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Abstract

In a many-to-many matching model in which agents’ preferences satisfy substi-
tutability and the law of aggregate demand, we present an algorithm to compute
the full set of stable matchings. This algorithm relies on the idea of “cycles in pref-
erences” and generalizes the algorithm presented in Roth and Sotomayor (1990)
for the one-to-one model.

JEL classification: C78, D47.

Keywords: Stable matchings, cyclic matching, substitutable preferences.

1 Introduction

In many-to-many matching models, there are two disjoints sets of agents: firms and
workers. Each firm wishes to hire a set of workers and each worker wishes to work for
a set of firms. Many real-world markets are many-to-many, for instance, the market for
medical interns in the UK (Roth and Sotomayor, 1990), the assignment of teachers to
high schools in some countries (35% of teachers in Argentina work in more than one
school). A matching is an assignment of sets of workers to firms, and of sets of firms to
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workers, so that a firm is assigned to a worker if and only if this worker is also assigned
to that firm. In these models, the most studied solution is the set of stable matchings.
A matching is stable if all agents are matched to an acceptable subset of partners and
there is no unmatched firm-worker pair, both of which would prefer to add the other
to their current subset of partners.1 In their seminal paper, Gale and Shapley (1962)
introduce the Deferred Acceptance (DA, from now on) algorithm to show the existence
of a stable matching in the one-to-one model. This algorithm computes the optimal
stable matching for one side of the market. Later, the DA algorithm is adapted to the
many-to-many case by Roth (1984).

In this paper, we present an algorithm to compute the full set of many-to-many sta-
ble matchings. In the one-to-one model, beginning from a stable matching and through
a procedure of reduction of preferences, Roth and Sotomayor (1990) define a “cycle in
preferences” that allows them to generate a new matching, called a “cyclic matching”,
that turns out to be stable.2 They present an algorithm that, starting from an optimal
stable matching for one side of the market and by constructing all cycles and its cor-
responding cyclic matchings, computes the full set of one-to-one stable matchings (see
Irving and Leather, 1986; Gusfield and Irving, 1989; Roth and Sotomayor, 1990, for
more details). The purpose of our paper is to extend Roth and Sotomayor’s construc-
tion to a many-to-many environment.

Our general framework assumes substitutability on all agents’ preferences. This
condition, first introduced by Kelso and Crawford (1982), is the weakest requirement
in preferences in order to guarantee the existence of many-to-many stable matchings.
An agent has substitutable preferences when she wants to continue being matched to
an agent of the other side of the market even if other agents become unavailable. Given
an agent’s preference, Blair (1988) defines a partial order over subsets of agents of the
other side of the market as follows: one subset is Blair-preferred to another subset if,
when all agents of both subsets are available, only the agents of the first subset are
chosen.3 When preferences are substitutable, the set of stable matchings has a lattice
structure with respect to the unanimous Blair order for any side of the market.4

In addition to substitutability, we require that agents’ preferences satisfy the “law
of aggregate demand" (LAD, from now on).5 This condition says that when an agent
chooses from an expanded set, it selects at least as many agents as before. Under these
two assumptions on preferences, the set of stable matchings satisfies the so-called Ru-

1This notion of stability is known in the literature as “pairwise stability”.
2Roth and Sotomayor (1990) adapt the algorithm presented in Irving and Leather (1986).
3Blair’s order of an agent is more restrictive than the individual preference of that agent.
4For instance, a set of workers is Blair-preferred to another set of workers for the firms if the first set

is Blair-preferred to the latter set for each firm.
5This property is first studied by Alkan (2002) under the name of “cardinal monotonicity". See also

Hatfield and Milgrom (2005).
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ral Hospitals Theorem, which states that each agent is matched with the same number
of partners in every stable matching. Substitutability of preferences and the law of
aggregate demand ensure that suitable generalizations of the concepts of “cycle” and
“cyclic matching” can be defined. To do this, given a substitutable preference pro-
file and two stable matchings that are unanimously Blair-comparable (for one side of
the market), we define a “reduced preference profile” with respect to these two stable
matchings and show that this profile is also substitutable and satisfies LAD. Next, we
adapt Roth and Sotomayor’s notion of a cycle for our reduced preference profile and
use this many-to-many notion of a cycle to define a cyclic matching. This new match-
ing turns out to be stable not only for this reduced preference profile but also for the
original preference profile. With all these ingredients we can describe our algorithm
as follows. Given a preference profile, by the DA algorithm compute the two optimal
stable matchings, one for each side of the market. Pick one side of the market, say
the firms’ side, and obtain the reduced preference profile with respect to the firms’ op-
timal and the workers’ optimal stable matchings. In each of the following steps, for
each reduced preference profile obtained in the previous step, compute: (i) each cycle
for this profile, (ii) its corresponding cyclic matching, and (iii) the reduced preference
profile with respect to this cyclic matching and the worker optimal stable matching.
The algorithm stops in the step where all the cyclic matchings computed are equal
to the worker optimal stable matching. The firms’ optimal stable matching together
with all the cyclic matchings obtained by the algorithm encompass the full set of stable
matchings.

Several papers calculate the full set of stable matchings in two-sided matching mod-
els. McVitie and Wilson (1971) are the first to present an algorithm that computes
the full set of one-to-one stable matchings. This algorithm starts at the optimal sta-
ble matching for one side of the market and then, at each step, breaks some matched
pair and applies the DA algorithm to the new preference profile in which the broken
matched pair is no longer acceptable. This algorithm is generalized by Martínez et al.
(2004) to a many-to-many matching market in which agents’ preferences satisfy sub-
stitutability. Extending the approach in Irving and Leather (1986), Cheng et al. (2008)
compute the full set of stable matchings for a many-to-one model in which all agents
have a strict ordering over the agents of the other side of the market.6 They make use of
some results first presented by Bansal et al. (2007). Dworczak (2021), in the one-to-one
model, generalizes the DA algorithm allowing both sides of the market to make offers
in a specific ordering. He proposes a generalized DA algorithm with “compensation
chains” and proves that: (i) for each order of the agents, the algorithm obtains a stable

6This setting is equivalent to the one defined by Roth (1985) for the many-to-one model in which
firms have responsive preferences over subsets of workers.
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matching, and (ii) each stable matching can be obtained as the output of the algorithm
for some order of the agents.

The paper is organized as follows. In Section 2 we present the preliminaries. The
reduction procedure of preferences is presented in Section 3. Section 4 contains the def-
inition of a cycle in preferences together with the algorithm that computes the many-to-
many stable set. Concluding remarks are gathered in Section 5. All proofs are relegated
to Appendix A.

2 Preliminaries

We consider many-to-many matching markets where there are two disjoint sets of
agents: the set of firms F and the set of workers W. Each firm f ∈ F has a strict
preference relation Pf over the set of all subsets of W. Each worker w ∈ W has a strict
preference relation Pw over the set of all subsets of F. We denote by P the preference
profile for all agents: firms and workers. A (many-to-many) matching market is de-
noted by (F, W, P). Since the sets F and W are kept fixed throughout the paper, we often
identify the market (F, W, P) with the preference profile P. Given an agent a ∈ F ∪W,
a set S in the opposite side of the market is acceptable for a under P if SPa∅. A pair
( f , w) ∈ F×W is mutually acceptable under P if { f } is acceptable for w under P and
{w} is acceptable for f under P. In this paper, the preference relation Pa is represented
by the ordered list of its acceptable sets (from most to least preferred).7 Given a set
of workers W ′ ⊆ W and a firm f ∈ F, let C f (W ′) (the choice set for f ) denote firm
f ’s most preferred subset of W ′ according to the preference relation Pf . Symmetrically,
given a set of firms F′ ⊆ F and a worker w ∈ W, let Cw(F′) (the choice set for w)
denote worker w’s most preferred subset of F′ according to the preference relation Pw.

Definition 1 A matching µ is a function from the set F ∪W into 2F∪W such that for each
w ∈W and for each f ∈ F:

(i) µ(w) ⊆ F,

(ii) µ( f ) ⊆W,

(iii) w ∈ µ( f ) if and only if f ∈ µ(w).

Agent a ∈ F ∪W is matched if µ(a) 6= ∅, otherwise she is unmatched. For the fol-
lowing definitions, fix a preference profile P. A matching µ is blocked by agent a if
µ(a) 6= Ca(µ(a)). A matching is individually rational if it is not blocked by any indi-
vidual agent. A matching µ is blocked by a firm-worker pair ( f , w) if w /∈ µ( f ), w ∈

7For instance, Pf : w1w2, w3, w1, w2 indicate that {w1, w2}Pf {w3}Pf {w1}Pf {w2}Pf ∅ and Pw :
f1 f3, f3, f1 indicates that { f1, f3}Pw{ f3}Pw{ f1}Pw∅.
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C f (µ( f ) ∪ {w}), and f ∈ Cw(µ(w) ∪ { f }). A matching µ is stable if it is not blocked
by any individual agent or any firm-worker pair. The set of stable matchings for a
preference profile P is denoted by S(P).

