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Abstract

In this paper we explore the data on economic growth processes in the last

decades, assuming they follow Markov processes. We look for the regimes guiding

them and define Markov chains according to which the time series switch from one

regime to another. Our findings show that most of the growth processes are quite

stable in the sense of remaining most of the time in a dominant regime. Furthermore,

we do not find support for the hypothesis of convergence of economies. The main

conclusion of our analysis is that growth processes can be better understood in

terms of their idiosyncratic dominant regimes.

Keywords: Markov Process, Regime Switching, Economic Growth.

1 Introduction

Markov processes and, in particular, Markov chains have been applied to represent phe-

nomena in many different fields. Memoryless stochastic processes can be seen in the light

of these models, in which the future is conditioned only on the current state of the system

(Privault (2018), Gagniuc (2017)).

In Economics, Hamilton (1989) developed a tool for analyzing the switches of observ-

able variables between different regimes. For instance, between “high” and “low” levels of
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a time series. This Markov switching model allows to characterize how a non-stationary

series transitions between different regimes, drawing the probability distribution of the

switches between those regimes.

This approach allowed to study the properties of business cycles in different economies.

So Lam (1990) and Boldin (1996) showed that Markov switching models with two and

three regimes provided good forecasts of the cycles of the American economy. Filardo and

Gordon (1998) found that Markov switching provided good predictions of the duration

of cycles in the U.S. economy. Clements and Krolzig (2003) found similar results for

Australia, Canada, France, Germany, Japan and the U.K., while Buckle et al. (2004) did

the same for New Zealand. The approach has also been used to study (combined with

EGARCH) the impact of oil shocks on stock markets in Aloui and Jammazi (2009) and

to the detection of currency manipulation in Park and Kim (2019). While the accuracy

of the method has been criticized by Harding and Pagan (2003), in Artis et al. (2004)

a Markov switching vector autoregressive model was used to identify an European (i.e.

multi-country) business cycle.

In this paper we will apply this perspective to analyze the distribution and the dynam-

ics between different regimes in the context of the growth processes of a set of countries.

We are also interested in the way in which the growth rate is affected by the Markov chain

over regimes. While the regime switches are determined by the first eigenvalue, the com-

ponents of the corresponding eigenvector do not bode well as explanatory variables of the

actual values of per-capita growth rates. But other indexes derived from the transitions

matrix of the process show significant relations with growth rates. So, for instance, the

second eigenvalue, which is closely related to the mixing time in an ergodic process, has

a significant impact on the long-term behavior of that variable.

The aforementioned property of economic growth, jointly with the fact that few of

the real-world series of growth rates are non-stationary have relevant implications for the

understanding of this phenomenon. We focus on the spectral properties of the transition

matrix of Markov processes and their impact on the long-term behavior of growth series

and their stability, understood as the dominance of one its regimes. We also check whether

in the long run the economies tend to converge to similar average growth rates. This is

the so-called convergence hypothesis.1

The conclusion is that in most cases the processes guiding the growth of the economies

are quite stable, with one of the regimes largely prevailing over the other. Thus, the cases

of countries like Argentina, with frequent regime changes seem quite unusual. Our results

lead also to the rejection of the convergence hypothesis, since most countries remain under

their dominant regime, high for some and low for others.

We find that the stability of the growth processes is quite robust to the introduction of

1A weaker version assumes the existence of clubs of convergence Quah (1997).
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traditional explanatory variables, even those representing cross-country influences. This

indicates that stability seems to be an inherent property of an economy, as well as its

dominant regime.

The plan of this paper is as follows. We present the basics of the Markov switching

method in section 2. In section 3 we present the data of growth processes around the

world, the different indexes that can be derived from the matrix of transitions of the

corresponding Markov processes. We see these indexes as candidates to be explanatory

variables for average per-head growth. In Section 4 we presents the results of the cor-

responding OLS analysis. In subsection 4.1 we check the robustness of those results by

adding another determinants of growth. In section 5 we present the conclusions of this

study.

2 Markov Switching

Let us briefly recall what a Markov chain is. Consider a system with a finite number of

states 1, . . . , N , such that any period t ∈ N the distribution of possible instations of the

state variable st satisfies the following condition:

P {st = j|st−1 = i, st−2 = k, . . .} = P {st = j|st−1 = i} = pij

with pi1 + pi2 + · · ·+ piN = 1.

Thus, each pij represents the probability of the transition from state i to state j. It is

useful to express P as a left stochastic matrix:2

P =


p11 p21 · · · pN1

p12 p22 · · · pN2

...
... · · · ...

p1N p2N · · · pNN


In the case of a reduced number of states, a graphical representation comes handy to

understand the behavior of the process. Figures 1 and 2 represent Markov chains with

two and three states, respectively.

