 Preliminaries

2.1 Matching with contracts. Stability and Efficiency

Let D and H be finite sets of doctors and hospitals, respectively, and define the set of

all agents as F = D ∪ H. There is also a finite set X of contracts, where each contract

x ∈ X represents an agreement between a doctor-hospital pair. Specifically, each contract

is bilateral, involving exactly one doctor xD ∈ D and one hospital xH ∈ H. The set X may

contain two or more contracts involving the same doctor-hospital pair of (d, h) ∈ D × H,

each specifying different conditions.

In the general many-to-many matching model studied here, each agent can sign mul-

tiple contracts with the same or different hospitals. An allocation is a subset of contracts,

Y ⊆ X. Note that the empty set, representing a situation where no contracts are signed, is

also an allocation. We denote by X the set of all allocations, i.e., the set of all subsets of X.

Given a set of contracts Y ⊆ X, a subset of agents S ⊆ F, and an agent i ∈ F, let YS denote

the set of agents in S that appear in at least one contract in Y, and let Yi denote the set of

all contracts in Y that involve i.
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Given a set of contracts X, a particular market is determined by a preference relation

Pi for each agent i ∈ F over the subsets of Xi.5 The weak preference relation associated

with Pi will be denoted by Ri.6 A subset of contracts Y ⊆ X is an acceptable allocation

for i if YPi∅, and a contract y ∈ Xi is an acceptable contract for i if {y} is an acceptable

allocation for i.

The choice set of i ∈ F given Y ⊆ X is the subset of Yi that i likes the most according

to Pi,

Ci(Pi, Y) = max
Pi

{Z ⊆ X : Z ⊆ Yi}.

To simplify the notation, we will omit preferences in the choice set notation when they

are clear from the context: we will write Ci(Y) instead of Ci(Pi, Y). Given Y ⊆ X we will

denote CH(Y) := ∪h∈HCh(Y) and CD(Y) := ∪d∈DCd(Y).

As is common in matching literature, we will assume throughout the paper that agents’

preferences are substitutable. This means that doctors and hospitals do not consider con-

tracts to be complementary with one another. Given i ∈ F, we will say that Pi satisfies

substitutability if x ∈ Ci(Z) implies x ∈ Ci(Y) whenever x ∈ Y ⊆ Z ⊆ X.

Given P ∈ P , we say that Y ⊆ X is individually rational if CD(Y) = CH(Y) = Y, i.e.,

if Y does not contain unwanted contracts. Moreover, Y is unblocked if it does not exist a

non-empty blocking set Z ⊆ X such that Z ∩ Y = ∅ and Zi ⊆ Ci(Z ∪ Y) for all i ∈ ZF.

A stable allocation is defined as one that is individually rational and is not blocked by

any other allocation. If we add the condition that the blocking set has exactly one element,

i.e., |Z| = 1, we arrive at the concept of pairwise stability. Hatfield and Kominers (2017)

shows that when agents’ preferences are substitutable, stability and pairwise stability are

equivalent and the set of stable allocations is non-empty. Furthermore, the unanimously

most preferred stable allocations for each side of the market exist and can be obtained

through adapted versions of both the doctor-proposing and hospital-proposing DA algo-

rithms.

An allocation Y Pareto-dominates another allocation Y′ if YdRdY′
d for all d ∈ D and

YdPdY′
d for some d ∈ D. Y is said to be stable-dominating if it is stable or if it is individu-

ally rational and Pareto-dominates some stable allocation. Finally, Y is said to be efficient

if no other allocation Pareto-dominates it.
5Preferences are antisymmetric, transitive, and complete binary relations on {Y : Y ⊆ Xi}.
6That is, for all Z, Y ⊆ Xi, ZRiY if and only if either Z = Y or ZPiY.
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2.2 Mechanisms and obvious manipulations

In our analysis, we assume that only one side of the market is strategic: the doctors, while

hospitals’ preferences are fixed and common knowledge. Throughout (most of) the paper

Ph will be substitutable and fixed (but arbitrary) for each hospital h, and we will often

omit the reference to hospital preferences.

An arbitrary preference for a doctor d is denoted by Pd. For each doctor d, let Pd denote

the set of all substitutable preferences for d. A preference profile P = (Pd)d∈D specifies a

preference for each doctor. The set of all substitutable preference profiles that could arise

in the market is denoted by P = ∏d∈D Pd. For each profile P and doctor d ∈ D, we denote

by P−d the sub-profile in P−d = ∏i∈D\{d} Pi obtained by deleting Pd from P. Finally, we

will need to consider a generic subdomains of preferences, Td ⊆ Pd for each doctor d, and

its corresponding set of preference profiles, T = ∏d∈D Td.

Definition 1 A (matching) mechanism on T is a function φ : T →X that assigns an allocation

to each preference profile P ∈ T .

Given d ∈ D, we will denote by φd(P) the set of contracts involving d in φ(P). Let

φ : T →X be a mechanism. It is stable if φ(P) is a stable allocation at P, for each P ∈ T .

