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Abstract

We study optimal monetary policy when a central bank maximizes a quantile utility
objective rather than expected utility. In our framework, the central bank’s risk attitude
is indexed by the quantile index level, providing a transparent mapping between hawk-
ish/dovish stances and attention to adverse macroeconomic realizations. We formulate
the infinite-horizon problem using a Bellman equation with the quantile operator. Im-
plementing a Euler-equation approach, we get Taylor-rule-type reaction functions. Using
an indirect inference approach, we derive an implicit quantile index of central bank risk
aversion. An empirical implementation for the US is outlined based on reduced-form laws
of motion with conditional heteroskedasticity, enabling estimation of the new monetary
policy rule and its dependence on the Fed risk attitudes. The results reveal that the Fed
has mostly a dovish-type behavior but with some periods of hawkish attitudes.
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1 Introduction

The debate between hawkish and dovish monetary policy authorities has received increased
attention (see Tobback, Nardelli, and Martens (2017), Hack, Istrefi, and Meier (2025)). For
example, the London Investment Service Company In Touch Capital Markets has introduced
a relative scale to explain the position of Fed’s regarding their relative aversion to inflationary
pressures: the lowest bound on the scale indicates very hawkish members and the upper bound
specifies very dovish ones. In the empirical literature, CBs are often classified as hawkish or
dovish based on projected Taylor rules, particularly the interest rate’s long-term response to
inflation (see Castro (2011); Wilson (2020); Malmendier, Nagel, and Yan (2021); Gonzélez-
Astudillo and Tanvir (2023)).

The responses of monetary authorities to the post-pandemic period and the Ukraine war are
paramount to understand coordinated monetary policy actions in terms of interest rate hikes
to recent global inflation synchronization (Ha, Kose, Ohnsorge, and Yilmazkuday (2024)).
Although this empirical regularity, the intensity of restrictive monetary policy measures differs
among countries. This stylized fact reminds us how important it is for CBs to find an optimal
policy monetary rule that reflects the distinct degree of risk aversion to inflation and economic
fluctuations. For example, the Fed’s approach was shaped by empirical evidence that gathered
in the years before the pandemic, and the results were impacted by a decrease in inflation
persistence, a flattening of the Phillips curve’s slope, and inaccurate assessments of real-time
output or unemployment (Sargent and Williams (2025)).

Taylor rules have become a cornerstone of modern monetary policy science (Woodford
(2003), Taylor (1993)). Optimal monetary policy involves setting short-term nominal interest
rates to stabilize the economy by managing inflation and output gaps, often guided by rules
that recommend increasing rates when inflation is high or output exceeds its potential and
lowering them otherwise (Clarida, Gali, and Gertler (1999)).

Although Taylor rules provide a simple and robust framework, true optimal policy depends
on specific economic models, policy objectives, and whether policymakers prioritize inflation,
output, or a combination of both, leading to ongoing debates and refinements of such rules.
In that regard, during the last Jackson Hole Symposium (August 2025, 21-23), Nakamura,
Riblier, and Steinsson (2025) presented a study that remarks the descriptive nature of Taylor
rules instead of their prescriptive one. These authors have also observed deviations from the
Taylor principle after exploring the recent Fed’s behavior and also pointed out the coexistence
of early and late policy interest rate hikers.

In the case of New Keynesian macroeconomic models, the discussion about the theoretical
validity of optimal Taylor rules usually includes these and other relevant issues (see Boehm
and House (2014)). The main point we would like to state here is the discontent that some
contributions express in terms of the theoretical form of optimal Taylor rules (see Cochrane
(2007), Benhabib, Schmitt-Grohé, and Uribe (2001)).

Theoretical contributions have usually approached the different preferences toward the
traditional monetary policy trade-off (inflation versus output fluctuations) by deriving an
optimally monetary policy Taylor rule minimizing a quadratic loss intertemporal function
(Woodford (2003)). However, problems arise in applying these functions when the underlying
economic model is nonlinear (Benigno and Eggertsson (2023)), shocks are non-normal (Hof-
mann, Manea, and Mojon (2024)), or the quadratic assumption is too simplistic (al Nowaihi
and Stracca (2002)). Furthermore, although linear-quadratic models offer analytical tractabil-
ity for deriving optimal rules, they may fail to capture key asymmetric preferences that drive



actual monetary policy behavior in the real world (Svensson (2003))!. So, traditional methods
often look at the average policy reaction function of a CB.

After the 2008 Global Financial Crisis, many authors argued that CBs should pay more
attention to tail risks (especially downside risks) rather than just average outcomes (see
Demirguc-Kunt, Detragiache, and Merrouche (2013)). For instance, regardless of the US
economy’s condition, Barci (2025) notes that monetary policy can increase downside risk;
nevertheless, this ability is significantly diminished during economic expansions. Such dispar-
ity, if not appropriately taken into consideration, could cause monetary authorities to be too
cautious when it comes to tightening during booms.

In the present paper, our theoretical contribution is to introduce quantile utility (QU)
preferences into the intertemporal minimization of the loss function of CBs.

In essence, a QU agent makes decisions based on maximizing the quantile of random util-
ity (see de Castro and Galvao (2022)), or equivalently minimizing the quantile of a random
loss function. We study how CBs minimize their intertemporal loss function using dynamic
programming through the Bellman equation solution as in de Castro and Galvao (2019). In
contrast to the usual framework of minimizing a quadratic intertemporal loss function using
expected utility to attain the optimal policy Taylor rule, we incorporate QU preferences to
study how CBs respond to undesirable macroeconomic outcomes. An important feature of QU
is that it allows for complete separation of the risk attitude and the intertemporal substitution.
For QU, risk aversion is unambiguously measured by the quantile index.

Quantile preferences in dynamic models represent a generalization of the standard Bellman
framework that can justify more precautionary and asymmetric monetary policy potentially
providing microfoundations for why CBs might want to deviate from simple Taylor type rules
in the face of tail risks. This framework helps explain why CBs often appear more dovish than
simple Taylor rules would suggest and they may be intrinsically more concerned with downside
risks (unemployment spikes, financial instability) than with symmetric inflation and output
gaps.

Our research adds new arguments to the theoretical discussion about the accurate form
of the optimal Taylor rule. We depart from the conventional dynamic optimization problem
faced by CBs to propose a new closed analytical form for their reaction function. The main
advantage of the new Taylor rule is that CBs are concerned not only with average inflation-
output trade-off but also in analyzing scenarios of inflation and output gaps.

Moreover, by comparing the observed policy actions (i.e. interest rate) with the entire
myriad of available actions for all quantiles, we can infer the type of the CB at each point in
time. We define this as the implicit quantile preference index, which is a dynamic index of CB
risk aversion. In turn, we interpret this index as a dovish/hawkish scale.

We use US quarterly data from 1954-Q4 to 2025-Q2. This framework suggests that the Fed
often appear more dovish than simple Taylor rules would suggest and they may be intrinsically
less concerned with downside risks (unemployment spikes, financial instability). However, this
is not a general description, and there are specific periods where the Fed is characterized with
hawkish behavior. Our analysis delivers an index of the Fed’s risk aversion attitudes across
time that is based on the implicit quantile preference.