The transition matrix P is a useful tool to analyze the dynamics of process. So, for

instance, in the case of that P is irreducible, the steady state of the system is understood as

an N -components vector π = (π1, . . . , πN) such that each πi is the long-term probability

2The literature usually represents P as right stochastic matrix. The results in this paper are indepen-
dent of this choice.
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Figure 1: A two states Markov chain
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Figure 2: A three state Markov chain

of finding the system at state i. Then
∑N

i πi = 1. π satisfies the following condition:

Pπ = π

which can also be seen, if λ1 = 1 is the first eigenvalue of P , as indicating that π is its

associated eigenvector.

Now consider a time series {yt}t≥0. This means, in particular, that if the values are

drawn from a compact set Y , the distributions over Y at t, Ft and at any period t + k,

Ft+k do not necessarily verify that Ft = Ft+k.
3

This behavior can be interpreted as indicating that the values of yt go through different

regimes. Enumerating the regimes as 1, . . . , N , the behavior of the series can be described

as follows (Hamilton (1989), Hamilton (1994)):

yt − µs∗t = φ
(
yt−1 − µs∗t−1

)
+ εs (1)

where µs∗t ∈ Y corresponds to the state s∗t ∈ {1, . . . , N}. If s∗t = j and s∗t−1 = i, at t− 1,

3Note that this refers to the non-stationarity of the series of observable variables, not to the non-
observable states of the system.
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µi is followed in t by µj, with µi 6= µj. The transition from µs∗t−1
to µs∗t , corresponding to

transition from state j to state i has probability pij. Thus φ is a function that embodies

the combined action of P and, for each state i and period t, the conditional distribution

Ft(y|i).
Another possible specification is to switch between variances. The process can be still

expressed as in (1) but in this case if s∗t = i the process has σi and the same follows for

any state in {1, . . . , N} with σs∗t . Finally, we can include changes in mean and variance

for each regime.4

The one with the highest Akaike Information Criterion (AIC) is usually chosen. This

procedure embodies the idea that the model that captures better the behavior of the

system should be the one with the least loss of information.

Then, the behavior of the variable yt follows a random walk on the graph of the Markov

chain, specified by P and other significant variables, which we are interested to disclose

in the case of economic growth processes.

In the case of an ergodic Markov chain, there exists a positive probability of being at

any of the states. Furthermore, and according to the Perron-Frobenius theorem (Levin

and Peres (2017)), the corresponding transition P will have a single eigenvalue equal to

1, leading to a unique steady state distribution over states. The rest of the eigenvalues λ

are such that |λ| < 1.

Of the eigenvalues of ergodic Markov chains other than 1, the second largest, λ2, plays

a relevant role in defining the spectral gap. If λ1 = 1, the spectral gap is Sλ = λ1 − λ2 =

1− λ2.5

The Cheeger constant measures the connection among states in the Markov chain. It

is defined as follows Cheeger (1969):

χ = minE⊂{1,...,n},π(E)≤ 1
2

∑
j∈E,i∈Ec Pijπ(j)

π(E)
(2)

where E ∪ Ec = {1, . . . , N}, E ∩ Ec = ∅ and π(E) =
∑

i∈E π(i).

We can interpret χ as a measure of the (inverse) length of the mixing time. Letting

P t be the t-times product of P , the mixing time can be defined as the time t̂ such that

|P t̂π0−π| < ε for a given small constant ε, starting from any initial distribution π0. That

is, the lower χ, the longer time the series will take to converge, and, thus, the longer

the series will remain at a given state without transitioning to another state. Hence, χ

provides a notion of stability by measuring the amount of time at which the series remains

in the same state. In our case, it indicates whether an economy which is at a high growth

regime will remain growing at high rates for a long period afterwards.

4We allow 2 and 3 states with each state having it’s own mean and variance. More states can be used
for longer series if needed.

5An alternative definition of the spectral gap is as the smallest non-zero eigenvalue.
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Although useful, the computation of χ according to its definition is involved. Thus,

here it is where the spectral gap defined above becomes useful. Indeed, according to Alon

(1986), the Cheeger constant of a Markov chain can be related with its spectral gap by

means of the following equation

χ2

2
≤ Sλ ≤ 2χ. (3)

The condition in (3) implies that the smaller the spectral gap, the smaller must be χ, and,

thus, the lower the chance that the system switches from a set of states to its complement

set in a single iteration. Furthermore, a smaller Sλ makes the event that the system gets

out of its current state less probable. As a consequence, the time required for the system

to stabilize on a state increases.

For the problem we have at hand, all this means that the eigenvalues of P , inferred

from the analysis of the time series of growth rates of an economy, will provide us with

the information not only to say at which regime of growth is at a given time, but also to

determine the stability of its growth regimes. From this analysis, we can deduce whether

growth processes are stable, and if so, will allow us to predict which economies can be

expected to be in a high growth regime in the future.