Agent a’s preference relation satisfies substitutability if, for each subset S of the
opposite side of the market (for instance, if a ∈ F then S ⊆ W) that contains agent
b, b ∈ Ca(S) implies that b ∈ Ca(S′ ∪ {b}) for each S′ ⊆ S. Moreover, if agent a’s
preference relation is substitutable then it holds that

Ca(S ∪ S′) = Ca(Ca(S) ∪ S′) (1)

for each pair of subsets S and S′ of the opposite side of the market.8

Given a firm f , Blair (1988) defines a partial order for f over subsets of workers
as follows: given firm f ’s preference relation Pf and two subsets of workers S and
S′, we write S � f S′ whenever S = C f (S ∪ S′), and S � f S′ whenever S � f S′ and
S 6= S′. The partial orders �w and �w for worker w are defined analogously. Given a
preference profile P and two matchings µ and µ′, we write µ �F µ′ whenever µ( f ) � f

µ′( f ) for each f ∈ F, and we write µ �F µ′ if, in addition, µ 6= µ′.9 Similarly, we define
�W and �W .

The set of stable matchings under substitutable preferences is very well structured.
Blair (1988) proves that this set has two lattice structures, one with respect to �F and
the other one with respect to �W . Furthermore, it contains two distinctive matchings:
the firm-optimal stable matching µF and the worker-optimal stable matching µW . The
matching µF is unanimously considered by all firms to be the best among all stable
matchings and µW is unanimously considered by all workers to be the best among
all stable matchings, according to the respective Blair’s partial orders (see Roth, 1984;
Blair, 1988, for more details).

Agent a’s preference relation satisfies the law of aggregate demand (LAD) if for all
subsets S of the opposite side of the market and all S′ ⊆ S, |Ca(S′)| ≤ |Ca(S)|.10 When
preferences are substitutable and satisfy LAD, the lattices (S(P),�F) and (S(P),�W)

are dual; that is, µ �F µ′ if and only if µ′ �W µ for µ, µ′ ∈ S(P). This is known as the
“polarization of interests” result (see Alkan, 2002; Li, 2014, among others). Throughout
this paper, we assume that the preferences of all agents are substitutable and satisfy
LAD.

8See Proposition 2.3 in Blair (1988), for more details.
9We call �F the unanimous Blair order for the firms.

10|S| denotes the number of agents in S.
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3 The reduction procedure

In this section, we present a reduction procedure that will allow us to define a cycle in
preferences, a concept that is essential for developing our algorithm. Given a substi-
tutable preference profile and two Blair-comparable (for the firms) stable matchings,
this reduction procedure generates a new preference profile, in which the most Blair-
preferred stable matching is the firm-optimal matching and the least Blair-preferred
stable matching is the worker-optimal matching, for the market identified with this
new preference profile. The reduction procedure is described as follows. Let µ and µ̃

be stable matchings for matching market (F, W, P) such that µ �F µ̃.

Step 1: (a) For each f ∈ F, each W ′ ⊂W such that W ′ � f µ( f ), and each w̃ ∈W ′ \ µ( f ),
remove each W̃ ⊂ W such that w̃ ∈ W̃ from f ’s list of acceptable sets of
workers.

(b) For each w ∈ W, each F′ ⊂ F such that F′ �w µ̃(w), and each f̃ ∈ F′ \ µ̃(w),
remove each F̃ ⊂ F such that f̃ ∈ F̃ from w’s list of acceptable sets of firms.

Step 2: (a) For each f ∈ F, each W ′ ⊂W such that µ̃( f ) � f W ′, and each w̃ ∈W ′ \ µ̃( f ),
remove each W̃ ⊂ W such that w̃ ∈ W̃ from f ’s list of acceptable sets of
workers.

(b) For each w ∈ W, each F′ ⊂ F such that µ(w) �w F′, and each f̃ ∈ F′ \ µ(w),
remove each F̃ ⊂ F such that f̃ ∈ F̃ from w’s list of acceptable sets of firms.

Step 3: After Steps 1 and 2 are performed, if f is not acceptable for w (that is, if { f } is not
on w’s preference list as now modified), remove each W ′ ⊂ W such that w ∈ W ′

from f ’s list of acceptable sets of workers. If w is not acceptable for f (that is, if
{w} is not on f ’s preference list as now modified), remove each F′ ⊂ F such that
f ∈ F′ from w’s list of acceptable sets of firms.

The profile obtained by this procedure is called the reduced preference profile with
respect to µ and µ̃, and is denoted by Pµ,µ̃. When µ̃ = µW , the profile is simply called
the reduced preference profile with respect to µ, and is denoted by Pµ.

Let us put in words how the reduction procedure works. In Step 1 (a), for each
f ∈ F, if a worker is not in µ( f ) but belongs to a subset that is Blair-preferred to
µ( f ), the procedure eliminates each subset that contains this worker from firm f ’s list
of acceptable subsets. Step 1 (b) performs an analogous elimination in each worker’s
preference list. In Step 2 (a), for each f ∈ F, if a worker is not in µ̃( f ) and µ̃( f ) is Blair-
preferred to a subset that includes this worker, the procedure eliminates each subset
that contains this worker from firm f ’s list of acceptable subsets. Step 2 (b) performs
an analogous elimination in each worker’s preference list. In Step 3, after Step 1 and
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Step 2 are performed, the procedure eliminates all subsets of agents needed in order to
make all pairs of agents mutually acceptable.

By Cµ,µ̃
f (W ′) we denote the firm f ’s most preferred subset of W ′ according to the

preference relation Pµ,µ̃
f . Similar notation is used for the choice sets according to the

preference relations Pµ,µ̃
w , Pµ

f , and Pµ
w. Some remarks on the reduced preference rela-

tions are in order.

Remark 1 Let P be a market and assume µ, µ̃ ∈ S(P). Then the following statements hold.

(i) µ ( f ) is the most preferred subset of workers in f ’s reduced preference relation (i.e. µ ( f ) =
Cµ,µ̃

f (W)) and µ̃(w) is the most preferred subset of firms in w’s reduced preference relation

(i.e. µ̃ (w) = Cµ,µ̃
w (F)).

(ii) µ is the firm–optimal stable matching under Pµ,µ̃ and µ̃ is the worker–optimal stable
matching under Pµ,µ̃. Furthermore, µ̃ is the firm–pessimal stable matching under Pµ,µ̃

and µ is the worker–pessimal stable matching under Pµ,µ̃.

(iii) f is acceptable to w if and only if w is acceptable to f under Pµ,µ̃.

The following lemma states that the properties of substitutability and LAD are pre-
served by the reduction procedure.

Lemma 1 Let µ, µ̃ ∈ S(P) and a ∈ F ∪W. If Pa is substitutable and satisfies LAD, then the
reduced preference relation Pµ,µ̃

a is substitutable and satisfies LAD.

The following example illustrates the reduction procedure for a matching market.

Example 1 Let (F, W, P) be a matching market where F = { f1, f2, f3}, W = {w1, w2, w3, w4,
w5, w6}, and the preference profile is given by:

Pf1 : w1w2, w1w5, w2w5, w1w3, w4w5, w2w4, w1w4, w3w4, w3w5, w2w3, w1, w4, w3, w2, w5

Pf2 : w3w6, w3w5, w5w6, w2w5, w1w3, w2w6, w1w5, w1w2, w2w3, w1w6, w1, w2, w3, w5, w6

Pf3 : w2w4, w1w2, w3w4, w2w3, w1w3, w1w4, w1, w2, w3, w4

Pw1 : f3, f1, f2

Pw2 : f2 f3, f1 f3, f1 f2, f1, f2, f3

Pw3 : f1, f2

Pw4 : f1, f3, f2

Pw5 : f2, f3

Pw6 : f1 f3, f3, f1

It is easy to check that these preference relations are substitutable and satisfy LAD. By the DA
algorithm, we obtain the two optimal stable matchings:
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µF =

(
f1 f2 f3 ∅

w1w2 w3w5 w2w4 w6

)
and µW =

(
f1 f2 f3 ∅

w3w4 w2w5 w1w2 w6

)
.