It is stable-dominating if φ(P) is a stable-dominating allocation at P, for each P ∈ T . It is

efficient if φ(P) is an efficient allocation at P, for each P ∈ T .

Non-manipulability (or strategy-proofness) has played a central role in mechanism de-

sign. A doctor manipulates a matching mechanism if there exists a situation in which they

achieve a better outcome by declaring a preference different from their true one. In our

context, any stable-dominating mechanism is manipulable, so we aim to identify mech-

anisms that at least avoid the obvious manipulations introduced by Troyan and Morrill

(2020). Before presenting formal definitions, we first introduce some notation.

Given a mechanism φ : T →X , a doctor d ∈ D and a preference Pd ∈ Td, we define the

option set left open by Pd at φ as the set of all allocations that can be selected by φ once

that doctor d has declared Pd,

Oφ(Pd) = {φd(Pd, P−d) : P−d ∈ P−d}

Given a doctor d, a preference Pd ∈ Td, and a set of subsets of contracts involving d,

Y ⊆ {Y : Y ⊆ Xd}, we denote by Wd(Pd,Y) the worst set of contracts in Y according
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to Pd. Given a mechanism φ on T and a doctor d, a preference P′
d ∈ Td is an obvious

manipulation of φ at Pd if:

(i) There is P−d ∈ T−d such that φd(P′
d, P−d) Pd φd(Pd, P−d); and

(ii) Wd(Pd, Oφ(P′
d))PiWd(Pd, Oφ(Pd)).

P′
d is a manipulation of φ at Pi when it satisfies condition (i). A manipulation becomes

obvious if (ii) holds, i.e., if the worst possible outcome under the manipulation is strictly

better than the worst possible outcome under truth-telling.

Remark 1 Two remarks regarding the definition of obvious manipulations are relevant:7.

(a) Condition (i) is not strictly necessary because we could impose only requirement (ii) on any

arbitrary preference, and the resulting definition would remain unchanged, as (ii) implies (i).

(b) The original definition in Troyan and Morrill (2020) also considers that P′
d is an obvious ma-

nipulation if Cd(Pd, Oφ(P′
d))PdCd(Pd, Oφ(Pd)), i.e., if the best possible outcome under the

manipulation is strictly better than the best possible outcome under truth-telling. However,

such a condition can be omitted in our context because it never holds for a deviation P′
d in

stable-dominating (or individually rational) mechanisms.

Definition 2 A mechanism φ : T →X is not obviously manipulable (NOM) if it does not

admit obvious manipulations on T . Otherwise, φ is obviously manipulable (OM) on T .

Before concluding this subsection, we formally introduce two prominent stable mech-

anisms: the doctor-proposing DA and the hospital-proposing DA mechanisms, both of

which have special and classical relevance in the literature. The doctor-proposing DA

mechanism can be computed using a deferred acceptance algorithm, where doctors make

offers. Given a profile P ∈ P , each doctor proposes a choice set based on the set of con-

tracts that have not been rejected in previous steps, while each hospital accepts from its

choice set, considering all accumulated offers. The algorithm terminates when all offers

are accepted. The output of the algorithm is the set of contracts accepted by the hospitals

in the final iteration. Here, we present the formal definition.

The doctor-proposing Deferred Acceptance Algorithm (DDA algorithm)

7For details, seeArribillaga and Risma (2025)
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Input:

A market (X, P).

Begin:

Set X1 = X and t := 1.

Repeat:

Step 1: Determine the set of contracts that doctors offer in the iteration t, this is,

Ot := CD(Xt).

Step 2: From the set of accumulated offers, Ot
A := ∪t

k=1Ok, determine CH(Ot
A). This is

the set of contracts (provisionally) accepted by hospitals in the iteration t.

If CH(Ot
A) = Ot, the algorithm stops with output CH(Ot

A).

If CH(Ot
A) ̸= Ot, define Xt+1 := Xt \ (Ot \ CH(Ot

A)), this is, the set of contracts that have

not been rejected yet; set t := t + 1; and repeat Steps 1 and 2.

End

Let DDAM : T → X be the doctor-proposing DA mechanism, i.e., the mechanism

that returns the stable allocation obtained by the DDA algorithm for each preference pro-

file P ∈ T . Symmetrically, we have the hospital-proposing Deferred Acceptance (HDA)

algorithm, where hospitals make offers, and the roles of doctors and hospitals are inter-

changed. Let HDAM : T → X be the hospital-proposing DA mechanism.

Given two mechanisms φ, φ′ : T → X , we say that φ′ Pareto-dominates φ if φ′ ̸= φ

and φ′
d(P)Rd φd(P) for each d ∈ D and each P ∈ T . It is known that any stable-dominating

mechanism Pareto-dominates the HDAM; we state this in a remark for future reference.