3 Data and regimes

Our dataset consists of 87 time series of rates of growth of per capita GDP for all the

years of the 1960 to 2018 period, each one corresponding to a country with data reported

in World Bank (2019). These countries and their codes are enumerated in tables 1 and 2,

in which they are classified according to their levels of income, informed by the WB.

The first step in our analysis is to check whether these series are non-stationary. For

this, we run Augmented Dickey-Fuller tests for the null hypothesis of a unit root of a

univariate time series with one lag on three specifications of a linear model. One with a

trend but without drift, another with drift without trend and finally one with both drift

and trend. We find that the corresponding p-values under the three specifications of the

results allow to discard the hypothesis of non-stationarity of the growth series in 80 or

more series from among the 87 analyzed (see 8 in the Appendix).6

For each series we test six specifications of s∗t , described in table 3. They differ in the

number of states of the Markov process and a variable (or variables) that are associated

to each state. We consider the mean, the variance or both. Checked in the table are the

cases for which a change of state can be detected. We assign to each country the transition

matrix P corresponding to the most informative specification, i.e. the one yielding the

6Similar results are obtained with 0, 2 and 3 lags.
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Table 1: Countries, country code and income group

High Income Middle-High Income
Australia AUS Argentina ARG
Austria AUT Belize BLZ
Belgium BEL Brazil BRA
Chile CHL Botswana BWA
Denmark DNK China CHN
Spain ESP Colombia COL
Finland FIN Costa Rica CRI
France FRA Dominican Republic DOM
Great Britain GBR Algeria DZA
Greece GRC Ecuador ECU
Iceland ISL Egypt EGY
Israel ISR Fiji FJI
Italy ITA Gabon GAB
Japan JPN Guatemala GTM
Republic of Korea KOR Guyana GUY
Luxembourg LUX Mexico MEX
Netherlands NLD Malaysia MYS
Norway NOR Peru PER
Panama PAN Paraguay PRY
Puerto Rico PRI Suriname SUR
Portugal PRT Thailand THA
Singapore SGP Turkey TUR
Sweden SWE Saint Vincent and the Grenadines VCT
Seychelles SYC South Africa ZAF
Trinidad and Tobago TTO
Uruguay URY
United States USA

Note: Country names are shown with their corresponding World Bank acronyms.

Table 2: Countries, country code and income group

Middle-Low Income Low Income
Bangladesh BGD Burundi BDI
Bolivia BOL Benin BEN
Ivory Coast CIV Burkina Faso BFA
Cameroon CMR Central African Republic CAF
Republic of Congo COG Democratic Republic of the Congo COD
Ghana GHA Haiti HTI
Honduras HND Madagascar MDG
Indonesia IDN Malawi MWI
India IND Nigeria NER
Kenya KEN Nepal NPL
Lesotho LSO Rwanda RWA
Myanmar MMR Sierra Leone SLE
Mauritania MRT Chad TCD
Nigeria NGA Togo TGO
Nicaragua NIC
Pakistan PAK
Philippines PHL
Papua New Guinea PNG
Sudan SDN
Senegal SEN
Zambia ZMB
Zimbabwe ZWE

Note: Country names are shown with their corresponding World Bank acronyms.

lowest AIC index.

We derive from the corresponding matrix P nine different indexes, defined in table ??

It should be noted that, given that we have chosen the “optimal” Markov process for each
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Table 3: Specifications of s∗t

Specification States Mean Variance

(1) 2 X

(2) 2 X

(3) 2 X X

(4) 3 X

(5) 3 X

(6) 3 X X

country (as indicated by the AIC index), the computation of these indexes must take into

account whether P is a 2× 2 or a 3× 3 matrix.

Table 4: Indexes

(Trace)

Index 1 2 states 2− p11 − p22

3 states 3− p11 − p22 − p33

(Power)

Index 2 2 states (1− p11)2 + (1− p22)2

3 states (1− p11)2 + (1− p22)2 + (1− p33)2

(Square Root)

Index 3 2 states [(1− p11)2 + (1− p22)2]
1
2

3 states [(1− p11)2 + (1− p22)2 + (1− p33)2]
1
2

(Polynomial)

Index 4
2 states (1− p11)2 + (1− p22)2 + 2(1− p11)(1− p22)

3 states
(1− p11)2 + (1− p22)2 + (1− p33)2+

2(1− p11)(1− p22) + 2(1− p11)(1− p33) + 2(1− p22)(1− p33)

(Eigenvalue)

Index 5 2 states λ2

3 states λ2

(Eigenvalue*)

Index 6
3 states λ3

(1st Eigenvector)

Index 7 2 states 2 | (12 − π1) |

3 states | (13 − (max(π))) | + | (13 − (min(π))) |

(State Probability)

Index 8 2 states p11

3 states p11

(Cross Probability)

Index 9 2 states p12

3 states p12

The indexes obtained from P capture different aspects of the dynamic process. Indexes
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1 to 4 share a common pattern: a value of 0 means that every state is absorbing. The

farther the index is from 0 the less stable the series is, since switches between states

become more frequent. Indexes 5 and 6 use the eigenvalues of the transition matrix.