Our argument is that QU may offer a proper framework to incorporate these preferences.
In particular, to model policy actions to accommodate specific concerns on certain potential

'El-Shagi (2025) has recently shown that the Fed prioritizes business cycle stabilization over containing
inflation.



outcomes, measured by locations in the distribution of utility (or loss), which correspond to
the quantile index. It should be noted that a competing alternative is to estimate risk through
a specific functional form of the utility function. Here, however, we consider a canonical
simple approach towards the functional form of the utility function and explore the implied
risk behavior from quantiles.

Although the Fed does not have an explicit policy of quantile preferences, we argue that
it may behave as though it does because of three factors: i) a contemporary, inclusive inter-
pretation of its maximum employment objective?); ii) a potent asymmetric risk management
approach that places a high priority on avoiding deep recessions®); and iii) an awareness that
preventing catastrophic tail risks is what financial stability is all about®.

Since the Fed’s role is to stabilize the business cycle and prevent booms and busts, it is
naturally risk adverse®. However, the Fed became exceedingly risk apprehensive about two
left-tail risks following the 2008 financial crisis and the COVID-19 shock: i) the deflationary
tail risk; and ii) the zero lower bound (ZLB) tail risk. The Fed is compelled to embrace a
low quantile preference due to its severe risk aversion toward these particular catastrophic
possibilities. Even though it results in a slightly less ideal outcome in the median scenario
(a normal economy), its policy shift to average inflation targeting and its tolerance for a hot
labor market can be interpreted as a strategy to maximize the outcome in the worst economic
scenarios (those involving deflation and ZLB).

In addition, the COVID-19 pandemic in 2020 and the Global Financial Crisis in 2008 served
as sobering reminders that tail risks do occur. Normal and well-behaved distribution models
could not work. This has forced the Fed to embrace frameworks that specifically take fat tails
and extraordinary events into consideration. Because it does not imply symmetry and can
reveal information about the full distribution of possible outcomes rather than just the center,
QU preferences are an ideal tool for this.

This study relates to three branches of the literature. First, we add to the literature on
optimal monetary policy the idea that CBs adjust their monetary policy actions to more com-
plex optimal rules than traditional ones. We show how our theoretical framework relates to
the New Keynesian macroeconomic models by getting a new Taylor rule that allows differ-
ent risk aversion attitudes towards inflation and output combinations. Second, we contribute
to the quantile preferences literature (see de Castro and Galvao (2022)) with an innovative

2A robust job market is especially advantageous for low and moderate income areas, and those with lower
levels of education, as Chairs Janet Yellen and Jerome Powell have made clear. These groups are frequently the
first to be let go during a downturn and the last to be hired during a recovery. Through the implementation of
a high pressure economy, the Fed can directly enhance the results for these susceptible groups, which are the
lower quantiles of the market distribution.

3A severe, protracted recession or deflationary spiral may ensue if the economy falters while interest rates
are already zero. The most vulnerable are severely harmed by this disastrous left tail incident. The Fed has
a dependable tool: it can raise interest rates if the economy overhears and inflation increases. The quantile
preference is imposed by this asymmetry. The Fed will inevitably be biased toward policies that aggressively
guard against that left tail risk, even if it means temporarily tolerating a higher risk of inflation, because the costs
of a deep recession, such as high unemployment and widespread bankruptcies, are so devastating, particularly
for the lower end of the income distribution.

4The ultimate example of a left-tail occurrence is a financial crisis. They start in certain industries (subprime
mortgages in 2008, for example), but they ruin the whole economy, with the poorest people bearing the brunt
of it. A type of quantile preference, the Fed’s post-crisis emphasis on regulation and systemic risk monitoring
is an effort to stop the financial meltdown’s excessive negative tail.

5The Fed’s preference to avoid recessions during the Volcker-Greenspan era is compatible with asymmetric
interest rate responses, which can instead be linked to expansions and recessions (see Wolters (2012)).



application: the formal derivation of a closed form for a new Taylor rule. We use dynamic
programming methods and the Bellman equation to optimize the CB intertemporal loss func-
tion and obtain the new optimal reaction function of policymakers (see de Castro and Galvao
(2019); Hills, Nakata, and Sunakawa (2020)). Third, we present an indirect inference approach
to estimate the Fed’s risk attitude across time, thus contributing to the analysis of parameter
and/or model uncertainty (see Cogley, Colacito, Hansen, and Sargent (2008)).

It should be noted that our approach is different from empirical papers that estimate
heterogeneous responses in a Taylor rule regression model as in Chevapatrakul, Kim, and Mizen
(2009), Chevapatrakul and Paez-Farrell (2014), Chen and Kashiwagi (2017) and Christou,
Naraidoo, Gupta, and Kim (2018), among others. In those papers, the key goal is to evaluate
heterogeneous responses of the interest rate to inflation and output gap (and others) using
a quantile regression framework. In our paper, quantiles relate to a structural preference
parameter of the CB and not to the conditional quantiles of the conditional distribution of the
interest rate.

The paper proceeds as follows. Section 2 summarizes the quantile utility framework. Sec-
tion 3 applies dynamic programming to the intertemporal QU maximization problem to derive
Taylor rules. Section 4 describes the empirical implementation strategy. Section 5 presents
the estimation results. Section 6 concludes.

2 Quantile preferences and risk attitude

2.1 Quantile preferences for univariate outcomes

An expected utility (EU) maximizer with utility function u : R — R prefers lottery X to Y
if E[u(X)] > E[u(Y)]. This refers to a case when a decision maker (DM) that is faced with
uncertain outcomes chooses the action that maximizes the expected average outcome. Quantile
utility® (QU) is based on a framework where optimal decisions and allocations correspond
to maximizing a specific quantile of the distribution of outcomes or returns. For a given
a random (univariate) variables, Y, let F(y) = Fy(y) = Pr(Y <y) denote the conditional
cumulative distribution function (c.d.f.) of Y. If the function y — Fy(y) is strictly increasing
and continuous in its support, its inverse is the quantile of Y, that is, Q.[Y] = F;l(’r), for

€ (0,1). Ify — Fy(y) is not invertible, we can still define the quantile as one of its generalized
inverses. Following the standard practice, we define the quantile as the left-continuous version
of the generalized inverse:

Q.Y =inf{y € R: Pr[Y <yl > 1}.

Quantile preferences are defined by simply substituting the expectation by the quantile oper-
ator, that is,

XzY = Q[ulX)] =2 Q. [u(Y)] (1)

5Quantile preferences were first introduced by Manski (1988). Rostek (2010) and Chambers (2009) provide
axioms for the static case, and de Castro and Galvao (2022) formally axiomatize both the static and dynamic
quantile preferences. Giovannetti (2013) studies a two-period economy for an intertemporal consumption model
under quantile utility maximization. de Castro and Galvao (2019) establish the properties of a general dynami-
cally consistent quantile preferences model. We refer to this type of preference modeling as quantile utility (QU
hereafter).