Remark 2 Any stable-dominating mechanism φ′ : T → X such that φ′ ̸= HDAM Pareto-

dominates HDAM.

3 Three Different Results for Three Different Models

In this section, we present the three main results, each corresponding to a different many-

to-many matching model: the simplest model without contracts, an intermediate well-

known model with unitary contracts, and a general model with multiple contracts. We

argue that these results highlight significant differences between the models regarding the

strategic behavior of agents. Specifically, we transition from a model without contracts,
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where all stable-dominating mechanisms are NOM, to a model with multiple contracts,

where all stable mechanisms and all efficient stable-dominating mechanisms are OM.

To provide a clearer structure, we describe each model by focusing on a distinct pref-

erence domain within P .

3.1 Three Different Domains and Their Associated Models

Given X, consider a subset Xo ⊆ X such that, for each doctor-hospital pair (d, h), there

exists at most one contract x ∈ Xo
d ∩ Xo

h. Fixing Xo, we say that a preference Pd ∈ P is an

Xo-choice preference if, for all Y ⊆ X,

Cd(Pd, Y) ⊆ Xo

In such a domain, under individual rationality, each doctor can have at most one ac-

ceptable contract with each hospital —specifically, the contract in Xo
d ∩ Xo

h in case it exists.

Let P o
d denote the set of all Xo-choice preferences for doctor d in Pd, and let P o be the

corresponding set of preference profiles. Clearly, P o depends on Xo; however, since we

will assume that Xo is fixed in what follows, we omit explicit reference to it.

The (classical) many-to-many matching model without contracts —or, equivalently,

a model where each doctor-hospital pair has at most one contract— can be represented

within our general framework by restricting doctors’ preference profiles to P o. An al-

ternative approach to describing this model would be to assume directly that the set of

feasible contracts X contains at most one contract per doctor-hospital pair. However, for

clarity and consistency in our presentation, we prefer to introduce this restriction through

the preference domain.

Given a doctor d, a preference Pd ∈ P is said to be unitary if, for all Y ⊆ X,

x, x′ ∈ Cd(Pd, Y) with x ̸= x′, then xH ̸= x′H.

The term "unitary" for this type of preference was first introduced by Kominers (2012).

When doctors have unitary preferences, each doctor-hospital pair can sign at most one

contract in any individually rational allocation. Let Pu
d denote the set of all unitary pref-

erences for doctor d in Pd, and let Pu be the corresponding set of preference profiles. The

many-to-many matching model with unitary contracts —that is, a model where each

doctor-hospital pair can sign at most one contract— can be represented within our gen-

eral framework by restricting doctors’ preference profiles to Pu.
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Observe that P o ⊆ Pu, meaning that the many-to-many model without contracts can

be viewed as a special case of the many-to-many matching model with unitary contracts.8

Finally, we consider the most general model, in which multiple contracts can be signed

between each doctor-hospital pair. This occurs when doctors’ preference profiles span the

entire set of substitutable preferences, denoted by P . To ensure clarity in the presentation

of our results, we refer to this general framework as the many-to-many matching model

with multiple contracts.

3.2 Main Results

In every statement, we assume that all hospitals have substitutable preferences, and we

omit explicitly mentioning this general hypothesis.

Our first result pertains to the model without contracts, where we show that any stable-

dominating mechanism is NOM. The result is based on three key findings. First, we es-

tablish that any mechanism that Pareto-dominates a stable and NOM mechanism is also

NOM. Next, we focus on the HDAM mechanism and demonstrate that it is NOM. Finally,

since all stable-dominating mechanisms Pareto-dominate HDAM, we conclude that they

must also be NOM. Arribillaga and Risma (2025) presents a similar result for the many-to-

one model. Although our proof shares a similar structure, numerous technical modifica-

tions and additional observations were required to adapt it to the many-to-many setting.

The complete proofs of this result and the following are extensive and can be found in the

Appendix.

Theorem 1 Assume that the domain of doctors’ preference profile is P o, i.e., consider a many-to-

many matching model with no contracts. Then:

(i) Any mechanism that Pareto-dominates a NOM stable mechanism is also NOM.

(ii) The HDAM is NOM.

(iii) Any stable-dominating mechanism is NOM.

Proof. See Appendix. □

8It is also straightforward to see that the general many-to-one matching model with contracts can be

viewed as a special case of the many-to-many matching model with unitary contracts.
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Next, we examine the unitary model. Our second theorem consists of three key state-

ments. First, the DDAM mechanism remains NOM in these markets. Second, the HDAM

mechanism becomes obviously manipulable. Third, any efficient stable-dominating mech-

anism is obviously manipulable. Notably, the last two results hold even in the simplest

one-to-one model. For an efficient stable-dominating mechanism, a doctor d can mis-

report their preferences by falsely declaring an "unacceptable" contract with a hospital

as "acceptable." This misrepresentation may disrupt an allocation where another doctor

d′ holds a contract with the same hospital. Consequently, the previously "unacceptable"

contract may become the only stable option, albeit inefficient, allowing d to secure a more

preferred contract in an efficient stable-dominating mechanism. We provide an exam-

ple demonstrating how such manipulations are both possible and obvious. In the case

of HDAM, a doctor can misreport their preferences by falsely declaring an "acceptable"

contract as "unacceptable." This leads the contract to be rejected when proposed by the

hospital. As a result, the hospital may later offer more favorable terms to the same doc-

tor in a subsequent round.This contrasts with DDAM, where doctors initiate the process

by proposing their most preferred contracts. Manipulating DDAM—though possible for

some substitutable preferences—requires triggering a more complex “rejection chain” in-

volving other doctors.