Now, after the reduction procedure is performed, we obtain the reduced preference profile with

respect to µF, PµF :11

PµF
f1

: w1w2, w1w3, w2w4, w1w4, w3w4, w2w3, w1, w4, w3, w2

PµF
f2

: w3w5, w2w5, w2w3, w2, w3, w5

PµF
f3

: w2w4, w1w2, w1w4, w1, w2, w3, w4

PµF
w1 : f3, f1

PµF
w2 : f2 f3, f1 f3, f1 f2, f1, f2, f3

PµF
w3 : f1, f2

PµF
w4 : f1, f3

PµF
w5 : f2

PµF
w6 : ∅

In order to show how each stage of the procedure works, we turn our attention to preferences
Pf1 and Pf2 . At Step 1 of the reduction procedure we remove the following subsets of agents:

Pf1 : w1w2, w1w5, w2w5, w1w3, w4w5, w2w4, w1w4, w3w4, w3w5, w2w3, w1, w4, w3, w2, w5

Pf2 :���w3w6, w3w5,���w5w6, w2w5, w1w3,���w2w6, w1w5, w1w2, w2w3,���w1w6, w1, w2, w3, w5,��w6.

At Step 2 of the reduction procedure we remove the following subsets of agents:

Pf1 : w1w2, w1w5, w2w5, w1w3, w4w5, w2w4, w1w4, w3w4, w3w5, w2w3, w1, w4, w3, w2, w5

Pf2 : w3w5, w2w5,XXXw1w3,XXXw1w5,XXXw1w2, w2w3,HHw1, w2, w3, w5.

Since f1 is not acceptable for w5 at the original preferences, f1 is not acceptable for w5 after
Steps 1 and 2 are performed. So at Step 3 we remove the following subsets of agents:

Pf1 : w1w2,���XXXw1w5,���XXXw2w5, w1w3,���XXXw4w5, w2w4, w1w4, w3w4,���XXXw3w5, w2w3, w1, w4, w3, w2,��HHw5

Pf2 : w3w5, w2w5, w2w3, w2, w3, w5.

In this way we obtain PµF
f1

and PµF
f2

. ♦

The following theorem states that the stability of a matching is preserved by the
reduction procedure and that there are no new stable matchings for the reduced pref-
erence profile. This means that a stable matching in the original preference profile
is in between (according to Blair’s partial order) of the two stable matchings used to
generate the reduced preference profile if and only if it is also stable in the reduced
preference profile.12

11Notice that the subsets assigned in the optimal stable matchings are in bold.
12Recall that �F and �W are dual orders only in the set of stable matchings.
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Theorem 1 Let µ, µ̃ ∈ S(P) with µ �F µ̃. Then, µ′ ∈ S(P) and µ �F µ′ �F µ̃ if and only if
µ′ ∈ S(Pµ,µ̃).

Notice that by optimality of µF and µW , any stable matching µ ∈ S(P) satisfies
µF �F µ and µW �W µ. Furthermore, by the polarization of interests, µ �F µW . Then,
µF �F µ �F µW . Thus, as a consequence of Theorem 1 we can state the following
corollary.

Corollary 1 S(P) = S(PµF).

4 Cycles and algorithm

In this section, we present the algorithm to compute the full set of many-to-many stable
matchings. First, we introduce its key ingredients: the notion of a cycle in preferences
and its corresponding cyclic matching.

4.1 Cycles and cyclic matchings

In the one-to-one model, Roth and Sotomayor (1990) present the notion of a cycle in
preferences.13 Their construction can be roughly explained as follows. Consider a
one-to-one matching market (M, W, P) and a stable matching µ ∈ S(P). A reduced
preference profile with respect to µ and the worker-optimal stable matching µW , say
Pµ,µW , is obtained. The important facts about this reduced profile are that: (i) µ( f ) is f ’s
most preferred partner and µW( f ) is f ’s least preferred partner according to Pµ,µW

f , for
each f ∈ F; and (ii) µW(w) is w’s most preferred partner and µ(w) is w’s least preferred
partner according to Pµ,µW

w , for each w ∈ W. A cycle for Pµ,µW in the one-to-one model
can be seen as an ordered sequence of worker-firm pairs {(w1, f1), (w2, f2), . . . , (wr, fr)}
such that wi = µ( fi) and wi+1 is fi’s most-preferred worker of W \ {wi} according to
Pµ,µW

fi
. Our definition of a cycle generalizes this idea to the many-to-many environment.

Formally,

Definition 2 Let µ, µ̃ ∈ S(P) with µ �F µ̃. A cycle σ for Pµ,µ̃ is an ordered sequence of
worker-firm pairs σ = {(w1, f1), (w2, f2), . . . , (wr, fr)} such that, for i = 1, . . . , r, we have:

(i) wi ∈ µ( fi) \ µ̃( fi),

(ii) Cµ,µ̃
fi

(W \ {wi}) = (µ( fi) \ {wi}) ∪ {wi+1}, with wr+1 = w1, and

(iii) Cµ,µ̃
wi (µ(wi) ∪ { fi−1}) = (µ(wi) \ { fi}) ∪ { fi−1}, with f0 = fr.

13Roth and Sotomayor (1990) adapt the notion of rotation presented in Irving and Leather (1986), and
refer to it as a cycle in preferences.
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Condition (i) states that worker wi is matched with fi under µ but not under µ̃. Con-
dition (ii) states that the set obtained from µ( fi) by eliminating worker wi and adding
worker wi+1 is the most Blair-preferred subset of workers of W \ {wi} that contains
wi+1, according to Pµ,µ̃

fi
. Condition (iii) mimics Condition (ii) for the other side of the

market: it states that the set obtained from µ(wi) by eliminating firm fi and adding firm
fi−1 is the least Blair-preferred subset of firms among those that are Blair-preferred to
µ(w) and contains fi−1, according to Pµ,µ̃

wi . Notice that Condition (iii) is not needed in
the one-to-one model.

In the rest of this section, we state four propositions that are essential to show that
the algorithm computes the full set of stable matchings. All the proofs are relegated to
the appendix. The following proposition gives a necessary and sufficient condition for
the existence of a cycle in a reduced preference profile.

Proposition 1 Let µ, µ̃ ∈ S(P) with µ �F µ̃. There is a cycle for Pµ,µ̃ if and only if µ 6= µ̃.

In the one-to-one model, a cycle {(w1, f1), (w2, f2), . . . , (wr, fr)} for Pµ,µW can be
used to obtain a new matching from matching µ by breaking the partnership between
firm fi and worker wi and establishing a new partnership between firm fi and worker
wi+1 for each i = 1, . . . , r (modulo r), keeping all remaining partnerships in µ un-
affected. This new matching is called a cyclic matching. Using our many-to-many
version of a cycle, we generalize the concept of cyclic matching in a straightforward
way:

Definition 3 Let µ, µ̃ ∈ S(P) with µ �F µ̃, and let σ = {(w1, f1), (w2, f2), . . . , (wr, fr)} be
a cycle for Pµ,µ̃. The cyclic matching µσ under Pµ,µ̃ is defined as follows: for each f ∈ F

µσ ( f ) =


[
µ( f ) \ {wi : f = fi}

]⋃{wi+1 : f = fi} if f ∈ σ

µ( f ) if f /∈ σ,

and for each w ∈W, µσ(w) = { f ∈ F : w ∈ µσ( f )}.

For Example 1, we illustrate how to compute a cycle and its corresponding cyclic
matching.
Example 1 (Continued) σ1 = {(w1, f1), (w4, f3)} is a cycle for PµF in Example 1. To see
this, we show that each worker-firm pair in σ1 satisfies (i), (ii) and (iii) of Definition 2.

(i) By inspection, w1 ∈ µF( f1) \ µW( f1) and w3 ∈ µF( f3) \ µW( f3).

(ii) C f1(W \ {w1}) = CµF
f1
({w2, w3, w4, w5, w6}) = {w2, w4} = (µF( f1) \ {w1}) ∪

{w2},

C f3(W \ {w4}) = CµF
f3
({w1, w2, w3, w5, w6}) = {w1, w2} = (µF( f3) \ {w4}) ∪

{w1}.
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(iii) CµF
w1(µF(w1) ∪ { f3}) = CµF

w1({ f1, f3}) = { f3} = (µF(w1) \ { f1}) ∪ { f3},

CµF
w4(µF(w4) ∪ { f1}) = CµF

w4({ f3, f1}) = { f1} = (µF(w4) \ { f3}) ∪ { f1}.