The intuition is that, in the presence of uncertainty, a QU maximizer makes decisions based
on maximizing a given T quantile of the distribution of potential outcomes.

For univariate random variables (i.e. monetary outcomes), quantiles enjoy the following
property: for any continuous and increasing function f : R — R, f(Q.[X]) = Q.[f(X)]. If
u: R — R is strictly increasing and continuous, as usual, then we can take its inverse and
apply to (1), to obtain:

X=Y = uHQuX)]) = u(Qu(Y)]) = QX > Q.IV.

In other words, for the univariate case, the utility functional form is not necessary to model
DM behavior.

As noted by Manski (1988), under QU risk attitudes can be indexed by T itself. Intuitively,
we can map risk aversion into the T scale, such that a T-DM is more risk averse than t/-DM if
T < 1'. In sum, a T-DM evaluates lotteries and actions based on choosing the ones with the
highest T quantile, and then, the lower T is, the more the DM is concerned with low values or
losses.

A canonical competing alternative is to measure risk by a risk aversion parameter inside
the utility function. Optimal decisions of individuals with constant absolute risk aversion
and constant relative risk aversion preferences may be very different, although, in practice, it
may be difficult to differentiate between both attitudes towards risk from real data. A robust
approach within the EU paradigm is stochastic dominance. This theory allows one to rank risky
alternatives without relying on specific forms of the individualsa utility function. However, the
equivalence between EU maximization and stochastic dominance is only satisfied, under risk
aversion, for well-behaved (increasing and concave) utility functions. Moreover, as shown in
the next subsection, stochastic dominance in multivariate settings may not be satisfied.

2.2 Quantile preferences for multivariate outcomes

For a multivariate random outcome variable, say m dimensional vectors of the form Y =
(Y1,Yo, ..., Ym) with domain Y C R™, inf{y € Y : T < F(y)} is (in general) not unique.

Take the bivariate case Y = (Y1, Yy) with domain ¥ C R?. Quantiles are themselves then
defined on regions, contours and depths (Hallin and Konen, 2024). A quantile on the bivariate
domain is any pair (qi1,q2) € Y such that P(Y; < q1,Y2 < q2) = 1, T € (0,1). Figure la
plots the contour plot for the probability density function of a bivariate distribution and adds
two points that correspond to the same quantile T. Figure 1b plots the same contour plot but
considers the curves corresponding to two different T’s.

Note that the preceding analysis of QU cannot be applied to the multivariate domain
unless additional considerations are taken. Consider two random variables X = (X1, Xo) and
Y = (Y1, Ys) on the bivariate domain. Figure 2 plots two different cases for the same quantile
T with (a) and without (b) crossing. As such, there is no natural ordering that can be used in
terms of the distribution function or its inverse, the quantiles.

A consequence of this is that the QU model cannot evaluate random utility based on the
multivariate distribution of the arguments determining the utility. For our purposes, a QU-
maximizer CB that has preferences over inflation and output gap cannot resort to the joint
distribution of these variables to evaluate policies. On the contrary, it does require the utility
function and the relative valuation of each component.

Following Hallin, Paindaveine, and Siman (2010) multivariate models can be decomposed
into a series of univariate models in terms of quantile analysis. Quantiles are analyzed in terms



Figure 1: (a) Two points representing quantile . P(Y; < q1,Y2 < q2) = 7. (b) Two contour
lines for T < '

(a) (b)

Y2 Y2

O )
Yl Yl

Figure 2: (a) Q<(X) >> Q<(Y). (b) Q<(X) >< Q<(Y)
(a) (b)

Xo, Yo Xo, Yo
Q-(X) Q-(X)
Q-(Y) Q-(Y)
X1, "1 X1, 1
of a magnitude and a direction. We define T = (71,T2,...,Tm) € (0,1)™ as a set of quantile
indices. The vector T can be factorized as T = tv, where T = ||T|| € (0,1) represents the
magnitude, and d € R™~! ={d € R™ : ||d|| = 1} represents the direction expressed as a unit

vector in the Euclidean framework.

In this model, T is a scalar quantile index that specifies the position along the distribution,
while v is a unit vector that determines the direction in the m-dimensional space. This
vector can be interpreted as an (m — 1)-dimensional directional component that captures
how quantile changes unfold across variables. This decomposition allows for an intuitive and
geometric interpretation of multivariate quantiles in terms of distance and orientation within
the variable space.

Vector directional quantile proposes to study univariate variables of the form d -y, where
- represent element-by-element vector multiplication. Figure 3 plots this idea for the bivariate
case (in the figure d* is an orthonormal basis of the subspace orthogonal to d). Once a



Figure 3: Vector directional quantile
Y2

dt

Y1

direction is fixed, the problem becomes one of univariate quantiles, and QU analysis can be
applied.

In the QU setup, the direction d can be interpreted as a linearization of utility function over
the multivariate domain. The direction reduces the dimensionality of preferences into a linear
univariate model. Note, however, that is only valid in a local sense. Non-local comparisons
require the use of the utility function to fulfill this role for all cases.

2.3 Dynamic models

Many applications of intertemporal maximization use the standard recursive EU. These models
have been workhorses in several economic fields. EU is simple and amenable to theoretical
modeling. The assumption of maximization of average utility, the average being a simple
measure of centrality, has intuitive appeal as a behavioral postulate. Nevertheless, the usual
EU framework has been subjected to a number of criticisms, including in its dynamic version.
For example, it has been well documented in the literature that it is not possible to separate
the intertemporal substitution from the risk attitude parameters when using standard dynamic
models based on the EU (see, e.g., Hall, 1988). The framework proposed by Kreps and Porteus
(1978) to study temporal resolution of uncertainty was one of the first efforts to go beyond EU
in the dynamic setting. An expanding literature considers alternative recursive models.”

de Castro and Galvao (2019) developed a new alternative to the EU recursive model based
on QU. In their model, the economic agent chooses the alternative that leads to the the
highest T-quantile of the stream of future utilities for a fixed T € (0,1). The dynamic quantile
preferences for intertemporal decisions are represented by an additively separable quantile
model with standard discounting. The associated recursive equation is characterized by the
sum of the current period utility function and the discounted value of the certainty equivalent,
which is obtained from a quantile operator. This intertemporal model is tractable and simple
to interpret, since the value function and Euler equation are transparent, and easy to calculate

"We refer the reader to Epstein and Zin (1989, 1991), Weil (1990), Grant, Kajii, and Polak (2000), Epstein
and Schneider (2003), Hansen and Sargent (2004), Maccheroni, Marinacci, and Rustichini (2006), Klibanoff,
Marinacci, and Mukerji (2009), Marinacci and Montrucchio (2010), Strzalecki (2013), Bommier, Kochov, and
Le Grand (2017), Sarver (2018), and Dejarnette, Dillenberger, Gottlieb, and Ortoleva (2020) among others.