To prove that DDAM remains, we use two lemmas (see Appendix):

1. At the end of each DDA iteration, every hospital is assigned to its choice set given

all offers it received up to that time.

2. Any arbitrary allocation strictly preferred to the DDAM outcome must contain at

least a contract that is rejected in some iteration of the DDA algorithm.

Then, given a doctor d, we consider the worst outcome it can obtain under DDAM by

truthfully reporting their preferences. If this outcome is not their top choice (otherwise,

manipulation would not be possible), we construct a sub-profile of preferences for the re-

maining doctors such that any false declaration by d leads to an outcome no better than

their worst truthful outcome. This establishes that DDAM is NOM. This result extends

one in Arribillaga and Risma (2025) from a many-to-one model with contracts to a many-

to-many model with unitary contracts. However, unlike the approach in that paper, our

proof follows a different structure and introduces new technical arguments and observa-

tions tailored to the many-to-many setting.
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Theorem 2 Assume that the domain of doctors’ preference profile is Pu, i.e., consider the many-

to-many matching model with unitary contracts. Then,

(i) The DDAM is NOM.

(ii) The HDAM is OM, even in the one-to-one model.

(iii) Any efficient stable-dominating mechanism is OM, even in the one-to-one model.

Proof. See Appendix. □

Remark 3 In light of Theorem 2, none of the three statements in Theorem 1 remain valid when

moving from a model without contracts to one with (unitary) contracts.

Finally, we present our results concerning the general many-to-many matching model

with multiple contracts. Surprisingly, the DDAM also becomes obviously manipulable in

this context, such as any stable mechanism. This happens because, in this scenario, a doc-

tor can manipulate the mechanism by misreporting their preferences—falsely declaring

one of their two (or more) contracts in their top allocation as "unacceptable." As a result,

the doctor does not propose that contract, leading the hospital to offer a more favorable

contract to the same doctor instead.

Theorem 3 Assume that the domain of doctors’ preference profile is P , i.e., consider the many-to-

many matching model with multiple contracts. Then,

(i) Any stable mechanism is OM —in particular, both DDAM and HDAM are OM— even

when doctors’ and hospitals’ preferences are responsive.

(ii) Any efficient stable-dominating mechanism is OM, even in the one-to-one case.

Proof.

Let D = {d1, d2, d3}, H = {h1, h2} and X = {v, w, x, y, z} be the sets of doctors,

hospitals, and contracts, respectively. Where vH = wH = xH = h1, yH = zH = h2,

vD = wD = d1, xD = d2, and yD = zD = d3. The hospitals’ preferences are given by:

Ph1 = {v}, {x}, {w}, ∅

Ph2 = {y}, {z}, ∅

12



For clarity, we denote the preferences of doctor di as Pi. Consider the preference profile

(P1, P2, P3), where:

P1 = {w}, {v}, ∅

P2 = {x}, ∅

P3 = {y, z}, {z}, {y}, ∅

Under this preference profile, the allocation {v, y} is the unique stable allocation, while

{w, z} is the only efficient stable-dominating allocation.

The proof now proceeds by considering two cases corresponding to (i) and (ii) of our

theorem:

Case 1 (Part i): Assume that φ is a stable mechanism. Then,

φ(P1, P2, P3) = {v, y}.

Now, suppose that doctor d3 misreports their preferences as P′
3 ∈ P3, where P′

3 = {z},∅.

Under (P1, P2, P′
3), the only stable allocation is {v, z}. Thus,

φd3(P1, P2, P′
3) = {z}.

Since φd3(P1, P2, P′
3) = zP3y = φd3(P1, P2, P3), it follows that P′

3 is a manipulation of φ at

P3. Furthermore, for any preference profile (P1, P2) ∈ P1 ×P2 for doctors d1 and d2, any

stable allocation at (P1, P2, P′
3) contains z. Thus, P′

3 is an obvious manipulation of φ at P3.

Case 2 (Part ii):9 Assume that φ is an efficient stable-dominating mechanism. Then,

φ(P1, P2, P3) = {w, z}.

Now, consider the alternative preference declaration of d1, P1 := {w},∅. Under (P1, P2, P3),

the only stable and stable-dominating allocations are {x, y} and {x, z}, respectively. Thus,

φ(P1, P2, P3) = {x, z}.

which implies

φd1(P1, P2, P3) = ∅.