Index 5 is the second eigenvalue (λ2) of P and thus conveys the same information as the

spectral gap of the matrix. Index 6, the third eigenvalue (λ3), is only defined for 3-state

processes and also carries the information of the spectral gap, this time in its alternative

characterization as the smallest positive eigenvalue. In the case of these last two indexes,

as indicated in expression (3), values closer to 0 indicate that the process exhibits a fast

convergence to a steady distribution of probabilities. Index 7 is based on the eigenvector

π associated with λ1 = 1. It is defined in terms of the distance of the first component of

π (π1) to 1
2

when the process has 2 states and the sum of the distances of the maximum

and minimum components of π to 1
3

in the case of 3 states. In both cases a large value of

the index indicate that the process is more stable, understood as being more frequently

in a given state. Finally, the last two indexes capture aspects of the Cheeger constant,

representing either the probability of remaining in the first state or the probability of

transitioning from state 1 to another state.

Figures 7 depicts the correlogram between the different indexes7in the case of 2 × 2

transition matrixes. It can be seen that indexes 1 to 4 are highly and positively correlated

among them and highly but negatively correlated with indexes 5 and 8. That is, frequent

regime changes are associated to a slow convergence towards a steady distribution and to

a low probability of staying in the first state.

Table 7 in the Appendix presents the results for the sample of 87 countries plus the

World economy (the growth of the aggregate of the 87 countries in the sample). Each one

of the series has either two or three states, indicating their corresponding mean, standard

deviation (in parentheses) and the percentage of time that economy spends at each one.

The indexes defined in the previous section can be defined since all these Markov processes

are ergodic since any state in them can be reached with positive probability form any other

state in a finite number of steps. The states can be identified as regimes of growth.8

A first piece of evidence shows that the different regimes are not coordinated. The

evidence in table 7 shows that the dominant state (i.e. the one at which the system is

more frequently) is not uniformly the high or low one. Furthermore, the mean values

corresponding to the regimes in different economies are quite different. These two facts

seem to contradict the hypothesis of convergence among economies. As a support for this

claim, see Figure 10 in the Appendix, which depicts the distribution for mean growth

rates identified with the dominant regimes. Three features of this distribution are: i) the

normality test is rejected, ii) many countries are below zero and iii) the median is greater

7The other variables will become relevant in Section 4.
8From now on we will use indistinctly states or regimes to denote them.
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than the mean for this distribution (i.e. it is left skewed).

As an illustration, let us see the processes corresponding to Argentina, Australia and

the World economy. Their evolution in time are depicted in Figures 3, 4 and 5, respec-

tively. We can see that, Argentina and Australia are best modeled as being under two

regimes, each one depicted with a different color, while the World economy can be de-

scribed with three regimes. The gap between the lowest and highest regime is larger for

Argentina, which spent 76% of the time in the low regime, unlike Australia that not only

has a strictly positive lowest state but also stayed 86% of the period in the high regime.

Table 5 presents the values of the indexes computed for Argentina, Australia and

the World economy. According to the interpretation given above, we can see that under

indexes 1 to 4, Australia tends to switch less tan Argentina between states, while the

World seems to be subject to more frequent switches than the two countries. This is not

surprising considering that it results from aggregating a heterogeneous class of economies,

with very different dynamics. This is confirmed further by the values of index 7. In

turn, the values of index 5 indicate that Argentina seems to converge faster to a stable

distribution among the states, while Australia and especially the World, are slower to

converge to such distribution. This can be understood as that the latter two are more

prone to be subject to unforeseen contingencies while in Argentina the instability seems

inherent to the system. Finally, index 8 shows that Australia has a high probability of

staying in its high state, while Argentina has nearly the same chances of staying in its

higher state or going down to its lower one. In the case of the World, even with its

instability, has a slighty higher probability of staying in its higher state than Argentina.