(analytically or numerically). This framework allows for the separation of the risk attitude from
the intertemporal substitution, which is not possible with EU, while maintaining important
features of the standard model, such as dynamic consistency and monotonicity.

3 Preferences of a CB and Taylor rule for QU maximizer

3.1 General set-up

Consider now a CB that has T-QU preferences based on (7y — 7t*) where 7y is inflation and
m* is the target inflation rate, and output gap y+ = (Y+ —yi) where y is output and yj is
a measure of output long-run trend and potential output. Moreover, we assume that the CB
has a preference for smoothing policy variables over time (i.e. the interest rate).

The CB decisions can be represented along a utility function u(y,m,1i,z) that typically is
a trade-off between inflation and output gaps, and it may depend on interest rate and current
shocks. In general, we could assume that the CB values more inflation and output closer to
the target values.

We assume a quadratic utility function of the form

(7r¢ —7[*)2 . ?\(yt)2 d(it _itfl)Q

2 2 2 ’ 2)

u(’ntaytuit)z’t) =

In this model, the CB has preferences for state variables close to the target values and for
avoiding fluctuations in the interest rate. This utility function is in fact a loss function multi-
plied by —1, and it can be derived from micro-foundations as in Woodford (2003). A and & are
structural parameters that correspond to the degree of substitution of the inflation gap, the
output gap and the variations in interest rate along indiference curves.

Let x € X denote the particular state and the state space, i € J be the action and the set
of possible actions the CB may take, and z € Z, the range of the shocks. For our purposes,
xt = (Yt,7¢), it is the interest rate and z; represents random components that affect xi.
Moreover, we consider that zy = (zx,t,2zy,t) & bivariate random vector. Although we do not
explicitly consider it to reduce notation, the state variables may include lags of the variables.
For our particular case, we use the lag of i inside the utility function.

The next period state, xty1, is defined by a law of motion function ¢ : X x I x Z — X
that satisfies x¢y1 = (x4, it,2zt41). Given the current state x¢ and current shock z¢, I'(x¢, z¢)
denotes the set of possible choices it, that is, the feasibility constraint set.

3.2 Infinite horizon and recursive maximization problem

In the proposed CB model, the uncertainty with respect to the future realizations of z is given
by a quantile applied to potential values of the utility function. In line with QU theory, the
quantile index T represents CB attitudes towards risk. We refer to a T/-CB to be more risk
averse than a T-CB one if T/ < 1. That is, the T/-CB is more concerned with worse outcomes
scenarios (i.e. high inflation, low output) than a t-CB.

In the QU framework, optimal decisions are taken to maximize the T quantile of intertem-
poral utility in an infinite horizon problem. This framework does not allow for the same
solution strategies as in the EU case, because we cannot apply the law of iterated expecta-
tions. However, under certain conditions described in de Castro and Galvao (2019), these



dynamic intertemporal choices can be represented by the maximization of a value function
v:X x Z — R that satisfies the recursive Bellman equation:

v(x,z) = sup {u(x,i, z) + BQ.IVv (b(x,1,2),2) | z]}, (3)
i€l (x,z)
where z’ indicates the next period shock.

Note that this is similar to the usual dynamic programming problem, in which the expec-
tation operator E[-] is in place of Q.[-]. de Castro and Galvao (2019) and de Castro, Galvao,
and Nunes (2025) endorse the construction of this type of recursive models from dated prefer-
ences. Those authors prove uniqueness of the solution to problem (3), under a set of regularity
conditions similar to those in dynamic programming set-up and some specific restrictions for
the use of quantiles. The solution is a policy function i% : X x Z — J, that associates to each
(xt,z¢) the optimal solution % = 1*(x¢, z¢).

3.3 Law of motion

Now consider a location-scale law of motion ¢(.) for inflation and output gap, using autore-
gressive processes of order 1.

T41 = P, it»ZTt,t—O—l) = Xn0 + Xt + Xy Yt + Xrily + hn(ﬁtayta it)ZTt,t—l—la

Y1 = Gy(xt, it, Zy,t4+1) = Xyo + Xyn Tt + XyyYt + Xyiie + hy (7T, Yes i) zy e 41,

where the o« coefficients capture location mean effects, i.e. the persistence of inflation and
output gap and how sensitive inflation and output gap are to changes in the interest rate
it, and zxty1 and zy ty1 are random shocks, possibly correlated to each other but assumed
to be independent of the state and interest rate variable, i.e. (zx 41,2y, t+1) L (7, Yt, it) |
z¢. They have zero conditional mean E[za,t+1|zmt,zy7t] = 0, a = m,y and unit variance
Elz2 11 1lznt, 2y 1] = 1 (which anyway cannot be identified separately from h skedastic func-
tion). This is a reduced form that may be the result of intertemporal IS curve and a New
Keynesian Phillips curve as in Woodford (2003) and Gali (2015).

Functions hy(.) and hy(.) are skedastic strictly positive functions that control the condi-
tional heteroskedasticity of the state variables, affecting the scale. In turn, they determine
the structure of heterogeneity in the law of motion and whether the quantiles are not parallel
to each other. We can refer to location shift only models to those where the h functions are
constant, and to location-scale shift models where the h functions depend on (7, y, 1).

Several parameterizations can be applied, see for instance Romano and Wolf (2017). Differ-
ent specifications used in the heteroskedasticity literature to model location-scale shift effects
are

ha (76, Y, it) = (Yao + YarTe + YayYe + Yaiit) /2, a =my.

or
ha(ntvytvit) = exp (Ya() +YanTt +Yayyt +Yaii—t)1/2 , A=T,Y.

The v coefficients control whether the random shocks affect the scale impact of these shocks
on inflation and output gap. Thus models with v = 0 have only location shifts, while y # 0
characterize location-scale shift ones.
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In the context of quantile regression specifications, this representation allows for a random-
coefficient model indexed by a quantile index, i.e.,

Qe (Ter1lxe, 1t) = 0o (Tr) + Xer (Tr)7Te + Ky (Tr)Yt + i (Tr)it, T € (0,1),

Q’ty (Yerilxe,it) = (XyO(Ty) + (Xyﬂ(Ty)ﬂt + oy (Ty Jye + (X\Ji(Ty)itv Ty € (0,1),

where xqp(Ta) = Xab + WQTQ(ZQIM,Q), a=my and b =0,7,y,i. Here T and 1y

reflects different conditional responses of inflation and output gap to current state variables and
policy choices. Both indexes are not necessarily independent and they need to be considered
in a multivariate quantile model as in Montes-Rojas (2017, 2019, 2022).