Now, we compute its associated cyclic matching µσ1 . Since f1 and f3 are firms in σ1, then
µσ1( f1) = (µF( f1) \ {w1}) ∪ {w2} = {w2, w4} and µσ1( f3) = (µF( f3) \ {w4}) ∪ {w1} =

{w1, w2}. Thus, µσ1 =

(
f1 f2 f3 ∅

w2w4 w3w5 w1w2 w6

)
. ♦

In the next proposition, we state that each cyclic matching under a reduced prefer-
ence profile is stable for that same reduced preference profile.

Proposition 2 Let µ, µ̃ ∈ S(P) with µ �F µ̃ and let µ′ be a cyclic matching under Pµ,µ̃.
Then, µ′ ∈ S(Pµ,µ̃).

The following proposition says that, given two Blair-comparable stable matchings,
there is a cyclic matching under the reduced preference profile with respect to the Blair-
preferred one that is, either the least preferred of the two given stable matchings, or a
matching in between the two (with respect to the unanimous Blair order).

Proposition 3 Let µ, µ′ ∈ S(P) with µ �F µ′. Then, there is a cyclic matching µσ under Pµ

such that µ �F µσ �F µ′.

Finally, we state the last proposition before presenting the algorithm. It says that
each stable matching for the original preference profile, different from the firm-optimal
stable matching, is always a cyclic matching under a reduced preference profile with
respect to some other stable matching.

Proposition 4 Let µ′ ∈ S(P) \ {µF}. Then, there is µ ∈ S(P) such that µ′ is a cyclic
matching under Pµ.

4.2 The algorithm

We are now in a position to present our algorithm. Before that, we briefly explain it.
Given a matching market (F, W, P), by the DA algorithm we compute the two optimal
stable matchings, µF and µW . If the two optimal stable matchings are equal, the algo-
rithm stops and the market has only this stable matching. If they are different, for the
firms’ side, we obtain the reduced preference profile with respect to µF, PµF . In each of
the following steps, proceed as follows. For each reduced preference profile obtained
in the previous step, we compute the following things: (i) each cycle for this profile; (ii)
for each cycle, its corresponding cyclic matching; and (iii) for each cyclic matching, the
reduced preference profile with respect to this cyclic matching. The algorithm stops at
the step in which all the cyclic matchings computed are equal to the worker optimal
stable matching. Formally,

11



Algorithm:

Input A many-to-many matching market (F, W, P)
Output The set of stable matchings S(P)

Step 1 Find µF and µW (by the DA algorithm)
and set S(P) := {µF, µW}

IF µF = µW ,
THEN STOP.

ELSE obtain PµF and continue to Step 2.
Step t For each reduced preference profile Pµ obtained in Step t− 1,

find all cycles for Pµ and for each cycle obtain its cyclic matching
under Pµ and include it in S(P).

IF each cyclic matching obtained in this step is equal to µW ,
THEN STOP.

ELSE for each cyclic matching µ′ 6= µW , obtain the reduced
preference profile Pµ′ and continue to Step t + 1.

Notice that this algorithm stops in a finite number of steps by the finiteness of the
market. Now, we present the main result of the paper. It states that the firms’ opti-
mal stable matching together with all the cyclic matchings obtained by the algorithm
encompass the full set of stable matchings.

Theorem 2 For a market (F, W, P), the algorithm computes the full set of stable matchings
S(P).

The following example illustrates the algorithm.

Example 1 (Continued) We apply the algorithm to the market of Example 1. In what follows,
we detail each of its steps:
Step 1 By the DA algorithm, we compute the two optimal stable matchings:

µF =

(
f1 f2 f3 ∅

w1w2 w3w5 w2w4 w6

)
, and µW =

(
f1 f2 f3 ∅

w3w4 w2w5 w1w2 w6

)
.

Since µF 6= µW , we apply the reduction procedure to P to obtain PµF which we already com-
puted in Example 1.
Step 2 We find all cycles for PµF . There are only two cycles: σ1 = {(w1, f1), (w4, f3)} and
σ2 = {(w2, f1), (w3, f2)}. Their corresponding cyclic matchings are:

µσ1 =

(
f1 f2 f3 ∅

w2w4 w3w5 w1w2 w6

)
, and µσ2 =

(
f1 f2 f3 ∅

w1w3 w2w5 w2w4 w6

)
.
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Since µσ1 6= µW , we apply the reduction procedure to PµF to obtain the reduced preference
profile with respect to µσ1 , Pσ1 ; and since µσ2 6= µW , we apply the reduced preference profile
with respect to µσ2 , Pσ2 . These two profiles are the following:

Pσ1
f1

: w2w4, w3w4, w2w3, w4, w3, w2

Pσ1
f2

: w3w5, w2w5, w2w3, w2, w3, w5

Pσ1
f3

: w1w2, w1, w2

Pσ1
w1 : f3

Pσ1
w2 : f2 f3, f1 f3, f1 f2, f1, f2, f3

Pσ1
w3 : f1, f2

Pσ1
w4 : f1, f3

Pσ1
w5 : f2

Pσ1
w6 : ∅

Pσ2
f1

: w1w3, w1w4, w3w4, w1, w4, w3

Pσ2
f2

: w2w5, w2, w5

Pσ2
f3

: w2w4, w1w2, w1w4, w1, w2, w4

Pσ2
w1 : f3, f1

Pσ2
w2 : f2 f3, f1 f3, f1, f2, f3

Pσ2
w3 : f1

Pσ2
w4 : f1, f3

Pσ2
w5 : f2

Pσ2
w6 : ∅

Step 3 Lastly, we find all cycles for Pσ1 and Pσ2 . The only cycle for Pσ1 is σ2 = {(w2, f1), (w3, f2)}.
Similarly, the only cycle for Pσ2 is σ1 = {(w1, f1), (w4, f3)}. Their corresponding cyclic
matchings are both equal to µW . Then, the algorithm stops and S(P) = {µF, µσ1 , µσ2 , µW}. ♦

5 Concluding remarks

For a many-to-many matching market in which agents’ preferences satisfy substitutabil-
ity and LAD, we presented an algorithm to compute the full set of stable matchings.
Our approach extends the notion of cycles and cyclic matchings presented in Roth and
Sotomayor (1990). Given any stable matching µ, each adjacent stable matching µ′ is
obtained as a cyclic matching under the reduced preference profile Pµ.14 Even though
our results make no use of the lattice structure of the stable set, our algorithm trav-
els through this lattice from the firm-optimal to the worker-optimal stable matching,
finding all stable matchings in between.

A paper closely related to ours is Martínez et al. (2004), which also computes the
full set of many-to-many stable matchings. An important difference between the al-
gorithm of Martínez et al. (2004) and ours is that theirs is based on the one-to-one
algorithm presented by McVitie and Wilson (1971). The DA algorithm must be ap-
plied to a reduced preference profile in each step of the algorithm of Martínez et al.
(2004), while in our algorithm we use the DA algorithm only twice (to calculate the
firm-optimal and worker-optimal stable matchings in the first step) and afterward we
only seek for cycles in a reduced preference profile and compute their corresponding
cyclic matchings.

14Stable matchings µ and µ′ are adjacent if µ �F µ′ and there is no other stable matching µ′′ such that
µ �F µ′′ �F µ′.
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Another difference is that Martínez et al. (2004) only assume substitutability on
agents’ preferences, while we assume in addition LAD. However, we provide an ex-
ample that shows that the algorithm in Martínez et al. (2004) has an error (the algo-
rithm does not compute the full set of stable matchings). Before presenting this ex-
ample, we roughly explain the algorithm in Martínez et al. (2004). Let (F, W, P) be a
matching market. By using the DA algorithm, compute µF and µW and set S?(P) =

{µF, µW}. In Step 1, for each pair ( f , w) such that w ∈ µF( f ) \ µW( f ), (i) compute
the w–truncation of Pf and consider the new preference profile P( f ,w) obtained from
P by replacing Pf by the w–truncation of Pf ;15 (ii) compute, by the DA algorithm, the

firm-optimal stable matching for the new market (F, W, P( f ,w)), denoted by µ
( f ,w)
F ; (iii)

if Cw′(µF(w′) ∪ µ
( f ,w)
F (w′)) = µ

( f ,w)
F (w′) for each w′ ∈ W, then add µ

( f ,w)
F to S?(P). In

Step t, for each matching added to S?(P) in Step t − 1, repeat items (i), (ii), and (iii)
of Step 1 for each pair ( f , w) such that w is matched to f under this new matching
but not under the original worker-optimal stable matching. The algorithm stops in the
step in which no matching is added to S?(P). Martínez et al. (2004) wrongly state that
S?(P) = S(P).

Now, we are in a position to present the example16 showing that: (i) algorithm of
Martínez et al. (2004) stops before computing all stable matchings, and (ii) our algo-
rithm computes the full set of stable matchings.