The results of this exercise are consistent with studies comparing Argentina and Aus-

tralia (Gerchunoff and Fajgelbaum (2005) Esposto and Tohmé (2009)). The case of the

World economy is better analyzed in the context of the comparison with the behavior of

the entire sample, of which it is the aggregate.
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Figure 3: Growth of per capita GDP in Argentina and its estimated regimes
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Figure 4: Growth of per capita GDP in Australia and its estimated regimes

11



Year

GDPpc
Growth

−4

−2

0

2

4

6

Figure 5: Growth of per capita GDP in World and its estimated regimes

Table 5: Indexes of ARG and AUS

Index Argentina Australia World

Index 1 (Trace) 0.594 0.486 0.913

Index 2 (Power) 0.228 0.171 0.281

Index 3 (Square Root) 0.478 0.413 0.53

Index 4 (Polynomial) 0.353 0.236 0.833

Index 5 (Eigenvalue) 0.406 0.514 0.645

Index 6 (Eigenvalue*) - - 0.165

Index 7 (1st Eigenvector) 0.543 0.668 0.443

Index 8 (State Probability) 0.542 0.919 0.654

Index 9 (Cross Probability) 0.458 0.081 0.061

4 The impact of the indexes on average growth

The final step of our analysis involves seeing how the properties of the transition matrix

impact on the average growth rate of an economy. The workflow of our entire analysis is

captured in Algorithm 1.
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Algorithm 1 Workflow of the data analysis

1: Obtain the Markov Switching model for each country using the Expectation Maxi-
mization Algorithm (EM), Dempster et al. (1977), implemented in the R package MSwM
(Sanchez-Espigares and Lopez-Moreno (2018)).

2: Select the specification with the lower AIC.
3: Given the transition matrix of each country, compute the indexes described in Table

4.
4: Compute the average per capita GDP growth for each country (AvePCGrowth).
5: Run a standard OLS regression of the form:

� AvePCGrowthi = β0 + β1Indexi + εi

The results of running the regression on the 87 series are shown in table 8. Notice that

the p-values of the Breusch-Pagan test, all above 0.1, indicate that we cannot reject the

null hypothesis of homoskedasticity. We can also see that from our nine indexes, seven

are significant. Five of them at 1% (Trace, Power, Polynomial, Square Root, and State

Probability). Eigenvalue and p11 are significant at 5%. Finally, the third eigenvalue λ3

(in the case of 3-state processes) and the index derived from the first eigenvector are not

significant.

The interpretation of these results is that the average growth rate is affected by the

degree in which states are absorbing, represented also by the probabilities of staying at the

highest state. It is also impacted by the speed of convergence to a steady distribution of

states. Notice that while these results are rather unsurprising, they convey an important

insight: the systemic behavior of the growth rate, independently of other relevant variables,

has by itself an impact on its average value.

The evidence (graphically represented in figure 6) indicates clearly that frequent

changes of state are associated to lower average growth rates (the impact of indexes 1

to 4). On the other hand, a fast convergence towards a steady distribution (index 5) and

a high probability of staying at the highest state are related to higher average growth

rates.

4.1 Robustness

Traditional studies of economic growth processes emphasize on the impact of variables like

investment, exports, etc. (see, for instance, Sala-i Martin (1994), Sala-i Martin (1997),

Levine and Renelt (1992), Berg et al. (2018) and Caraballo et al. (2017)). A question

that can be raised is whether our previous results are an artifact of the omision of such

variables, leading to rather tautological results.

To check out this possibility we add as explanatory variables in our regressions both

traditional and non traditional determinants of growth, like investment, exports (both

measured as percentage of GDP), human capital (as percentage of enrollment in secondary

13
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(i) Index 9 (cross probability)

Figure 6: Economic Growth vs. Index values

Note: The x-axis represents the value of the corresponding index while the y-axis rep-
resents the average economic growth of the per capita GDP. Each country observation
is represented by an ×. The dashed lines stannd for the 0 in each axis. The thick line
represents the OLS regression fitted model.

schools), inequality (using the Gini index), per-head income in 1960 and inflation. All

the data is drawn from the World Bank statistics for the same period of time. Table 6

in the Appendix summarizes this information, indicating the number of observations, the
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values of the mean, standard deviation, minimum and maximum of the sample, as well

as the 25% and 75% percentiles.

A first piece of evidence is obtained by considering the correlogram in figure 7. We

can see that these new variables are rather uncorrelated with the indexes obtained above.

This suggests that the information in the indexes is not the same as in the more traditional

determinants of growth.
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The results of running the regression adding the new variables can be seen in table

9. Notice that the initial conditions in 1960 are significant in combination with all the

indexes, same as investment (except in one case) and human capital, having all of them

the expected signs.

With respect to the indexes, the ones reflecting the frequency of switchings (indexes

1 to 4) and the probability of staying in state 1 once there (index 7) are still highly

significant. On the other hand, the second eigenvalue losses significance, meaning that

the speed of convergence to a stable distribution losses explanatory power once investment

and human capital enter in the picture.