3.4 Euler equations

Under certain conditions, the Taylor rule can be derived analytically from this function by
implementing the Euler equation as in de Castro, Galvao, and Nunes (2025) Theorem 3.18.
Consider an application of the theorem to get the Euler equation as:

ou(xy, i, z¢)
01
WXt 1, Leg1, Zeg1) 0D (X, e, Zes1)

Q< o o +

WXt 41, b1, 2t 1) 0y (xt,it, Zt+1)
dy oi

z] = 0. (4)

For this derivation to be applied, it requires that differentiability and the quantile operator
can be interchanged, and that the shocks have an increasing monotonic effect. In particular,
we need the following univariate component

W(Xt11, ler1, Zer1) OPr(xe, it, Zeg1) n W(Xtr1,er1, Zer1) Oy (X, it, Ze41)
o7t oi oy oi
to be monotonically increasing on z. Note, however, that z is bivariate, and therefore the
monotonicity requirement has to be evaluated at particular vector directions. For the case in

eq. (2),

W(Xt41, et 15 Zes1)
ot
W(Xtg1, Leg1, Ze41)
dy
w(xg, i, z¢)
oi

Then the monotonicity requirement is that the random variable q(x,1i) = —

= —(Te 41 — 1),

= _}\yt+17

= —8(it —it—1).
) ) 7,171(7(7 1.')ZT[ -
?\d);r’i(x, i)zy with ¢7’T’i(x, i) = a@éi(lx’l) and d)ém = a%ai(ix’l), has a well defined quantile
function.

We derive here Euler equations solutions. For simplicity we assume that o0 = ayo = 0
(but this is not assumed in the empirical application).
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Location shift only

Suppose first that yq, = 0 a,b = m,y, 1, that is, the quantiles of the random shocks are not
affected by the state variables nor by the control variable.
Then

—8(iy —it—1) + BQ [ (XnnT + Xy Yt + Xrile + Zr 41 — 7T ) Xi
—AoynTe + ayyYe + oyile +zy,e41)yi | 2] = 0. (5)
Note that by the requirements on the validity of the Euler implementation for QU, Q. (—zx t+1%Xmi—

Azy t+10yi | z¢) needs to be monotonically increasing in both components (z t41,zy,t+1)-
Thus we obtain the following Taylor rule for the T-QU problem

iz(me, Y, 1) =
(6+ [5(0(2(1 + 7\06131))71 x {8i¢—1
—B [(Xper i + Oy 0y i )7 + A Gry O + Oty Oy )Yt — X 7T
FBQe(—Zm 410 — Azy t410yi | z¢) }

This is similar to the typical Taylor rule derivation as in Giannoni and Woodford (2003).
In the standard model, since the expectation of the random shocks is zero, the second term
becomes zero.

For QU, however, the quantiles need to be computed on a case-by-case basis. For the loca-
tion shift case, the quantile index T determines the quantiles of the two shocks in a particular

. . . . — O — A
direction given by dzxt11 + dyzrts1 with dr = —22__ and d, = ———4 .
g Y QnZrmt+ yZm,t+ m CoasNrs y ﬁii*v“ii

Location-scale on state variables only

Suppose now that yqi = 0 a = m,y, that is, the interest rate exerts no scale effect on the
random shocks, which may be affected by the state variables.
Then

_6(it - itfl) + BQT [_(o‘nﬂﬂt + KryYt + &rile + hn(ﬂtayt)zmtnLl - 7'[*)0(711

_)\((Xynﬂt + xyyYt + ‘Xyiit + hy (ﬂtayt)Zy,tJrl)ocyi | Zt] =0, (6)

i:(ﬂt,yt,it—l) =
(6+ [3(0(3(1 + )\0(131))71 x {8i¢—1
—B [(Xer i + Oy 0y i )7 + A Gry O + Oty Oy )Yt — X 7T
+BQr(—ha(mte, Yt)Zm t+1%mi — Ay (70, Y )2y e 10yi | 2¢) } -

For the location-scale shift case, the quantile index T determines the quantiles of the two
shocks in a particular direction given by drzxt1+1 + dyzr 1 With

—1/2
dr = —hx(m, yi) xni (ociihn(m,ytV + )\2hy(7rtayt)2(x%i) /
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and
—1/2
dy = —Ahy (70, Yoty (2R, yo)? + A2hy (e, yo)2edy) 72,

For this case, the direction is state dependent, that is, the QU analysis is (71, y¢)-specific.

Location-scale on state and control variables

Finally, for the general case when there are no restrictions on yqp, a,b =m,y,1 we have

=iy —ie—1)+

. . « Oh (7T, Y, it)
BQr |—(0tenTe + dyYt + riit + Noe(7te, Y, 1)z e 1 — 70°) (0t + %yttzm‘wﬂ

ahy (’ntaytait)

—)\((Xynﬂt + XyyYt + (Xyiit + h-y (7, Y, it)Zy,tH)((Xyi + o Zy,t+1) | z¢

~0. (7)

Here, there is no analytical solution because the quantiles will depend on both z4 and z2,
a,b = m,y. (Note that for the expected utility case, the expectation of the square is just
replaced by its variance, and thus we could still derive a Taylor rule type model).

4 Empirical implementation

4.1 Algorithm for empirical implementation

Consider time-series data {nt,yt,it}tTZO and set a target value m* and parameters (3,A,6).
Note that we are implicitly defining that the target value for output gap is 0. Define T as a
discrete grid on the interval (0,1).

1. Estimate law of motion reduced form VAR(1) models for (7t¢, y¢) using iy as an exogenous
variable to get the o coefficients.

2. Estimate the skedastic functions h, and hy by running reduced form VAR(1) models of
squared OLS residuals {ﬁi’tﬂ, ﬂ%’tﬂ} on {7, Yt, it} to get y coefficients.

3. Compute {2ﬂ,t,£’%t}L1 stochastic shocks estimates, i.e. Zq¢ = ﬂai/ﬁa,t, a = my.
Then compute the empirical quantiles, Q...

4. Solve for i%(m¢,y¢,it—1) for T € T.

Consider now the evaluation of the underlying preferences of the CB. Here we follow an
indirect inference procedure. For each time period t, we can evaluate the optimal response for
all quantile indexes and then infer the T that produces the closest value of the observed policy
variable. In other words

Ty = argmin [iy — 15 (7t¢, Y, te—1)]-
TeT

This procedure delivers an index of the implicit risk aversion quantile preferences of the
CB.
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4.2 Data sources and model calibration
4.2.1 Data

The empirical estimation involved in step 1 of algorithm is based on three macroeconomic
variables constructed from raw data obtained from the Federal Reserve Economic Data of
St. Louis (FRED St. Louis) database. The original dataset comprised Real GDP (GDPC1),
Potential GDP (GDPPOT), the Effective Federal Funds Rate (FEDFUNDS), and the Personal
Consumption Expenditures Chain-type Price Index (PCECTPI). For consistency across series,
monthly observations (FEDFUNDS) were converted to quarterly frequency using arithmetic
averages. From these sources, we derived the following variables

1. Output gap (yt)

GDPC1;
Yt = <GDPPOTt - 1> %100 (8)
2. Inflation (7ry)
7, = 100 x Aln(PCECTPL,) (9)

3. Interest rate (i), proxied by the Effective Federal Funds rate.

Table 1 reports summary statistics of the variables used in this paper.