9Note that in this part of the proof, doctor d3 can be omitted, making the argument applicable even in

the one-to-one setting.
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However, if d1 instead declares P1, then

φd1(P1, P2, P3) = {w}.

This implies that P1 is a manipulation of φ at P1. Furthermore, for any (P2, P3) ∈ P2 ×P3,

the only stable allocations at (P1, P2, P3) must take the form {v} ∪ Y or {w} ∪ Y for some

Y ⊆ {y, z}. Since φ is an efficient stable-dominating mechanism, it follows that

φd1(P1, P2, P3) = {w}.

Thus, P1 is an obvious manipulation of φ at P1. □

Remark 4 In the proof of the previous theorem, we construct a matching market where any mech-

anism that selects either a stable allocation or an efficient stable-dominating allocation is obviously

manipulable. Note that this class of mechanisms is broader than the union of stable mechanisms

and efficient stable-dominating mechanisms.

4 Final Remarks

Table 1 summarizes our main findings, providing a comprehensive characterization of

NOM in many-to-many matching models. It highlights a clear and significant distinction

between models with no contracts, those with unitary contracts, and those with multi-

ple contracts, in terms of agents’ strategic behavior. Notably, these results hold for both

substitutable and responsive preferences.

NOM (for doctors)

no contracts unitary contracts multiple contracts

DDAM yes yes no

HDAM yes no no

Stable yes yes/no no

Efficient and stable-dominating yes no no

Table 1: Summary of results.

Finally, we observe that if hospitals’ preferences fail to satisfy substitutability, any

stable-dominating mechanism (including stable ones and without requiring efficiency)
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becomes obviously manipulable. The following example illustrates this point. Let D =

{d1, d2}, H = {h} and X = {x, y, z} be the sets of doctors, hospitals, and contracts, respec-

tively, where: xH = yH = zH = h, xD = yD = d1, and zD = d2. The preference of hospital

h is given by Ph = {y, z}, {x}, {y}, {z}, ∅. For clarity, we denote the preferences of doctor

di as Pi. Consider the preference profile (P1, P2), where:

P1 = {x, y}, {x}, {y}, ∅

P2 = {z}, ∅

Under this profile, the unique stable-dominating allocation is {y, z}. Suppose that φ is

a stable-dominating mechanism. Then, φ(P1, P2) = {y, z}. Now, if doctor d1 misreports

their preferences as P′
1 ∈ P1, where P′

1 = {x}, ∅, then the unique stable-dominating al-

location under (P′
1, P2) is {x}. Thus, φd1(P′

1, P2) = {x}. Since {x}P1{y} = φd1(P1, P2),

this implies that P′
1 constitutes a manipulation of φ at P1. Furthermore, for any P2 ∈ P2,

{x} remains the only stable-dominating allocation under (P′
1, P2). Hence, P′

1 is an obvious

manipulation of φ at P1.

Appendix. Proofs

Some well-known properties of choice sets follow almost directly from their definition.

We state them in the following remark, as they will be frequently used in the proofs of our

results.

Remark 5 For all Z, Y ⊆ X and i ∈ F: (I) Ci(Y) ⊆ Y; (II) Ci(Y) ⊆ Z ⊆ Y implies Ci(Z) =

Ci(Y); (III) Ci(Ci(Y)) = Ci(Y); and (IV) If i’s preferences satisfy substitutability, then Ci(Z ∪
Y) = Ci(Ci(Z) ∪ Y).

Theorem 1 Assume that the domain of doctors’ preference profile is P o, i.e., consider a many-to-

many matching model without contracts. Then,

(i) Any mechanism that Pareto-dominates a NOM stable mechanism is also NOM.

(ii) The HDAM is NOM.

(iii) Any stable-dominating mechanism is NOM.

15



Proof of Theorem 1

Part (i).

Let φ : P o→X a stable and NOM mechanism. Let φ′ : P o→X be any mechanism that

Pareto-dominates φ. We will prove that φ′ is NOM.

Given d ∈ D and Pd ∈ P o
d . As φ′ Pareto-dominates φ

W(Pd, Oφ′
(Pd))RdW(Pd, Oφ(Pd)) (1)

Furthermore, as φ is NOM, given an arbitrary P′
d ∈ P o

d , there exists a sub-profile P−d ∈
P o
−d of substitutable preferences such that

W(Pd, Oφ(Pd))Rd φd(P′
d, P−d) (2)

We denote X̃ := φ(P′
d, P−d), and consider the sub-profile P̃−d ∈ P o

−d defined as follows:

Given i ∈ D \ {d}, set P̃i := X̃i, X̃i1, ..., X̃ik,∅ where X̃i1, ..., X̃ik denote the non-empty

proper subsets of X̃i, ordered as in Pi. Observe that P̃i satisfies substitutability because

otherwise Pi would fail to be substitutable.