One interesting case is that of the regression in which the third eigenvalue is an ex-

planatory variable. Neither this index nor investment are significant while exports be-

comes significant. This could indicate that in economies with three regimes (the only

ones in which λ3 can be defined) international trade may be a relevant factor in defining

the average growth rate. But the data does not seem to provide much support for this

conjecture. In effect, as shown by the correlogram corresponding to index 6 (figure 9

in the Appendix), it is not correlated with exports or any other of the determinants of

growth included in this robustness check.

In any case, the takeaway of this exercise is that the results obtained by regressing

average growth on the indexes are not artifacts nor hide the impacts of far more relevant

variables. On the contrary, they indicate that the properties of P , reflecting an implicit

rule guiding the growth process, have an impact on the long-run behavior of economies.

5 Conclusion

In this paper, we have explore the behavior of economic growth processes as generated

by Markov dynamics in which states are associated to regimes. The evidence shows that

the following are properties of growth processes:

� The series are usually stationary.

� They have few (two or three) regimes.

� The Markov processes are ergodic.

� One of the regimes dominates the other. Each series stays much longer on the

dominant regime.

This means that growth processes are quite stable, in general. Thus, the high disper-

sion in regimes and their average values seems to indicate that there is little evidence of a

convergence process, as already hinted in Bickenbach and Bode (2003). Thus, economies
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seem to respond to the traditional determinants of growth as well as to their intrinsic

dominant regime of growth.

The main conclusion of this work is that in order to understand any particular growth

process it is relevant to focus on its dominant regime. Futher work is needed to understand

the fundamentals that explain why each economy has a particular structure of regimes

and which one is the dominant one.
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6 Appendix

Table 6: Descriptive Statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Ave. Growth 87 1.994 1.357 −1.382 1.262 2.521 6.814
Trace 87 0.744 0.643 0.020 0.200 1.118 2.800
Power 87 0.414 0.560 0.0004 0.025 0.622 2.640
Square Root 87 0.503 0.403 0.020 0.159 0.788 1.625
Polynomial 87 0.962 1.470 0.0004 0.040 1.250 7.839
Eigenvalue 87 0.654 0.373 −0.912 0.569 0.874 0.980
Eigenvalue* 47 0.263 0.382 −0.722 0.001 0.550 0.902
State Prob. 87 0.728 0.278 0.000 0.626 0.928 1.000
Cross Prob. 87 0.173 0.234 0.000 0.030 0.194 1.000
Eigenvector 87 0.507 0.289 0.028 0.266 0.724 0.999
Exports 81 31.180 24.095 7.170 17.706 39.018 168.261
GINI 80 42.001 8.766 26.405 34.791 48.306 61.714
HK 77 57.516 25.927 7.454 34.080 78.754 99.658
GDPPPP 83 10,458.760 14,694.290 254.652 1,091.698 12,762.650 66,938.730
GDPPC 1960 87 4,419.994 6,189.039 0.000 620.478 4,834.917 27,867.780
Investment 81 23.026 5.880 10.935 19.420 25.969 43.409
Inflation 80 19.820 48.958 1.073 4.646 11.615 309.122

Note: HK: Secondary Enrollment (%); Exports and Investment are presented as % of
the GDP.
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Figure 8: ADF test p-values for multiple specifications

The hight of the bars indicates the number of series satisfying the conditions.
Note: (Spec. 1) is a linear model with no drift and linear trend, (Spec. 2) is a linear
model with drift but no linear trend and (Spec. 3) is a linear model with both drift and
linear trend.
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Figure 10: Histogram of means of the dominant regimes

Note: Shapiro-Wilk normality test: W = 0.96419, p-value = 0.01652
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Table 7: Regimes