Table 1: Descriptive Statistics

Statistic i y U
Mean 4.62 -0.27 0.78
Minimum 0.06 -9.02 -1.61
1st Quartile 1.94 -1.58 0.41
Median 4.33 -0.20 0.66

3rd Quartile 6.24 1.25 1.01
Maximum 17.78 5.68 2.96

The three constructed series — the output gap (y¢), inflation (71 ), and the nominal interest
rate (iy) — are employed in step 1 of the empirical algorithm. Specifically, they serve as the
input variables for estimating the reduced-form law of motion VAR(1) models, from which the
coefficients o are obtained. They are then used in step 2 to compute the skedastic functions
and the z shocks components in step 3.

These estimates provide the foundation for the subsequent steps of the empirical imple-
mentation. The final dataset used for estimation spans from the fourth quarter of 1954 to the
second quarter of 2025, yielding a total of 283 quarterly observations.

The second VAR(1) model estimation incorporates two dummy variables to control for
the extraordinary shocks associated with major global crises. The first dummy captures the
exceptional effects of the global financial crisis, covering the period from the fourth quarter of
2007 to the fourth quarter of 2009. The second dummy accounts for the economic disruptions
linked to the COVID-19 pandemic, spanning from the first quarter of 2020 to the first quarter
of 2021. Including these variables ensures that the estimated relationships among the models
endogenous variables are not biased by these exceptional and exogenous events.
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4.2.2 Calibration

We calibrate the remaining parameters of the model in step 4 of the algorithm, following the
literature on the Taylor rule for the US. The calibration strategy consists of setting some
non-target structural parameters based on empirical evidence.

In particular, following Dennis (2004) the policy discount factor is set to B = 0.99%, the
relative weight on output gap stabilization is set to A = 19, and the interest rate smoothing is
set to & = 0.1'°. Finally, we assume that estimates that the average implied inflation target
of the Fed is around 2 percent of annual inflation (0.496 percent in quarterly log differences).
Among others, Andrade, Gali, Le Bihan, and Matheron (2019) and Bianchi (2019) calibrate
their models using an inflation target consistent with the Fed’s 2 percent objective.!!

The baseline calibration is summarized in Table 2.

Table 2: Quarterly calibrated parameters

Parameter Value Description Source

B 0.99 Policy discount factor Dennis (2004)

A 1 Relative weight on output gap Dennis (2004)
stabilization

5 0.1 Interest rate smoothing Sack and Weiland (2000)

parameter
m* 0.496 Quarterly inflation target Andrade et al. (2019); Bianchi (2019)
5 Results

5.1 Baseline model

Tables 3 and 4 report the reduced form VAR(1) models and the skedastic functions, respec-
tively. In both cases we use two different models. A baseline model without COVID and
Global Financial Crisis (GFC) dummies and another with those dummies included.

8This represents the CB’s time preference, indicating how much it values future welfare compared to current
welfare. A higher discount factor 0.99 means the CB is more patient and cares more about long-term stability.

9The quarterly calibration of lambda for a CB loss function with output equal to 1 involves using the loss
function’s sensitivity to output deviations to determine the weight (lambda) on output in the loss function,
relative to inflation. The value of lambda is adjusted to prioritize output stability and it is a matter of a CB
deciding how to weigh output versus inflation.

0Tnterest-rate smoothing is the tendency for CBs, including the Fed, to adjust interest rates in small steps
over time. A value of delta equal to 6 = 0.1 in a policy rule represents the weight on a smoothing term in a
simplified model, suggesting that about 10 percent of the adjustment in the desired interest rate is reflected in
the policy rate within a quarter, indicating a very gradual policy response. The value of 0.1 is a hypothetical
calibration that would imply a very fast adjustment compared to the historical norm (historically estimated to
be closer to 0.8 in the US), though still gradual. This behavior can stem from optimal policy choices to reduce
volatility and manage expectations, or from practical considerations like market reaction and uncertainty (see
Sack and Weiland (2000)). For our purposes, it helps in evaluating heterogeneity across quantiles in a relatively
short period of time.

Under former Chair Ben Bernanke, the Fed officially adopted a 2 percent inflation target in January 2012.
This move brought the Fed in line with many other central banks and was based on a strategy of price stability,
aiming for 2 percent inflation as the longer-run goal for achieving both maximum employment and price stability.
Although the 2 percent target was made public and official in 2012, the Fed had been operating with a similar
goal behind the scenes since 1996.
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The VAR model reveals that lagged i has a positive effect on inflation but a negative effect
on output gap. Note that these estimated parameters do not imply a structural relationship
among the variables, but they are only a reduced-form result.

In a reduced-form VAR model, the sign of the output gap’s coefficient in the inflation
equation is typically positive, consistent with the New Keynesian Phillips curve. However,
this relationship can be obscured, unstable, or even appear with the wrong sign (i.e. the
flat Phillips curve puzzle) due to the nature of reduced-form estimation and the influence of
other shocks. While the underlying structural relationship is positive, the sign we get from a
simple reduced-form VAR estimation is not a reliable estimate of the Phillips curve slope (see
Mavroeidis, Plagborg-Mgller, and Stock (2014)).

A similar argument applies for understanding the sing of the interest rate on inflation. In
that regard, the price puzzle is the empirical finding that interest rate hikes can be followed
by rising inflation (see Sims (1992)). It is primarily a statistical illusion caused by the econo-
metrician’s model failing to account for the fact that the CB is raising rates in anticipation of
future inflation. When models are properly specified to include the CB’s information, the puz-
zle usually vanishes'?, and the standard theoretical relationship holds (see Stock and Watson
(2001); Bernanke and Mihov (1998); and Leeper, Sims, and Zha (1996)).

In addition, our empirical findings indicate that inflation and output gap have high autore-
gressive coefficients (close to 0.7 for inflation, 0.9 for output gap). The inclusion of the COVID
and the GFC dummies do not change the sign of the estimated coefficients.

For the skedastic function, a preliminary analysis (not reported; available upon request)
reveals that lagged 1 is not statistically significant in the skedastic functions, and therefore we
impose that yqi = 0 a = 7,y for the computation of the optimal Taylor rule. In turn, this
determines that we follow the location-shift model with control variables only in the skedastic
function, and that analytical derivations can be used.