(P̃i := ∅ in case X̃i = ∅)

Next, we will state a claim about the profile (P′
d, P̃−d), which will be useful to prove

our theorem.

Claim 1: φ(P′
d, P−d) = φ(P′

d, P̃−d) = φ′(P′
d, P̃−d)

Let P̃ = (P′
d, P̃−d). We will show that X̃ is the only stable allocation in P̃. Then, the first

equality will follow as a direct consequence.

From the definition of P̃ and the fact that X̃ is stable at (P′
d, P−d), it is clear that X̃ is

stable at P̃. Assume that there exists an allocation Y such that Y ̸= X̃ and Y is also stable

at P̃. By the definition of P̃−d and the individual rationality of Y, we have

Yi ⊆ X̃i for all i ∈ D \ {d} (3)

Moreover, Yd \ X̃d ̸= ∅, since otherwise Y ⊊ X̃, and by considering any contract w ∈
X̃ \Y, we would have a blocking contract for Y: in fact, w ∈ CwD(X̃)∩ CwH(X̃), because X̃

is individually rational in P̃. Then, due to substitutability, w ∈ CwD(Y ∪ {w}) ∩ CwH(Y ∪
{w}).

Next, we will prove that

YdP′
dX̃d (4)

In the case that X̃d = ∅, 4 follows trivially because Y is individually rational in P̃.
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Otherwise, if X̃d ̸= ∅, since Yd ̸= X̃d, we will assume that X̃dP′
dYd in order to reach a

contradiction. From our previous assumption, it follows that Cd(X̃d ∪ Yd)R′
dX̃dP′

dYd. This

implies Cd(X̃d ∪ Yd) \ Yd ̸= ∅, because Y is individually rational in P̃. Then, consider

a contract x ∈ Cd(X̃d ∪ Yd) \ Yd. By substitutability, x ∈ Cd({x} ∪ Yd) . Moreover,

all contracts in YxH involve doctors in D \ {d} because x /∈ Y and x is the only contract

between d and xH that can be acceptable for d in P̃ (as well as in any preference profile

in P o). Consequently, YxH ⊆ X̃xH according to 3. In addition, x ∈ CxH(X̃xH) since X̃ is

individually rational in P̃ and then, by substitutability, x ∈ CxH(YxH ∪ {x}). Therefore, x

would be a blocking contract for Y, which leads to a contradiction.

So, 4 holds. Consequently, Cd(X̃d ∪ Yd)R′
dYdP′

dX̃d. Observe that the last implies Cd(X̃d ∪
Yd) \ X̃d ̸= ∅ because X̃ is individually rational in P̃. Now, consider a contract y ∈
Cd(X̃d ∪ Yd) \ X̃d. Because of substitutability, y ∈ Cd(X̃d ∪ {y}), and consequently,

y /∈ CyH(X̃yH ∪ {y}) (5)

since otherwise, y would block X̃ at P̃. As Y is individually rational, we have y ∈
CyH(YyH). Then, by 5 and the fact that YyH ⊆ X̃yH ∪ {y} due to 3, a contract z ∈ X̃yH \ YyH

must exist, such that z ∈ CyH(X̃yH ∪ {y}). Because of substitutability, the last implies

z ∈ CyH(YyH ∪ {z}) (6)

(Observe that zH = yH). Furthermore, due to z ∈ X̃yH \ YyH , we have z ̸= y, and so

zD ̸= d , since y is the only contract between d and yH that can be acceptable for d in

P̃ . Consequently, YzD ⊆ X̃zD due to 3. Then, given that z ∈ CzD(X̃zD) because X̃ is

individually rational in P̃, it follows that

z ∈ CzD(YzD ∪ {z}) (7)

due to substitutability. So, z is a blocking contract for Y at P̃, which leads to a contradic-

tion. The contradiction arises from the assumption that there exists an allocation Y such

that Y ̸= X̃ and Y is stable in P̃. Therefore, X̃ is the only stable allocation in P̃.

In order to prove the second equality in Claim 1, we will show that if X′ is an individ-

ually rational allocation in P̃ and X′
i R̃iX̃i for all i ∈ D, then X′ = X̃

In fact, from definition of P̃−d, it follows that X̃iR̃iX′
i for each i ∈ D \ {d}. Then,

X′
i = X̃i for all i ∈ D \ {d}. (8)
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Now, suppose that X′
dP′

dX̃dR′
d∅. Then, Cd(X′

d ∪ X̃d)R′
dX′

dP′
dX̃d, and consequently,

Cd(X′
d ∪ X̃d) \ X̃d ̸= ∅ because X̃ is individually rational in P̃. Then, consider a contract

w ∈ Cd(X′
d ∪ X̃d) \ X̃d. Due to substitutability, we have w ∈ Cd(X̃ ∪ {w}). Because w /∈ X̃

and there is no other contract between wH and d that is acceptable for d in P̃, we have

X̃wH ⊆ ∪i∈D\{d}X̃i = ∪i∈D\{d}X′
i , where the last equality is due to 8. So, X̃wH ∪ {w} ⊆ X′.