Country (Spec) Regime 1 Regime 2 Regime 3

ARG (1) 7.75 (0.26) , 24.1% −0.53 (0.75) , 75.9% —
AUS (1) 1.45 (0.45) , 86.2% 4.1 (1.21) , 13.8% —
AUT (2) 4.03 (0.27) , 39.7% 1.67 (0.27) , 60.3% —
BDI (4) 1.33 (0.32) , 36.2% −2.58 (0.39) , 24.1% 0.48 (1.46) , 39.7%
BEL (2) 4.4 (0.24) , 34.5% 1.53 (0.24) , 65.5% —
BEN (4) −1.05 (1.77) , 17.2% 2.17 (0.62) , 32.8% 1.23 (0.58) , 50%
BFA (2) 0.28 (1.01) , 51.7% 3.85 (1.01) , 48.3% —
BGD (1) −0.1 (1.53) , 50% 3.15 (0.38) , 50% — 0
BLZ (5) 2.38 (0.42) , 36.2% 8.6 (0.42) , 22.4% −0.73 (0.42) , 41.4%
BOL (2) 2.54 (0.63) , 84.5% −3.49 (0.63) , 15.5% —
BRA (1) 1.08 (0.49) , 84.5% 7.61 (1.17) , 15.5% —
BWA (1) 4.18 (0.5) , 86.2% 10.71 (3.29) , 13.8% —
CAF (5) −3.62 (3.43) , 1.7% 1.83 (3.43) , 74.1% −2.21 (3.43) , 24.1%
CHL (5) 3.89 (0.61) , 87.9% −9.97 (0.61) , 6.9% 1.45 (0.61) , 5.2%
CHN (1) 8.43 (0.41) , 62.1% 2.74 (2.63) , 37.9% —
CIV (2) −2.28 (0.82) , 56.9% 4.52 (0.82) , 43.1% —
CMR (4) −8.21 (1.06) , 12.1% 1.38 (0.19) , 63.8% 5.04 (1.89) , 24.1%
COD (1) 1.43 (0.63) , 53.4% −4.78 (1.86) , 46.6% —
COG (1) 0.31 (0.58) , 93.1% 7.01 (7.69) , 6.9% —
COL (5) 1.08 (1.23) , 56.9% −5.76 (1.23) , 1.7% 3.74 (1.23) , 41.4%
CRI (5) 3.28 (0.76) , 77.6% −6.89 (0.76) , 3.4% 0.92 (0.76) , 19%
DNK (1) 2.21 (0.39) , 82.8% 0.95 (0.22) , 17.2% —
DOM (3) 3.21 (0.52) , 36.2% 3.21 (0.52) , 63.8% —
DZA (6) 1.39 (0.27) , 17.2% 1.39 (0.27) , 51.7% 1.39 (0.27) , 31%
ECU (1) 1.09 (0.33) , 94.8% 8.89 (0.84) , 5.2% —
EGY (4) 2.39 (0.28) , 48.3% 0.28 (0.85) , 25.9% 5.81 (0.85) , 25.9%
ESP (4) −0.31 (0.73) , 25.9% 2.79 (0.37) , 44.8% 6.06 (0.69) , 29.3%
FIN (4) 4.58 (0.89) , 41.4% −1.21 (1.24) , 17.2% 2.3 (0.19) , 41.4%
FJI (4) 5.43 (1.41) , 5.2% 2.25 (0.52) , 87.9% −6.35 (0.77) , 6.9%
FRA (2) 0.95 (0.27) , 58.6% 3.93 (0.27) , 41.4% —
GAB (1) 0.58 (0.7) , 77.6% 5.09 (4.8) , 22.4% —
GBR (2) 2.58 (0.73) , 86.2% −1.64 (0.73) , 13.8% —
GHA (4) 1.6 (0.18) , 43.1% −1.62 (1.12) , 41.4% 3.97 (0.73) , 15.5%
GRC (5) 7.32 (1.25) , 22.4% 1.67 (1.25) , 69% −5.9 (1.25) , 8.6%
GTM (6) 1.36 (0.14) , 5.2% 1.36 (0.14) , 67.2% 1.36 (0.14) , 27.6%
GUY (4) −10.46 (5.76) , 5.2% 0.19 (2.5) , 50% 5.46 (2.97) , 44.8%
HND (1) 0.43 (0.65) , 53.4% 2.59 (0.31) , 46.6% —
HTI (4) −0.05 (0.55) , 51.7% 0.66 (0.33) , 22.4% −2.47 (0.5) , 25.9%
IDN (1) 0.8 (1.43) , 29.3% 4.37 (0.19) , 70.7% —
IND (1) 1.98 (0.58) , 77.6% 5.04 (0.38) , 22.4% —
ISL (5) −0.72 (2.5) , 43.1% 4.72 (2.5) , 19% 4.9 (2.5) , 37.9%
ISR (5) −0.18 (0.81) , 8.6% 1.71 (0.81) , 75.9% 7.85 (0.81) , 15.5%
ITA (5) 1.87 (4.13) , 32.8% 4.29 (4.13) , 53.4% −0.68 (4.13) , 13.8%
JPN (2) 9.11 (0.33) , 22.4% 1.99 (0.33) , 77.6% —
KEN (4) 3.07 (0.26) , 29.3% −0.86 (0.21) , 34.5% 3.2 (1.84) , 36.2%