12A typical way to eliminate the prize puzzle would be to create a monetary policy shock series free of it
using the high-frequency identification method or the proxy SVAR methodology of Gertler and Karadi (2015).
However, the Taylor rule aims to capture the Fed’s endogenous response. Using the shock series, which is the
exogenous component, would eliminate our object of study.
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Table 3: VAR(1) Results Full Sample

Baseline Baseline + dummies

Inflation ()  Output gap (y) Inflation ()  Output gap (y)

11 0.024*** —0.029 0.024*** —0.037*
(0.008) (0.022) (0.008) (0.022)
T 1 0.719*** —0.130 0.718*** —0.149
(0.045) (0.125) (0.045) (0.123)
Y1 0.006 0.904*** 0.007 0.891***
(0.010) (0.027) (0.010) (0.027)
Constant 0.114*** 0.215** 0.110*** 0.314***
(0.037) (0.105) (0.039) (0.107)
COVID 0.131 —0.922**
(0.164) (0.451)
GFC —0.025 —0.979***
(0.123) (0.337)
Observations 282 282 282 282
R? 0.668 0.804 0.669 0.812
Adjusted R? 0.664 0.802 0.663 0.808

Note: *p<0.1; **p<0.05; ***p<0.01

Table 4: Skedastic Models - Full Sample

Baseline Baseline + dummies
Uz 113 uZ ﬂ%
1 0.045 —0.311 0.078** 0.101
(0.040) (0.463) (0.038) (0.337)
Yi—1 —0.010 —0.217* —0.001 —0.111
(0.011) (0.127) (0.010) (0.093)
COVID 0.355** 19.274***
(0.176) (1.568)
GFC 0.775%** 0.305
(0.132) (1.175)
Constant 0.087** 1.153** 0.033 0.467
(0.041) (0.464) (0.039) (0.345)
Observations 281 281 281 281
R? 0.007 0.013 0.126 0.368
Adjusted R? —0.0004 0.006 0.113 0.359

Note: *p<0.1; **p<0.05; ***p<0.01
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Figure 4a plots the observed Effective Federal Funds Rate (EFFR) together with the opti-
mal interest rate response for a QU maximizer CB (i.e. the Fed), for different representative
quantile indexes T € {0.1,0.25,0.5,0.75,0.9}. The graph represents the wide variety of optimal
conditional reactions that may arise for any given QU preference.

Figure 4b plots the implied T that represent the closest match to the observed interest rate
using a discrete grid search T € {0.01,0.02,...,0.98,0.99}. Overall, the results indicate that
most of the time the Fed has an implied behavior that is consistent with high values of .
However, in some periods, the implied T is drastically reduced.

Figures 5a and 5b presents the same exercise for the model with GFC and COVID dummies.
Note that the results are very similar to the baseline model, thus suggesting that the periods
highlighted by the dummies are not driving the main results.

Figure 4: Baseline results: Taylor interest-rate rule and Fed risk aversion.
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Figure 5: Results with dummies: Taylor interest-rate rule and Fed risk aversion.
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In economic terms, a higher T means a relatively lower risk aversion by the Fed’s authorities.
In turn, a lower risk aversion relates to an implied QU preference of the Fed that gives more
weight to good macroeconomic outcomes. These findings are consistent with the empirical
evidence that shows a significant reduction in inflation and output volatility during the Great
Moderation period (see Stock and Watson (2012), Bernanke (2004)). By contrast, relatively
lower values of T means higher risk aversion from monetary policy authorities and more weight
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on potential QU losses.

Here are a few notable instances where the Fed raised the EFFR, dramatically. Generally
speaking, these are associated with lower T values and shifts in the conduct of US policymakers
with respect to their increased risk aversion to unfavorable macroeconomic outcomes. More
specifically, as more hawkish positions are adopted.

The Great Inflation Wars, which took place in the late 1960s and early 1980s: the Fed’s
battle against consistently high inflation, which resulted in the most dramatic rate hikes in
its history, characterized this era. In order to fight inflation brought on by the Vietnam
War and the 1973 OPEC oil embargo, the Fed started hiking interest rates. From about 3.5
per cent in 1972 to a peak of almost 13 percent in July 1974, the EFFR increased. The
inflation rate rose into double digits between 1977 and 1980. The Fed grew more active under
Fed Chairs Paul Volcker and G. William Miller. Beginning at around 7 percent in early
1977, the rate skyrocketed to a startling 20 percent in April 1980. Inflation remained high
following a temporary easing. Paul Volcker is renowned for creating a deep recession in order
to permanently curb inflation. The Fed pushed the rate up from about 10 percent in the
middle of 1980 to a second high of 19 percent in June 1981. The Fed’s most well-known and
forceful tightening cycle to date is this one.

The Preserving Trustworthiness (1983-1984): now that inflation was declining, the Fed
had to demonstrate that it was determined to keep it that way while the economy improved.
To avoid a recurrence of inflation, the Fed increased the funds rate from about 8.5 percent to
about 11.5 percent.

The 1987-1989 Soft-Landing Attempt: as inflation pressures started to rise once more, the
Fed tightened policy under new Chair Alan Greenspan. The rate increased to almost 9.75
percent from about 6.5 percent.

The 1994-1995 Preemptive Strike: this is an excellent illustration of a proactive approach
to combating inflation. The Fed raised rates before inflation had occurred because it was
worried about future inflation and the economy was rapidly improving. The EFFR increased
from about 3 percent to roughly 6 percent over a series of sharp increases. A gentle landing is
a common term used to describe this successful technique.

The 1999-2000 Tech Bubble Era: the Fed tightened monetary policy as a result of the rising
economy and concerns about asset bubbles. The funding rate increased from approximately
4.75 percent to roughly 6.5 percent.

The Measured Pace (2004-2006): the Fed started a lengthy, predictable cycle of 0.25 percent
raises to normalize rates after lowering them to historic lows of 1 percent after the dot-com
bust. The funds rate rose from 1 percent to 5.25 percent at the same measured pace of 17
straight rises.

The Liftoff Following the Financial Crisis (2015-2018): the Fed started a very modest and
cautious tightening cycle after seven years at zero following the 2008 crisis. The rate increased
from about 0.25 percent to a peak of over 2.5 percent in 2018 through a series of modest,
well-publicized increases.

The Battle Against Post-Pandemic Inflation (2022-2023): the Fed started its most severe
tightening cycle since the 1980s in reaction to the biggest inflation in 40 years, which was
caused by supply chain problems, the war in Ukraine, and pandemic stimulation. The Fed
increased the EFFR from approximately 0.25 percent to a target range of 5.25 to 5.50 percent
in less than a year, and it is still at this level as of mid-2024.

These facts are revealing in terms of showing that optimal interest rate response by the
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Fed relates to a specific value of T and, accordingly, to a certain degree aversion to undesirable
macroeconomic scenarios in terms of inflation and economic activity deviations from their
target values.

Additionally, the implied T series also report a consistent behavior with the US monetary
policy history observed in the estimation period (see Figure 4b). We observe how higher values
of T and low degrees of risk aversion by the Fed are the norm, with exceptional lower values of
7 and higher degrees of risk aversion related to macroeconomic critical and known events (for
a review of the history of monetary policy rules in the US, see Taylor (1999)).

These empirical findings allow us to remark some novel evidence. The dovish or hawkish
Fed’s behavior varies through time according to the economic, institutional and political con-
text prevailing in the US (see Eijffinger and Masciandaro (2018)). Although we observe that
during the great part of estimation period (1959-2025), the Fed’s monetary policy authorities
display a conduct that approximates more to dovish patterns, we also notice that in critical
circumstances, the Fed shows a hawkish stance.