Moreover, w ∈ CwH(X′) since X′ is individually rational in P̃. Then, because of substi-

tutability, w ∈ CwH(X̃ ∪ {w}). Therefore, w is a blocking contract for X̃ at P̃, which leads

to a contradiction. This completes the proof of Claim 1.

Finally, from 1, 2 and Claim 1, it follows that W(Pd, Oφ′
(Pd))RdW(PdOφ′

(P′
d)) for each

P′
d ∈ P o

d . Therefore, φ′ is NOM.

This completes the proof of Part (i).

Part (ii).

Given d ∈ D and Pd ∈ P o
d , let X̂ be an allocation obtained through the HDAM, which

matches d with the worst outcome it can obtain by reporting its true preferences, i.e.,

X̂d = W(Pd, OHDAM(Pd)). Because X is finite, there exists a sub-profile P−d ∈ P o
−d such

that HDAMd(Pd, P−d) = X̂. Consider the sub-profile P̂−d ∈ P o
−d defined as follows:

Given i ∈ D \ {d}, set P̂i := X̂i, X̂i1, ..., X̂ik,∅ where X̂i1, ..., X̂ik denote the non-empty

proper subsets of X̂i, ordered as in Pi. Observe that P̂i satisfies substitutability, because

otherwise, Pi would fail to be substitutable.

(P̂i := ∅ in case X̂i = ∅)

Claim 2 :

X̂dRdHDAMd(P′
d, P̂−d) for all P′

d ∈ P o
d \ {Pd}. (9)

Assume, for the sake of contradiction, that there exists P′
d ∈ P o

d \ {Pd} such that

HDAMd(P′
d, P̂−d)PdX̂dRd∅. (10)

Then, HDAMd(P′
d, P̂−d) = Z for some non-empty set Z ⊆ Xd, and by the definition

of choice set, Cd(Z ∪ X̂d)PdX̂d. Consequently, there exists at least one contract z ∈ Cd(Z ∪
X̂d) \ X̂d , and due to substitutability, we have

z ∈ Cd({z} ∪ X̂) (11)

Now, consider the hospital zH and observe that X̂zH ⊆ ∪i∈D\{d}X̂i, because z /∈ X̂ and z is

the only contract involving both d and zH that is acceptable for d in P′
d (or any other prefer-

ence in P o
d ) . Hence, by the definition of P̂−d, contracts in X̂zH are never rejected by doctors
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along the HDA algorithm at (P′
d, P̂−d). Let T′ be the total number of iterations that HDA

algorithm requires to converge at (P′
d, P̂−d), and let XT′−1 be the set of contracts that have

not been rejected until the end of stage T′ − 1, as defined in the HDA algorithm. Then,

X̂zH ⊆ XT′−1, and since z ∈ Z = HDAMd(P′
d, P̂−d), it follows that z was offered by zH in

the last iteration. Therefore, z ∈ CH(XT′−1), and consequently, due to substitutability, we

have

z ∈ CzH({z} ∪ X̂zH) = CzH({z} ∪ X̂) (12)

But (11) and (12) imply that z is a blocking contract for X̂ = HDAM(Pd, P̂−d) . This

contradiction concludes the proof of Claim 2.

Therefore, for all P′
d ∈ P o

d \ {Pd}, (9) implies

W(Pd, OHDA(Pd)) = X̂dRdHDAM(P′
d, P̂−d)RdW(Pd, OHDAM(P′

d)). (13)

Thus, HDAM is NOM.

This concludes the proof of Part (ii).

Part (iii)

The proof of (iii) follows from Remark 2 , (i), and (ii). □

Theorem 2 Assume that the domain of doctors’ preference profile is Pu, i.e., consider a many-to-

many matching model with unitary contracts. Then,

(i) The DDAM is not obviously manipulable.

(ii) The HDAM is obviously manipulable.

(iii) Any efficient and stable-dominating mechanism is obviously manipulable.

The following lemmas are necessary in order to prove Theorem 2.

Lemma 1 Given P ∈ P , let Ot and Ot
A be defined as in DDA algorithm. Then, for every h ∈ H

Ch(Ot
A) = Ch(Ot) for all t = 1, ...T (14)

where T is the number of iterations of the DDA algorithm at P.

The proof presented in Arribillaga and Risma (2025), for a many-to-one model, also ex-

tends directly to the many-to-many setting considered in this paper, and is therefore omit-

ted.
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Lemma 2 Given P ∈ P and d ∈ D, assume that Z ⊆ Xd is an arbitrary allocation such that Z

Pd DDAM(P)d. Then, there exists a contract z ∈ Z \ DDAM(P)d such that z is offered by d

and rejected by zH in some iteration of the DDA.