KOR (1) 3.2 (0.84) , 44.8% 8.42 (0.46) , 55.2% —
LSO (3) 3.1 (0.4) , 53.4% 3.1 (0.4) , 46.6% —
LUX (4) 1.34 (0.33) , 58.6% 5.56 (0.71) , 32.8% −0.63 (0.92) , 8.6%
MDG (4) −0.82 (0.85) , 27.6% −5.28 (2.22) , 6.9% 0.33 (0.48) , 65.5%
MEX (4) 1.8 (0.31) , 60.3% −2.29 (1.89) , 17.2% 5.65 (0.59) , 22.4%
MMR (1) 8.27 (0.61) , 32.8% 1.04 (0.97) , 67.2% —
MRT (5) 0.47 (2.31) , 8.6% −0.47 (2.31) , 84.5% 15.5 (2.31) , 6.9%
MWI (4) 1.23 (0.21) , 36.2% −4.01 (1.12) , 8.6% 2.75 (0.79) , 55.2%
MYS (4) 3.94 (0.21) , 56.9% 1.84 (1.38) , 20.7% 6.65 (0.21) , 22.4%
NER (1) −19.25 (2.4) , 3.4% 0.09 (2.4) , 96.6% —
NGA (4) 0.37 (2.66) , 27.6% −0.06 (0.84) , 39.7% 3.69 (0.47) , 32.8%
NIC (1) −5.08 (2.95) , 20.7% 2.43 (0.61) , 79.3% —
NLD (4) 3.77 (0.5) , 39.7% 0.08 (0.53) , 25.9% 1.88 (0.16) , 34.5%
NOR (2) 3.77 (0.27) , 60.3% 0.82 (0.27) , 39.7% —
NPL (5) 3.01 (0.69) , 84.5% −2.19 (0.69) , 15.5% 2.54 (0.69) , 0%
PAK (1) 3.56 (0.42) , 56.9% 0.67 (0.58) , 43.1% —
PAN (5) 5.1 (1.66) , 67.2% 0.04 (1.66) , 31% −15.19 (1.66) , 1.7%
PER (4) 0.35 (0.73) , 44.8% −11.15 (1.54) , 6.9% 4.65 (0.51) , 48.3%
PHL (2) −9.79 (0.27) , 3.4% 2.29 (0.27) , 96.6% —
PNG (4) 4.89 (1.32) , 41.4% −2.05 (0.63) , 46.6% 4.42 (1.17) , 12.1%
PRI (5) 4.04 (0.31) , 34.5% 5.92 (0.31) , 25.9% −0.52 (0.31) , 39.7%
PRT (4) −0.04 (0.69) , 41.4% 6.86 (0.49) , 32.8% 3.26 (0.29) , 25.9%
PRY (5) 2.68 (0.71) , 72.4% 8.18 (0.71) , 12.1% −2.98 (0.71) , 15.5%
RWA (1) 2.93 (0.64) , 86.2% −2.82 (8.29) , 13.8% —
SDN (4) −1.57 (1.12) , 56.9% 11.36 (1.48) , 5.2% 3.43 (0.7) , 37.9%
SEN (4) 2.01 (0.43) , 55.2% 3.69 (0.12) , 3.4% −2.1 (0.91) , 41.4%
SGP (1) −4.21 (0.53) , 8.6% 5.89 (0.44) , 91.4% —
SLE (1) −1.09 (2.51) , 24.1% 1.53 (0.39) , 75.9% —
SUR (4) −1.49 (0.97) , 39.7% 9.58 (1.97) , 12.1% 2.57 (0.58) , 48.3%
SWE (4) −1.39 (1.19) , 15.5% 1.31 (0.25) , 24.1% 3.22 (0.33) , 60.3%
SYC (3) 3.02 (0.27) , 5.2% 3.02 (0.27) , 94.8% —
TCD (4) −0.8 (0.63) , 44.8% 1.35 (1.18) , 46.6% 2.24 (1.04) , 8.6%
TGO (1) 0.91 (0.88) , 87.9% 2.92 (0.21) , 12.1% —
THA (4) 3.57 (0.08) , 39.7% 2.49 (1.22) , 29.3% 7.36 (0.02) , 31%
TTO (2) −2.68 (0.67) , 24.1% 4.69 (0.67) , 75.9% —
TUR (4) −0.2 (1.87) , 32.8% 2.76 (0.49) , 34.5% 6.2 (0.47) , 32.8%
URY (1) −1.79 (1.71) , 31% 3.58 (0.69) , 69% —
USA (3) 1.99 (0.54) , 81% 1.99 (0.54) , 19% —
VCT (6) 2.54 (0.45) , 12.1% 2.54 (0.45) , 74.1% 2.54 (0.45) , 13.8%
ZAF (5) −3.01 (0.44) , 17.2% 0.9 (0.44) , 50% 3.09 (0.44) , 32.8%
ZMB (1) 3.08 (0.65) , 25.9% −1.1 (0.78) , 74.1% —
ZWE (4) 12.75 (1.5) , 12.1% 0.98 (0.64) , 70.7% −7.65 (2.39) , 17.2%

WLD (4) 0.13 (0.45) , 25.9% 1.72 (0.15) , 36.2% 3.12 (0.53) , 37.9%
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