Our theoretical and empirical contributions differ from the existent ones in the following
terms. We introduce a more flexible theoretical framework that maps the dovish/hawkish
stances of monetary policy regarding not only the variations of interest rates. Indeed, we
consider a more complex analytical framework which allows to define an undesirable macroe-
conomic scenario in terms of inflation and output deviations from optimal targets jointly.

5.2 Robustness and sensitivity analysis

To assess the robustness of our empirical findings, we conducted a battery of sensitivity checks
focusing on two main aspects: (i) the relative weight assigned to output stabilization in the
CB loss function, parameterized by A, and (ii) potential structural breaks in monetary policy
behavior associated with the Volcker regime shift. The results appear in the Tables 5 and 6
and Figure 6.

First, we explored the sensitivity of the estimated Taylor-type quantile rule to alternative
values of A € {0.5,1,2}. This exercise allows us to gauge whether the implied policy stance
and the inferred degree of risk aversion are contingent upon the assumed trade-off between
inflation and output stabilization. The results remained qualitatively stable across specifica-
tions. Lower values of A (0.5) led to slightly more aggressive responses to inflation deviations,
reflecting a relatively more hawkish stance, while higher values (2) induced smoother interest
rate paths, consistent with greater tolerance toward output fluctuations. Nevertheless, the
implied quantile-based preferences (T¢) maintained the same cyclical pattern, confirming that
the estimated policy reaction functions are not overly sensitive to moderate changes in the
structural weighting scheme.

Second, to account for potential regime shifts in the conduct of US monetary policy, we
re-estimated the baseline VAR and conditional heteroskedasticity models using a truncated
sample starting in the fourth quarter of 1979. This subsample captures the onset of the
Volcker disinflation episode, a well-documented structural change in the Fed’s reaction to
inflationary pressures. The results reported show that the estimated coefficients remain broadly
consistent with those of the full sample, with minor quantitative adjustments reflecting a
stronger disinflationary response of the Fed in the post-Volcker era. The inferred quantile
preferences confirm a temporary decline in Ty during the early 1980s, signaling a shift towards
higher risk aversion and more hawkish policy attitudes, followed by a gradual return to higher
Tt values consistent with a more dovish stance in subsequent decades.
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Table 5: VAR(1) Results - Post 1979

Baseline

Baseline + dummies

Inflation ()

Output gap (y)

Inflation ()  Output gap (y)

11 0.023*** —0.017 0.023*** —0.026
(0.008) (0.023) (0.009) (0.023)
1 0.615%** —0.093 0.614*** —0.128
(0.061) (0.165) (0.061) (0.162)
Yi_1 —0.016 0.879*** —0.015 0.863***
(0.014) (0.037) (0.014) (0.037)
Constant 0.144*** 0.054 0.145%** 0.177
(0.048) (0.130) (0.050) (0.133)
COVID 0.074 —0.872*
(0.171) (0.452)
GFC —0.051 —0.914***
(0.128) (0.338)
Observations 182 182 182 182
R? 0.545 0.760 0.546 0.773
Adjusted R? 0.537 0.756 0.533 0.766
Note: *p<0.1; **p<0.05; ***p<0.01

Table 6: Skedastic Models - Post 1979

Baseline Baseline + dummies
Wz @ i W
T 1 0.059 —0.514 0.104* 0.131
(0.065) (0.781) (0.059) (0.560)
Yi—1 —0.004 —0.358* 0.006 —0.216
(0.017) (0.209) (0.016) (0.150)
COVID 0.294 18.803***
(0.195) (1.836)
GFC 0.708*** 0.483
(0.146) (1.378)
Constant 0.082 1.049 0.015 0.119
(0.058) (0.707) (0.055) (0.518)
Observations 181 181 181 181
R? 0.005 0.020 0.128 0.396
Adjusted R? —0.006 0.009 0.108 0.382

Note:

*p<0.1; **p<0.05; ***p<0.01
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Figure 6: Robustness and sensitivity analysis
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Overall, both exercises confirm the internal consistency and empirical robustness of our
quantile-based Taylor rule. The results suggest that the main findings, the predominance of
dovish-type behavior with episodic hawkish responses are not artifacts of parameter calibration
or sample selection, but rather reflect persistent structural features of the US monetary policy.

6 Conclusions and discussion

The study of Taylor rules through quantile methods highlights that a one-size-fits-all linear rule
may be inadequate, with more nuanced, quantile-aware approaches needed to understand and
formulate policy, especially in diverse economic environments. A CB may not react linearly to
economic variables; its responses can vary significantly at different quantiles of the distribution.

The QU framework allows to study how independent variables (like policy tools) impact the
dependent variable (like interest rates) differently across the entire distribution of outcomes,
revealing heterogeneity in policy reactions. QU models explore how agents make decisions
under uncertainty by focusing on outcomes at different parts of the probability distribution,
while Taylor rules describe how the CBs set interest rates based on inflation and economic
output.

In this paper, we study optimal monetary policy when a CB maximizes a QU objective
rather than expected utility operator. In our framework, the CB’s risk attitude is indexed by
the quantile level tau, providing a transparent mapping between hawkish/dovish stances and
attention to adverse macroeconomic realizations. We formulate the infinite-horizon problem
using a Bellman equation with the quantile operator. Implementing an Euler-equation ap-
proach, we derive Taylor-rule-type reaction functions. The Taylor rule is recovered as a special
case when quantiles replace the expectation operator. An empirical implementation is outlined
based on reduced-form VAR(1) laws of motion with conditional heteroskedasticity, enabling
estimation of the new rule and its dependence on risk attitudes. It is important to note that
our analytical methodology makes the assumption that the policymaker’s statements are en-
tirely credible. Determining optimality criteria for establishing a Taylor rule inside the quintile
preference framework in the setting of monetary policy pronouncements lacking credibility is
a tenable extension of this study.

If the CB is relatively more risk averse, it would react more aggressively to downside risks
than to equivalent upside risks. If the CB is relatively less risk averse, policies are guided by
the possibility of good economic results. This could justify the risk management approach
often discussed at CBs.

Quantile preferences naturally incorporate concerns about tail risks that expected utility
might underweight. Moreover, risk attitudes might not be constant across time. Our model
allows us to identify risk aversion behavior through indirect inference, by mapping the observed
policy variables with the corresponding value in the optimal CB behavior.

Our empirical results for the US show that the Fed has mostly a dovish attitude over long
periods of time (higher T), but with hawkish attitudes in specific periods (lower T). These
periods coincide with regime changing events, like the oil crisis in the middle of the 1970s, the
Volcker new approach towards fighting inflation at the end of the 1970s, the global financial
crash of 2008, and the post COVID pandemia. As such, the implied risk aversion estimates
reveal important changes in the Fed preferences.

The policy implications are that focusing solely on the mean in economic modeling, as
many traditional Taylor rules applications do, can be misleading, as non-linear relationships
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and risk preferences (represented by QU) can significantly alter optimal monetary policy and
under specific conditions.
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