Example 2 Let (F, W, P) be a one-to-one matching market in which F = { f1, f2, f3, f4},
W = {w1, w2, w3, w4}, and the preference profile is given by:

Pf1 : w2, w1, w3, w4 Pw1 : f2, f1, f4, f3

Pf2 : w4, w2, w3, w1 Pw2 : f4, f3, f2, f1

Pf3 : w4, w2, w3, w1 Pw3 : f3, f1, f4, f2

Pf4 : w3, w1, w4, w2 Pw4 : f1, f3, f4, f2

Agents’ preferences in a one-to-one matching market satisfy substitutability and LAD because
they are linear orderings among single agents. For this market, there are three stable matchings:

µF =

(
f1 f2 f3 f4

w1 w2 w4 w3

)
, µ =

(
f1 f2 f3 f4

w3 w1 w4 w2

)
, and µW =

(
f1 f2 f3 f4

w4 w1 w3 w2

)
.

Following the algorithm of Martínez et al. (2004), the pairs ( f , w) such that w ∈ µF( f ) \
µW( f ) are: ( f1, w1), ( f2, w2), ( f3, w4) and ( f4, w3). For each of these pairs ( f , w), the firm-
optimal stable matching for the w–truncation of Pf are:

µ
( f1,w1)
F =

(
f1 f2 f3 f4

w3 w2 w4 w1

)
, µ

( f2,w2)
F =

(
f1 f2 f3 f4

w2 w1 w4 w3

)
,

15See Definition 4 in the Appendix.
16This example was provided to one of the authors of this paper by Xuan Zhang.
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µ( f3,w4) =

(
f1 f2 f3 f4

w1 w4 w2 w3

)
, and µ( f4,w3) =

(
f1 f2 f3 f4

w1 w3 w4 w2

)
.

Notice that
Cw1(µF(w1) ∪ µ

( f1,w1)
F (w1)) = Cw1({ f1, f4}) = { f1} 6= µ

( f1,w1)
F (w1),

Cw2(µF(w2) ∪ µ
( f2,w2)
F (w2)) = Cw2({ f2, f1}) = { f2} 6= µ

( f2,w2)
F (w2),

Cw4(µF(w4) ∪ µ
( f3,w4)
F (w4)) = Cw4({ f3, f2}) = { f3} 6= µ

( f3,w4)
F (w4), and

Cw3(µF(w3) ∪ µ
( f4,w3)
F (w3)) = Cw3({ f4, f2}) = { f4} 6= µ

( f4,w3)
F (w3).

Thus, the algorithm does not incorporate any matching to S?(P) and, therefore, stops without
computing stable matching µ.
Now we show how our algorithm computes all of these three stable matchings. Once we com-
pute µF and µW by the DA algorithm, the reduced preference profile PµF is given by:

PµF
f1

: w1, w3, w4 PµF
w1 : f2, f1

PµF
f2

: w2, w1 PµF
w2 : f4, f3, f2

PµF
f3

: w4, w2, w3 PµF
w3 : f3, f1, f4

PµF
f4

: w3, w2 PµF
w4 : f1, f3

It is easy to check that there is only one cycle for PµF , σ1 = {(w1, f1), (w3, f4), (w2, f2)}. Its
corresponding cyclic matching is µσ1 = µ. Now, the reduced preference profile Pµσ1 is given
by:

PµF
f1

: w3, w4 PµF
w1 : f2

PµF
f2

: w1 PµF
w2 : f4

PµF
f3

: w4, w3 PµF
w3 : f3, f1

PµF
f4

: w2 PµF
w4 : f1, f3

Finally, it is easy to check that there is only one cycle for Pµσ1 , σ2 = {(w3, f1), (w4, f3)}. Its
corresponding cyclic matching is µσ2 = µW . In this way, our algorithm computes the full set
of stable matchings for the market (F, W, P). ♦

A Appendix

In order to prove Lemma 1, we first define a w–truncation of preference Pf and adapt
a lemma of Martínez et al. (2004) to our setting.

Definition 4 (Martínez et al., 2004) We say that the preference Pw
f is the w–truncation of

Pf if:

(i) All sets containing w are unacceptable to f according to Pw
f . That is, if w ∈ S then

∅Pw
f S.
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(ii) The preferences Pf and Pw
f coincide on all sets that do not contain w. That is, if w /∈

S1 ∪ S2 then S1Pf S2 if and only if S1Pw
f S2.

Similarly, we define P f
w as an f –truncation of Pw.

Remark 2 Given a w–truncation of Pf and any subset of workers S, C f (S \ {w}) = Cw
f (S).

Similarly, given a f –truncation of Pw and any subset of firms S, Cw(S \ { f }) = C f
w(S).

Lemma 2 Let f ∈ F and w ∈ W with their respective preference relations Pf and Pw. If Pf is
substitutable and satisfies LAD, then Pw

f is substitutable and satisfies LAD. Similarly, if Pw is

substitutable and satisfies LAD, then P f
w is substitutable and satisfies LAD.

Proof. Let f ∈ F, w ∈ W, and Pf be substitutable and satisfies LAD. Let Pw
f be the

w–truncation of Pf . We only prove that if Pf is substitutable and satisfies LAD, then
Pw

f is substitutable and satisfies LAD. The other implication is analogous. To see that
Pw

f is substitutable, let w̃, w′ ∈ S be arbitrary and assume that w̃ ∈ Cw
f (S).

17 If w /∈ S,
then w̃ ∈ Cw

f (S \ {w
′}) because Cw

f (S) = C f (S), Cw
f (S \ {w

′}) = C f (S \ {w′}), and
because of the substitutability of Pf . If w ∈ S, then we have that Cw

f (S) = C f (S \ {w});
therefore, by assumption w̃ ∈ C f (S \ {w′}). By the substitutability of Pf , we have
that w̃ ∈ C f ([S \ {w}] \ {w′}). But, the equality C f ([S \ {w}] \ {w′}) = Cw

f (S \ {w
′})

implies that w̃ ∈ Cw
f (S \ {w

′}). Therefore, Pw
f is substitutable.

To see that Pw
f satisfies LAD, let S′ and S be two subsets of workers such that S′ ⊂ S.

Note that, S′ \ {w} ⊂ S \ {w}. Then, by Remark 2 and the fact that Pf satisfies LAD we
have,

|Cw
f (S
′)| = |C f (S′ \ {w})| ≤ |C f (S \ {w})| = |Cw

f (S)|.

Therefore, Pw
f satisfies LAD. �

Proof of Lemma 1. W.l.o.g. assume that agent a is a firm, say f ∈ F. Let Pf be a sub-
stitutable preference that satisfies LAD. Let W̃ f be the set of workers selected in Step 1
(a), Step 2 (a) or Step 3 of the reduction procedure for firm f . Take any w ∈ W̃ f and
consider the w–truncation Pw

f . By Lemma 2, preference Pw
f is substitutable and satisfies

LAD. Now, any take w′ ∈ W̃ f \ {w} and consider the w′–truncation of Pw
f . Again by

Lemma 2, the w′–truncation of Pw
f is substitutable and satisfies LAD. Continuing in the

same way for each worker of W̃ f not yet considered, we construct the corresponding
truncation of the previously obtained truncated preference. By Lemma 2, each one of
these truncated preferences is substitutable and satisfies LAD. By the finiteness of the
set W̃ f , this process will end. Moreover, by definition of W̃ f , the last truncated pref-

erence obtained in this process is Pµ,µ̃
f . Therefore, preference Pµ,µ̃

f is substitutable and
satisfies LAD. �

17Denote by Cw
f (S) to f ’s most preferred subset of S according to the w–truncation of Pf .
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In order to prove Theorem 1, we first show in Lemma 3 that, under certain con-
ditions, individual rationality of a matching under the original preference profile is
equivalent to individual rationality under a reduced preference profile.