Proof. Suppose that the conclusion of Lemma 2 does not hold. Then, Z ⊆ XT where

T is the number of iterations required for DDAM(P) to converge, and XT is the set of

contracts that have not been rejected at the beginning of iteration T. By the definition of

DDAM, the set of offers made by d in the last iteration is (OT)d = Cd(XT), and by Lemma

1, it coincides with the final outcome DDAM(P)d. Thus, Cd(XT) = DDAM(P)d. This

contradicts the definition of the choice set, since Z ⊆ XT and Z Pd DDAM(P)d. □

Proof of Theorem 2

Part (i).

Given d ∈ D, and Pd ∈ Pu
d , let X̂ be an allocation produced by DDAM that as-

signs d its worst possible outcome obtainable by truthfully reporting its preferences, i.e.,

X̂d = W(Pd, ODDAM(Pd)). Since X is finite, there exists a profile P̂−d ∈ Pu
−d such that

DDAM(Pd, P̂−d) = X̂.

If X̂d were d’s first-ranked option, then DDAM would not admit manipulations by d

at Pd.

Otherwise, suppose that d´s true preference is as follows: Pd : Y1, ..., Yn−1, X̂d, ... so

that, X̂d ranks in the n-th position (with n>1). We will prove that no allocation that d

prefers over X̂d can be its worst possible outcome obtainable by declaring (any) false pref-

erences. Let T be the number of iterations that DDA algorithm needs to converge to

DDAM(Pd, P̂−d), and let K ∈ {2, ..., T} be the integer such that d offers X̂d for the first time

in the K-th iteration of the DDAM(Pd, P̂−d). Let Ot be the set of accumulated offers made

by doctors before and during iteration t of DDAM(Pd, P̂−d); and let Ot
A be the set of accu-

mulated offers performed by doctors before and during iteration t of the DDAM(Pd, P̂−d)

for t = 1, ..., T.

Next, we identify a particular profile of preferences P̃−d ∈ Pu
−d that leads d to obtain an

an outcome that is equal to or worse than X̂d by declaring any false preferences P′
d. Given

i ∈ D\{d}, define:

P̃i := CH((OK−1
A )−d)i, A1

i , A2
i , · · · ,

where A1
i , A2

i , · · · denote the proper subsets of CH((OK−1
A )−d)i , ordered as they appear in

P̂−d. (P̃i := ∅ in case CH((OK−1
A )−d)i = ∅)
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Consider an arbitrary false preference P′
d ∈ Pu

d \ {Pd}. Suppose that DDAM(P′
d, P̃−d)d =

Y j for some j ∈ {1, ..., n − 1}, i.e., DDAM(P′
d, P̃−d)d)PdX̂d. Let T̃ be the number of itera-

tions required for the DDA algorithm to converge to DDAM(P′
d, P̃−d); and let Õt

A denote

the set of contracts offered by doctors before and during iteration t = 1, ..., T̃ of the DDAM

when applied under the profile (P′
d, P̃−d). Note that (ÕT̃

A)−d = CH((OK−1
A )−d). Then, by

definition of DDA algorithm DDAM(P′
d, P̃−d) = CH(ÕT̃

A) = CH((ÕT̃
A))d ∪ (ÕT̃

A)−d) =

CH(ÕT̃
A)d ∪ CH((OK−1

A )−d)). Therefore, since Y j ⊆ (ÕT̃
A)d and by substitutability, we ob-

tain

y ∈ CyH(({y} ∪ CyH((O
K−1
A )−d)) (15)

for all y ∈ Y j.

Now, according to Lemma 2, there exists a contract y ∈ Y j which is offered by d and

rejected by the hospital yH during some iteration k̂ ∈ {1, ..., K − 1} of the DDA algorithm,

when applied under the profile (Pd, P̂−d).

Since Pd ∈ Pu
d , observe that such a contract is the only one offered by d to yH during the

iteration k̂. Therefore, Ok̂
yH

= {y} ∪ (Ok̂
−d)yH , and y /∈ CyH(O

k̂). Next, by substitutability

and the fact that Ok̂
−d ⊆ (OK−1

A )−d

y /∈ CyH({y} ∪ (OK−1
A )−d)

Now, by a choice set property, the last can be rewritten as

y /∈ CyH({y} ∪ CyH((O
K−1
A )−d)),

which contradicts 15. Thus, DDAM(P′
d, P̃−d)d ̸= Y j for all j ∈ {1, ..., n − 1} , i.e., X̂d Rd

DDAM(P′
d, P̃−d)d.

Therefore,

W(Pd, ODDAM(Pd)) = X̂dRdW(Pd, ODDAM(P′
d)).

Part (ii).

Since this is a negative result, the same example from the proof of Theorem 4 in Arri-

billaga and Risma (2025) , which demonstrates that HDAM is obviously manipulable in

a many-to-one model, can be applied to prove the result in our more general model.

Part (iii).

Our proof of part (iii) in Theorem 3 also applies in this case.

□
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