Lemma 3 Let µ, µ̃ ∈ S(P) with µ �F µ̃ and let µ′ be a matching. The matching µ′ is
individually rational under P with µ �F µ′ �F µ̃ and µ̃ �W µ′ �W µ if and only if µ′ is
individually rational under Pµ,µ̃.18

Proof. Let µ, µ̃ ∈ S(P) with µ �F µ̃ and let µ′ be a matching.
(=⇒) Assume that the matching µ′ is individually rational under P with µ �F µ′ �F µ̃

and µ̃ �W µ′ �W µ. We claim that µ′( f ) and µ′(w) are not eliminated in the reduction
to obtain Pµ,µ̃ for each f ∈ F and w ∈ W. Since µ �F µ′ �F µ̃, we have µ( f ) =

C f (µ( f ) ∪ µ′( f )) and µ′( f ) = C f (µ̃( f ) ∪ µ′( f )) for each f ∈ F . Moreover, since µ̃ �W

µ′ �W µ, we have µ̃(w) = Cw(µ′(w) ∪ µ̃(w)) and µ′(w) = Cw(µ′(w) ∪ µ(w)) for
each w ∈ W. Therefore, µ′( f ) and µ′(w) are not eliminated at Step 1, and Step 2 of
the reduction procedure. Let ( f , w) be a pair assigned in µ′. Since µ′ is individually
rational, the pair ( f , w) is mutually acceptable under P. Moreover, since µ′( f ) and
µ′(w) were not eliminated at Step 1, or Step 2, then ( f , w) is mutually acceptable under
Pµ,µ̃. Thus, no pair of agents assigned in µ′ is eliminated in Step 3 of the reduction
procedure. Then,

Cµ,µ̃
f (µ′( f )) = C f (µ

′( f )) = µ′( f )

and
Cµ,µ̃

w (µ′(w)) = Cw(µ
′(w)) = µ′(w).

Therefore, µ′ is an individuality rational matching under Pµ,µ̃.
(⇐=) Assume that the matching µ′ is individually rational under Pµ,µ̃. The definition
of reduced preference Pµ,µ̃ implies that µ �F µ′ �F µ̃ and µ̃ �W µ′ �W µ. Let f ∈ F.
Notice that, by the reduction procedure, if w ∈ Cµ,µ̃

f (µ′( f )) then, w ∈ C f (µ
′( f )). Since

µ′( f ) = Cµ,µ̃
f (µ′( f )) ⊆ C f (µ

′( f )) ⊆ µ′( f ), we have that C f (µ
′( f )) = µ′( f ). Similarly,

Cw(µ′(w)) = µ′(w) for each w ∈ W. Therefore, µ′ is an individually rational matching
under P. �

Proof of Theorem 1. Let µ, µ̃ ∈ S(P) with µ �F µ̃.
(⇐=) Let µ′ ∈ S(Pµ,µ̃). By Lemma 3, we have that µ′ is individually rational under
P. Assume that µ′ /∈ S(P). Thus, there is a blocking pair of µ′ under P, i.e., there is
( f , w) ∈ F×W such that w /∈ µ′( f ), w ∈ C f (µ

′( f ) ∪ {w}) and f ∈ Cw(µ′(w) ∪ { f }).
18Recall that�F and�W are dual orders only in the set of stable matchings, so both µ �F µ′ �F µ̃ and

µ̃ �W µ′ �W µ need to be required.
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Claim: neither C f (µ′( f )∪ {w}) nor Cw(µ′(w)∪ { f}) is eliminated in the reduc-
tion procedure. First, assume w.l.o.g. that C f (µ

′( f ) ∪ {w}) is eliminated in Step 1 the
reduction procedure. There are two cases to consider:
Case 1: C f (µ′( f )∪ {w}) � f µ( f ). Thus, there are W ′ and w̃ such that w̃ ∈W ′ \ µ( f ),
w̃ ∈ C f (µ

′( f ) ∪ {w}) and W ′ = C f (W ′ ∪ µ( f )). Then, if w̃ ∈ µ′( f ), µ′( f ) is eliminated

in Step 1 of the reduction procedure. Therefore, µ′( f ) 6= Cµ,µ̃
f (µ′( f )), and µ′ is not

individually rational under Pµ,µ̃, contradicting Lemma 3. If w̃ = w, w ∈ C f (W ′ ∪ µ( f ))
and, by substitutability,

w ∈ C f (µ( f ) ∪ {w}). (2)

Moreover, by definition of Blair’s partial order and (1)

Cw(µ
′(w) ∪ { f }) �w Cw(µ

′(w)). (3)

Since µ′ is individually rational under Pµ,µ′ , µ′ is individually rational under P and
µ̃ �W µ′ �W µ by Lemma 3. Then, µ′(w) = Cw(µ′(w)) �w µ(w) and, by (3) and
transitivity of �w, we have Cw(µ′(w) ∪ { f }) �w µ(w). Thus, Cw(µ′(w) ∪ { f }) =

Cw(µ(w) ∪ Cw(µ′(w) ∪ { f })). Applying (1), we have Cw(µ(w) ∪ Cw(µ′(w) ∪ { f })) =

Cw(µ(w) ∪ µ′(w) ∪ { f }). Recall that ( f , w) is a blocking pair for µ′ under P. Hence,
f ∈ Cw(µ′(w) ∪ { f }) = Cw(µ(w) ∪ µ′(w) ∪ { f }). Since w = w̃ ∈ W ′ \ µ( f ), f /∈ µ(w).
Thus, by substitutability, f ∈ Cw(µ(w) ∪ µ′(w) ∪ { f }) implies that

f ∈ Cw(µ(w) ∪ { f }). (4)

Furthermore, since w = w̃, w /∈ µ( f ). This, together with (2) and (4) imply that ( f , w)

is a blocking pair for µ under P. This is a contradiction.
Case 2: C f (µ′( f )∪ {w}) � f µ( f ). Since we assume that ( f , w) is a blocking pair for
µ′ under P, w ∈ C f (µ

′( f ) ∪ {w}). By this case’s hypothesis, w ∈ C f (µ( f ) ∪ C f (µ
′( f ) ∪

{w})). By (1), w ∈ C f (µ( f ) ∪ µ′( f ) ∪ {w}) = C f (C f (µ( f ) ∪ µ′( f )) ∪ {w}). Since
µ �F µ′,

w ∈ C f (µ( f ) ∪ {w}). (5)

Now, we claim that w /∈ µ( f ). First, note that f ∈ Cw(µ′(w) ∪ { f }) and f /∈ µ′(w)

implies that Cw(µ′(w) ∪ { f }) �w µ′(w). Second, µ′ ∈ S(Pµ,µ̃) implies, by Lemma 3,
µ′ �W µ. Thus, µ′(w) = Cw(µ′(w)∪ µ(w)) for each w ∈W. Lastly, since f /∈ µ′(w) and
assuming that f ∈ µ(w), we conclude that

µ′(w) = Cw(µ
′(w) ∪ µ(w)) �w Cw(µ

′(w) ∪ { f }) �w µ′(w),

and this is a contradiction. Then,
w /∈ µ( f ). (6)
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Moreover, by the same argument used to obtain (4), f ∈ Cw(µ′(w) ∪ { f }) implies that

f ∈ Cw(µ(w) ∪ { f }). (7)

Hence, by (5), (6), and (7), ( f , w) is a blocking pair for µ under P, and this is a con-
tradiction. Therefore, by Case 1 and Case 2, C f (µ

′( f ) ∪ {w}) is not eliminated in Step
1.

Second, assume w.l.o.g. that C f (µ
′( f ) ∪ {w}) is eliminated in Step 2 the reduction

procedure. Note that this cannot happen, because C f (µ
′( f ) ∪ {w}) � f µ′( f ) � f µ̃( f )

for each f ∈ F. By a symmetrical argument, we have that Cw(µ′(w) ∪ { f }) can not be
eliminated in Step 1 or Step 2 either.

Now, we show that neither C f (µ
′( f ) ∪ {w}) nor Cw(µ′(w) ∪ { f }) is eliminated in

Step 3. Assume w.l.o.g. that C f (µ
′( f ) ∪ {w}) is eliminated in Step 3. Thus, there

is w̃ ∈ C f (µ
′( f ) ∪ {w}) such that w̃ is not acceptable for f after Steps 1 and 2 are

performed. Note that this implies that Cµ,µ′

f ({w̃}) 6= {w̃}. By definition of C f we have
C f (µ

′( f ) ∪ {w}) ⊆ µ′( f ) ∪ {w}. Thus, w̃ ∈ µ′( f ) or w̃ = w. If w̃ ∈ µ′( f ), since µ′

is individually rational under Pµ,µ̃, w̃ ∈ µ′( f ) = Cµ,µ̃
f (µ′( f )) and, by substitutability,

w̃ ∈ Cµ,µ̃
f ({w̃}) 6= {w̃}, which is absurd. Therefore, w̃ = w. Since ( f , w) is a blocking

pair of µ′ under P, w ∈ C f (µ
′( f )∪ {w}). Since w is not acceptable for f after Step 1 and

Step 2, this implies that any set that contains agent w is removed from f ’s preference
list at Step 1 or Step 2. Thus, C f (µ

′( f )∪{w}) is removed from f ’s preference list in Step
1 or Step 2, and this is a contradiction. Therefore, C f (µ

′( f ) ∪ {w}) is not eliminated
in Step 3. A similar argument proves that Cw(µ′(w) ∪ { f }) is not eliminated either in
Step 3. This completes the proof of the Claim.

In order to finish the proof, since by the Claim neither C f (µ
′( f )∪{w}) nor C f (µ

′(w)

∪{ f }) is eliminated by the reduction procedure, we have that C f (µ
′( f ) ∪ {w}) =

Cµ,µ̃
f (µ′( f )∪{w}) and C f (µ

′(w)∪{ f }) = Cµ,µ̃
f (µ′(w)∪{ f }). Then, ( f , w) is a blocking

pair for µ′ under Pµ,µ̃, and this is a contradiction. Therefore, µ′ ∈ S(P).

(=⇒) Let µ′ ∈ S(P) with µ �F µ′ �F µ̃. This implies that µ̃ �W µ′ �W µ. By
Lemma 3, we have that µ′ is individually rational in Pµ,µ̃. Assume that µ′ /∈ S(Pµ,µ̃).
Thus, there is a pair ( f , w) ∈ F ×W such that w /∈ µ′( f ), w ∈ Cµ,µ̃

f (µ′( f ) ∪ {w})
and f ∈ Cµ,µ̃

f (µ′(w) ∪ { f }). By the reduction procedure w ∈ C f (µ
′( f ) ∪ {w}) and f ∈

C f (µ
′(w)∪ { f }). Therefore the pair ( f , w) blocks µ′ under P, and this is a contradiction

of µ′ ∈ S(P). Thus, µ′ ∈ S(Pµ,µ̃). �

Proof of Proposition 1. (=⇒) This implication is straightforward from Definition 2, since
there is a cycle only if there is a firm f such that µ( f ) 6= µ̃( f ) under Pµ,µ̃.
(⇐=) Assume that µ 6= µ̃. We construct a bipartite oriented the digraph Dµ,µ̃ with sets
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of nodes
V1 = {(w, f ) ∈W × F : w ∈ µ( f ) \ µ̃( f )}

and
V2 = (F×W) \ {( f , w) : (w, f ) ∈ V1}.

Since µ 6= µ̃, both V1 and V2 are non-empty. The oriented arcs are defined as follows.
There is and arc from (w, f ) ∈ V1 to ( f ′, w′) ∈ V2 if

f = f ′ and Cµ,µ̃
f (W \ {w}) = (µ( f ) \ {w}) ∪ {w′}.

There is an arc from ( f ′, w′) ∈ V2 to (w, f ) ∈ V1 if

w′ = w and Cµ,µ̃
w
(
µ(w) ∪ { f ′}

)
= (µ(w) \ { f }) ∪ { f ′}.

It is easy to see that there is an oriented cycle in the digraph Dµ,µ̃ if and only if there is a
cycle for preference Pµ,µ̃. In fact, if {(w1, f1), ( f1, w2), (w2, f2), ( f2, w3), . . . , (wr, fr), ( fr, w1)}
is a cycle for Dµ,µ̃, then {w1, f1, w2, f2, . . . , wr, fr} is a cycle for Pµ,µ̃. Assume that there
is no cycle for Pµ,µ̃. Then, there is no cycle in digraph Dµ,µ̃. Let p be a maximal path in
Dµ,µ̃. There are two cases to consider:
Case 1: the terminal node (w, f ) of p belongs to V1. Then w ∈ µ( f ) \ µ̃( f ) and there
is no w′ ∈W such that w′ /∈ µ( f ) \ µ̃( f ) and w′ ∈ C

Pµ,µ̃
f
(W \ {w}). Therefore, Cµ,µ̃

f (W \

{w}) ( Cµ,µ̃
f (W) = µ( f ). By LAD,

|Cµ,µ̃
f (W \ {w})| < |µ( f )|. (8)

Moreover, since w ∈ µ( f ) \ µ̃( f ), we have µ̃( f ) ⊆W \ {w}. Thus, µ̃( f ) = Cµ,µ̃
f (µ̃( f )) ⊆

C
Pµ,µ̃

f
(W \ {w}) and, by LAD,

|µ̃( f )| ≤ |Cµ,µ̃
f (W \ {w})|. (9)

By the Rural Hospitals Theorem,19 |µ( f )| = |µ̃( f )|. This, together with (8) and (9)
implies that |µ̃( f )| ≤ |Cµ,µ̃

f (W \ {w})| < |µ( f )| = |µ̃( f )|, which is absurd.
Case 2: the terminal node ( f ′, w) of p belongs to V2. Then, f ′ /∈ µ(w) \ µ̃(w). First,
we claim that |Cµ,µ̃

w (µ(w) ∪ { f ′})| = |µ(w)|. Since Cµ,µ̃
w (F) = µ̃(w) by Remark 1 (i) and

µ(w) ∪ { f ′} ⊆ F, by LAD it follows that

|µ̃(w)| ≥ |Cµ,µ̃
w (µ(w) ∪ { f ′})|. (10)

19The Rural Hospitals Theorem states that each agent is matched with the same number of partners in
every stable matching. That is, |µ(a)| = |µ′(a)| for each µ, µ′ ∈ S(P) and for each a ∈ F ∪W (see Alkan,
2002, for more detail).
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Furthermore, by LAD and individual rationality of µ,

|Cµ,µ̃
w (µ(w) ∪ { f ′})| ≥ |Cµ,µ̃

w (µ(w))| = |µ(w)|. (11)

Assume |Cµ,µ̃
w (µ(w)∪ { f ′})| > |µ(w)|. By (11) and (10), it follows that |µ̃(w)| > |µ(w)|.

This contradicts the Rural Hospitals Theorem. Therefore, |Cµ,µ̃
w (µ(w)∪{ f ′})| = |µ(w)|,

and the proof of the claim is completed. Now, we have two subcases to consider:
Subcase 2.1: f ′ ∈ Cµ,µ̃

w (µ(w)∪ { f ′}). As |Cµ,µ̃
w (µ(w) ∪ { f ′})| = |µ(w)|, there is f ∈

µ(w) such that
Cµ,µ̃

w
(
µ(w) ∪ { f ′}

)
= (µ(w) \ { f }) ∪ { f ′}. (12)

Furthermore, f /∈ µ̃(w). To see this, notice that if f ∈ µ̃(w) = Cµ,µ̃
w (F) then, by substi-

tutability, f ∈ Cµ,µ̃
w (µ(w) ∪ { f ′}), contradicting (12). Therefore, f ∈ µ(w) \ µ̃(w) and

(12) imply that there is an arc from ( f ′, w) ∈ V2 to (w, f ) ∈ V1. This contradicts that
( f ′, w) is a terminal node of p.
Subcase 2.2: f ′ /∈ Cµ,µ̃

w (µ(w)∪ { f ′}). First, assume that f ′ /∈ Cw(µ(w) ∪ { f ′}). Since
( f ′, w) is the terminal node of path p, there are (w′, f ′) ∈ V1 and an arc from (w′, f ′)
to ( f ′, w). Also, f ′ /∈ µ(w), implying that Cw(µ(w) ∪ { f ′}) = µ(w). Thus, by Step
2 (b) of the reduction procedure, { f ′} is eliminated from w’s preference list. Thus,
by Step 3 of the reduction procedure, all subsets of workers containing w are elimi-
nated from preference list of f ′ as well. This contradicts that ( f ′, w) ∈ V2. Second,
assume that f ′ ∈ Cw(µ(w) ∪ { f ′}). Since f ′ /∈ µ(w) and Cw(µ(w) ∪ { f ′}) 6= µ(w),
then { f ′} is not eliminated on Step 2 (b) of the reduction procedure. Moreover, Step
3 of the reduction procedure neither eliminates f ′ nor w from each other’s preference
lists, because ( f ′, w) ∈ V2. Then, Cµ,µ̃

w (µ(w) ∪ { f ′}) = Cw(µ(w) ∪ { f ′}), implying that
f ′ ∈ Cµ,µ̃

w (µ(w) ∪ { f ′}), contradicting this subcase’s hypothesis.
Therefore, by Cases 1 and 2, path p has no terminal node so it is a cycle in digraph

Dµ,µ̃. As a consequence, a cycle for Pµ,µ̃ must also exist. �

Proof of Proposition 2. Let µ′ be a cyclic matching under Pµ,µ̃. Let σ be the cycle as-
sociated with µ′. First, we prove that µ′ is an individually rational matching under
Pµ,µ̃. If a ∈ F ∪W with a /∈ σ, we have that µ′(a) = µ(a). Then, by the individ-
ual rationality of µ under Pµ,µ̃ we have that Cµ,µ̃

a (µ′(a)) = µ′(a). If f ∈ σ, there is
w′ ∈ σ such that µ′( f ) = Cµ,µ̃

f (W \ {w′}). Thus, Cµ,µ̃
f (µ′( f )) = Cµ,µ̃

f (Cµ,µ̃
f (W \ {w′})) =

Cµ,µ̃
f (W \ {w′}) = µ′( f ). If w ∈ σ, there is f ∈ µ(w) and f ′ ∈ σ such that µ′(w) =

(µ(w) \ { f }) ∪ { f ′}. Then, Cµ,µ̃
w (µ′(w)) = Cµ,µ̃

w ((µ(w) \ { f }) ∪ { f ′}). By definition of
a cycle, Cµ,µ̃

w ((µ(w) \ { f }) ∪ { f ′}) = Cµ,µ̃
w (Cµ,µ̃

w (µ(w) ∪ { f ′})) = Cµ,µ̃
w (µ(w) ∪ { f ′}) =

µ′(w). Therefore, µ′ is individually rational under Pµ,µ̃.
Second, assume that there is a blocking pair ( f , w) for µ′ under Pµ,µ̃. We claim that

both f and w belong to σ. Furthermore, w immediately precedes f in cycle σ. In order
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to see this, first assume that f /∈ σ. Thus, by the definition of cyclic matching, µ′( f ) =
µ( f ) and since, by Remark 1 (i), µ′( f ) is the most preferred subset of workers in Pµ,µ̃

f ,

there is no w′ /∈ µ′( f ) such that w′ ∈ Cµ,µ̃
f (µ′( f )∪{w′}). When w′ = w, this contradicts

that ( f , w) is a blocking pair for µ′. Therefore, f ∈ σ.
Also, as ( f , w) is a blocking pair for µ′, w ∈ Cµ,µ̃

f (µ′( f ) ∪ {w}). By the definition of

cycle, there is w′ such that Cµ,µ̃
f (W \ {w′}) = µ′( f ) and thus w ∈ Cµ,µ̃

f (Cµ,µ̃
f (W \ {w′})∪

{w}) which in turn, by (1), becomes

w ∈ Cµ,µ̃
f ((W \ {w′}) ∪ {w}). (13)

To see that w immediately precedes f in cycle σ, i.e. w = w′, assume that w 6= w′.
Then, w ∈ W \ {w′} and, therefore, (13) implies w ∈ Cµ,µ̃

f (W \ {w′}) = µ′( f ). Thus,
w ∈ µ′( f ), which contradicts ( f , w) being a blocking pair for µ′. Hence, w = w′. This
completes our claim.

To finish our proof, notice that by definition of cyclic matching and the fact that
w = w′ ∈ σ, there is f ′ such that

Cµ,µ̃
w (µ(w) ∪ { f ′}) = (µ(w) \ { f }) ∪ { f ′} = µ′(w). (14)

Since µ(w) ∪ { f ′} = µ′(w) ∪ { f }, using (14) and f /∈ µ′(w) (that follows from ( f , w)

being a blocking pair for µ′) we have that f /∈ Cµ,µ̃
w (µ′(w) ∪ { f }). But then again we

contradict that ( f , w) is a blocking pair for µ′. Hence, µ′ ∈ S
(

Pµ,µ̃) . �

Proof of Proposition 3. Let µ, µ′ ∈ S(P) with µ �F µ′. Consider the reduced preference
profile Pµ,µ′ . By Proposition 1, there is a cycle σ for Pµ,µ′ . Let µσ be its corresponding
cyclic matching under Pµ,µ′ . By Proposition 2, µσ ∈ S(Pµ,µ′) and, consequently, µσ �F

µ′ by Lemma 1. Furthermore, µ �F µσ follows straightforward from the fact that
µσ ∈ S(Pµ) and that µ is the firm-optimal stable matching for Pµ. �

Lemma 4 Let µ, µ̃ ∈ S(P) with µ �F µ̃. If µ̃ is a cyclic matching under Pµ,µ̃, then µ̃ is a
cyclic matching under Pµ.

Proof. Let µ, µ̃ ∈ S(P) with µ �F µ̃ and let µ̃ be a cyclic matching under Pµ,µ̃. By
Theorem 1, µ̃ ∈ S(Pµ). Let σ = {(w1, f1), (w2, f2), . . . , (wr, fr)} be the cycle associ-
ated with µ̃. We only need to prove that σ is a cycle for Pµ. First, notice that for
each (wi, fi) ∈ σ, wi ∈ µ( fi) \ µ̃( fi) implies that wi ∈ µ( fi) \ µW( fi). Otherwise,
wi ∈ µW( fi) and wi ∈ µ( fi) = Cµ

fi
(µ( fi) ∪ µ̃( fi) ∪ µW( fi)) imply, by substitutability,

that wi ∈ Cµ
fi
(µ̃( fi) ∪ µW( fi)) = µ̃( fi), a contradiction. Second, by definition of cycle

for Pµ,µ̃ and Definition 3, µ̃( fi) = Cµ,µ̃
fi

(W \ {wi}) = (µ( fi) \ {wi})∪ {wi+1}. By Propo-

sition 2, µ̃ is individually rational under Pµ,µ̃. By Lemma 3, µ̃ is individually rational
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under Pµ. Thus, Cµ
fi
(µ̃( fi)) = µ̃( fi). Hence,

Cµ
fi
(µ̃( fi)) = (µ( fi) \ {wi}) ∪ {wi+1}. (15)

Lastly, again by definition of cycle for Pµ,µ̃, we have

Cµ,µ̃
wi (µ(wi) ∪ { fi−1}) = (µ(wi) \ { fi}) ∪ { fi−1} = µ̃(wi).

Now, we prove that Cµ,µ̃
wi (µ(wi) ∪ { fi−1}) = Cµ

wi(µ(wi) ∪ { fi−1}). By the reduction
procedure, we have that Cµ,µ̃

wi (µ(wi) ∪ { fi−1}) ⊆ Cµ
wi(µ(wi) ∪ { fi−1}). Now, assume

that Cµ
wi(µ(wi)∪ { fi−1}) 6= Cµ,µ̃

wi (µ(wi)∪ { fi−1}). This implies that Cµ
wi(µ(wi)∪ { fi−1})

is eliminated in the reduction procedure to obtain Pµ,µ̃. Since µ ∈ S(Pµ,µ̃), then the
only possibility is that the firm selected by the reduction procedure to eliminate from
Cµ

wi(µ(wi) ∪ { fi−1}) be fi−1. This contradicts that µ̃ is individually rational under Pµ,µ̃,
because fi−1 ∈ µ̃(wi). �

Proof of Proposition 4. Let µ′ ∈ S(P) \ {µF} and consider the reduced preference profile
PµF,µ′ . If µ′ is a cyclic matching under PµF,µ′ , then by Lemma 4 µ′ is a cyclic matching
under PµF and the proof is complete. If not, by Proposition 3 there is a cyclic matching
under PµF,µ′ , say µ1, such that µ1 �F µ′. By Lemma 1 and Proposition 2, µ1 ∈ S(P), so
we can consider the reduced preference profile Pµ1,µ′ . If µ′ is a cyclic matching under
Pµ1,µ′ , then by Lemma 4 µ′ is a cyclic matching under Pµ1 , and the proof is complete. If
not, continue this process until, by the finiteness of S(P), there is µk ∈ S(P) such that
µ′ is a cyclic matching under Pµk,µ′ , then by Lemma 4 µ′ is a cyclic matching under
Pµk . �

Proof of Theorem 2. Let (F, W, P) be a matching market. First, notice that by Proposition
1, for each reduced profile obtained in Step t− 1, there is at least a cycle. Proposition
2 and Theorem 1 show that each cyclic matching obtained by the algorithm belongs to
S(P). To see that each stable matching is computed by the algorithm, assume that it
is not the case for µ ∈ S(P) \ {µF}. By Proposition 4, there is another µ′ ∈ S(P) such
that µ is a cyclic matching under Pµ′ (remember that, as µ is a cyclic matching under
Pµ′ , µ′ �F µ). Thus, µ′ is not computed by the algorithm either (otherwise, if µ′ is
computed by the algorithm in Step t, µ necessarily is computed in Step t + 1). Thus,
again by Proposition 4, there is another µ′′ ∈ S(P) such that µ′ is a cyclic matching
under Pµ′′ with µ′′ �F µ′ and µ′′ is not computed by the algorithm either. Continuing
this line of reasoning, by the finiteness of the set S(P), we eventually reach µF and
conclude that the algorithm cannot compute it either, which is absurd. �
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